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1. INTRODUCTION

The aim of this paper is to find necessary and sufficient conditions in terms of
partial differential equations for a smooth function H: X x Y — K to be in the form

(L) He) = T 0

where X and Y are n-dimensional and p-dimensional real or complex smooth mani-
folds, respectively, and K is the field of all real or complex numbers. The history of
this decomposition began in the year 1904 when at the 3rd International Congress
of Mathematicians S. Cyparissos announced a criterion for an analytic function of
two real or complex variables to be written in the form (1.1) (see [3]). This was
rediscovered and proved by F. Neuman in [5] and [6], where the case of arbitrary
(even non-continuous) functions was also solved. The original statement of [3]

was discussed by T. M. Rassias in [8]. In all these papers, the fundamental role was
played by the determinants

i+j
(12) det(a i H,) .
ox' oy’ $,j=0,1,.00g

Later on, in 1988, the same results and many others concerning this decomposition
(e-g. extended separation of variablcs in PDE’s) were obtained by H. Gauchman and
L. A. Rubel in [4]. They also raised a similar question of when a function of three
real or complex variables permits a representation of the form

(13 Hxpz) = $16) hi0) k().

This problem was investigated and completely solved in [7] and [2]. The decomposi-
tion (1.3) is substantially based on the possibility of separating one variable from the
other two variables, i.e. on the decompositions of the form

H(x,y, z) = Zf,(x)g (r.2), xeK, (y,z)eK>.
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So the problem we investigate in this paper is a natural generalization of the previous
one to multidimensional variables. Although we believe the problem is interesting
in itself, we recall one of its well-known motivations: consider an integral equation

(1.4) u(x) = a(x) + {y H(x, ) u(y)dy (xeX),
where u: X — K is an unknown function. If a decomposition (1.]) of the kernel H

is available, we can reduce (1.4) to an algebraic system of m linear equations, because
any solution of (1.4) is then of the form

u(x) = a(x) +i§lc,-f,-(x) ,

with some constants ¢; (1 < i < m).

In the present paper we will give a solution of the problem of decomposition (1.1)
for arbitrary smooth manifolds X and Y. Moreover, we will also consider (1.1) as
a functional equation for unknown functions fy, f,, ..., f, and g4, g2, ..., gm- Under
the conditions of Theorem 9.1 we can explicitly compute all m-tuples fy, f2, .-, fm
and g;, g5, ..., g, that satisty (1.1). This result is new even if n = p = 1. Replacing
the global assumptions of Theorem 9.1 by local ones, Theorem 10.1 substantially
weakens the sufficient conditions for the decomposition (1.1) if max (n, p) > 1.
Moreover, the assumptions of Theorem 10.1 can be verified more easily than those
of Theorem 9.1.

Our approach to the problem is based on the following idea. If (1.1) holds, then
for each fixed y € Y, the function x + H(x, y) is an element of the linear subspace
of C*(X) generated by the functions fy, f,, ..., fm- This is why we find a class of linear
partial differential systems the solutions of which form a finite-dimensional linear
subspace of C*(X) (see Theorem 7.1). It will be a generalization of ordinary dif-
ferential equations

S 4 4y (x) ™D + L ag(x) =0

for functions of several variables. After finding such a differential system, we derive
sufficient conditions (symmetrical in x and y) for the family of functions x — H(x, y)
(v € Y) to satisfy it, and in this way we get the decomposition (1.1).

Our results stated here together with Lemma 4.1 of [2] make it possible to charac-
terize functions H e C*(X, x X, x ... x X,) that admit a decomposition

H(xy, ..., x5) = f isl N C N HEAR

i1=1 is=
where Xy, X, ..., X, are smooth manifolds, f/{ € C*(X;) and ¢;, ;€ K.
2. NOTATION AND DEFINITIONS

For simplicity we shall suppose that functions and manifolds are of the class C*®
(except Lemma 10.4) although in every statement lower diffetentiability is sufficient
provided all assumptions have a good sense.
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Manifolds will be denoted by X and Y (except Proposition 10.3 and Lemma 10.4).
They can be real or complex (analytic) but always connected. The capital letter D
(often with subscript) will stand for a linear differential operator from C*(X) to
C*(X). The small d will be written for a linear differential operator on Y. The identity
id: C*(X) » C™(X) is also considered to be a linear differential operator. The set
of all linear differential operators on X will be denoted by 2(X), while 2'(X) will
stand for the set of all first order linear differential operators on X.

For a given k-tuple D,, D,, ..., D, of operators and for an m-tuple f,, fs, ..., f
of functions we define the matrix

W ™Dy, Dy, ..., Dis f1, far oo s fm] = WO[Dis f5] =

= (Dla Dza--wDk)T(fn,fz»-n,fm) = [Dyfy Dify .. Difnm
Dyfy Dyf; .. Dirfm

Dkfl Dkf2 R Dkfm
where T denotes transposition. We shall write W”[D;; f;] if m = k. Analogously
W™ g1 Gaseeos Gms dyda, oo di] = WMHgisd;] =
= (91, G2y --es gm)T (‘11’ dy, ..., dk.) = (Wk'm[dj: gi])T .

Foran m-tuple D, D,, ..., D,,,ak-tupled,, d,, ..., d, and a function H e C*(X xY)
we denote

W™K D;:d]H = W™¥D;;d;H] = W™[DH; d,].
In a similar way we write

W™x;, y;] H = [H(xy, yy) H(xy, y5) -.. H(xy, y,,,)v
H(xz, Y1) H(xz’ YZ) e H(xz» ym)

H(Xm7 yl) H(xma yZ) s H(Xm, ym)

for a function H: X x Y — K, where x, x,,...,Xx,€X and y,, y5, ..., ym€ Y.
We shall write

f=g on X ifandonlyif f(x)=g(x) foreach xeX,
f#%g on X ifandonlyif f(x)+ g(x) forsome xeX,
f#g on X ifandonlyif f(x)+ g(x) foreach xeX,

To abbreviate formulations we shall often use bold letters for m-tuples of functions
f=(f1.f2s---s fw)"- Then (1.1) has the form

H=fT.g on X xY.

The statement ‘“‘components of fare linearly independent on X means that functions

f1,f2, -+, [ are linearly independent as elements of the linear space of all functions
from X to K.
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If U is an open subset of X with coordinates x, x,, ..., X,, then for any two
operators D, D' € 9(U) of the form

aa1+11+...+a,, a[}l+ﬂz+...+pn
(2.1) D=———  and D=—"—
‘ X3t 0x%* ... Ox3n 0x8* 9xh* ... OxPn
we will write D < D" iff o, < B, (1 £ 5 < n) but not D = D', while D < D’ means
that either a; + o, + ... + o, < By + o+ ...+ B, or oy +0a, + ... + 0, =
=B +Br+ ...+ Py =P .., %1 = Ps—;y and oy > B, for some s < n.
Notice that ““<’" is a linear ordering and

D < D' if and only if iD <iD’
X 0x,
holds foreach s = 1,2, ..., n.

An m-tuple of operators Dy, D,, ..., D,,€ 9(U) of the form (2.1) is said to be
complete if id = D; < D, <... < D,, and if for every i =2,3,...,m, D < D,
implies D = D, for some k < i. Obviously, if an operator D of the form (2.1) lies
in a complete m-tuple, the numbers «, satisfy (o; + 1) (2, + 1)... (o, + 1) < m.
This inequality can be used when we need to go through the set of all complete
m-tuples with a given m (see Remark 10.3).

3. LINEAR INDEPENDENCE IN C%(X)

In this section we give necessary and sufficient conditions for linear independence
of functions from C®(X) in terms of linear differential operators.

Lemma 3.1. Let D,, D,, ..., D, e 9(X) and let fy, [, ..., fme C*(X). If
(3.1) det W"[D;; f;] + 0
on a dense subset of X, then fi,f,, ..., fm are linearly independent on every open

subset of X.
Proof. Suppose that for an open subset U < X we have

m

2cifj=0 on U (c;eK).

ji=1
By differentiation we get

W™Dy fil(cy, ¢z0eois€m)™ =0 on U,
which gives ¢; = 0 (1 £ j < m), because of (3.1).

In a certain sense the converse assertion is also true.

Theorem 3.2. Let f,,f,,...,fn€ C°(X) be linearly independent on any open
subset of X. Then the set X = {x € X, there is a neighbourhood U of x with co-
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ordinates and a complete m-tuple of differential operators Dy, D,, ..., D, € D(U)
satisfying (3.1) on U} is open and dense in X.
We postpone the proof of Theorem 3.2 to Section 6.

4. LEMMA ON LINEAR COMBINATIONS

To prove Theorem 3.2, we need to know a sufficient condition for a function f to
be a linear combination of fy, f5, - .., f,. Stated in terms of linear differential operators.
Here we establish such a condition. It will be also used in Section 7 on differential
equations.

Lemma 4.1. Let fy,f,,...,fm€ C°(X) and let operators D, =id, D,,..., D,
satisfy (3.1) on X. If f is such a function that for every D e 2*(X) and every p =
=1,2,....,m

(4.1) det W"*'[D;, DD,; f;,f] =0 on X,
then f is a linear combination of f1, fa, ..., frw 00 X.

Proof. The relations (3.1) and (4.1) imply that the last column of the matrix
from (4.1) is a linear combination of the previous ones:

(4.2) D, f(x) =.=§1 b(x) Difj(x) (1<i<m xeX),
and

(43 DD,1() = 509 DD, 1(x) (seX).

From (4.2) we get

b — det W"'[Di;fl, v fictn fifie1 ~~-5fm]
! det W™[D;, f,]

according to Cramer’s rule. Consequently, b; € C*(X) are the same for all D € 2'(X)

and all p. Hence, carrying out differentiation D of (4.2) and substracting (4.3) with

p = i, one obtains

on X,

0=)Db(x)D;ff(x) (1<i<m xeX),
i=1

which, along with (3.1), leads to Db; = 0 on X, for any D € 2'(X). This is why b;’s
are constants. Then (4.2) with D, = id yields that f is a linear combination of

Si:fay oo fmon X.

Remark 4 2. If X is such a manifold that every D € 2'(X) can be written in the
form D = Z ¢s 0]0x,, where ¢;e C*(X) and 0/0x,€ 2'(X), then in view of Lemma
4.1 it sufﬁces to check (4.1) only for D = 9/ox,, s = 1,2,...,n. The same rule
concerns also (7.1), (8.3), (9.2) and (10.2).
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5. PROCEDURE OF CHOICE

Here we describe a procedure which enables us to find an appropriate maximal
system of differential operators that are “linearly independent” as operators on
a given set of functions.

Procedure 5.1. Let us consider a fixed m-tuple of functions gy, gz, ... gm € C°°(X).
Let U be an open subset of X with coordinates xy, X,, ..., X, and let g, ¥ 0 on U
for some o = 1, 2, ..., m. We describe how to find an open subset V' = U and a com-
plete g-tuple of operators Dy, D,, ..., D,e 2(U), q < m, satisfying the following
three conditions:

(i) rank W*™[D;; g;] = q on V,
(i) rank W**""[D;, D; g;] = q on V (for each D e 9(U)),
(iii) if ¢ > L and 1 < k < q, then

(5.1) rank W*"[Dy, ..., Dy_y, D; g;] = k — 1 on V, for any D < D,.

First, we find an x, € U such that g,(x,) = 0. Then we have rank W""[id; g;] = 1
on V, where V < U is an open neighbourhood of x,. So we put D, = id. Suppose
now that we have chosen a complete r-tuple D,, D,, ..., D, such that rank
W[ D;; g;] = r on V, and that (5.1) holds for each k = 2,3, ..., r. Suppose also
that there exists an operator D € 9(U) satisfying

(5.2) rank W*'™[Dy, ..., D,, D; g;](xo) = r + 1 for some xp€V,

otherwise our procedure is finished with ¢ = r. We put D,,, = D, where D is the
smallest (under the ordering <) operator of the form (2.1) that satisfies (5.2). Then
rank W[ D;;g;] =r + 1 on V (V is restricted to a neighbourhood of x, if
necessary). The choice of D, ensures (5.1) with k = r + 1. So it remains to show
that the (r + 1)-tuple Dy, D,, ..., D,,, is complete. Notice first that D, < D,,,
follows from (5.1) with k = r. Since the r-tuple Dy, D,, ..., D, is assumed to be
complete, we need only to verify the following implication: if D,y = 8/dx;0 D',
then D’ = D; for some j < r. Suppose on the contrary that D,;; = 8/dx;0 D’ and
that D' & D; (1 £j £ r). The relation D’ < D, implies that D,_; < D' < D,
for some t < r + 1. From rank W' ""[D;;g;] =t — 1 and (5.1) with D = D’
and k = t we have

t—1
D'g =Y c;D;g on V (where ¢ = (91,92, .., Gm)") >
i=1

with suitable functions c; € C°°(V)‘ Differentiating the last identity with respect
to x, we obtain

(5.3) D,..g9 = 2 D'g ='§ 9 D;g +t§c,~-—a— D,g on V.
x4 i=1 0xg i=1 0xg
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Since D, < D, < ... < D,_; < D', we also have

0 ] 0
———D1<—-D2<...<6—D,_1<—0-D'=D,+1.

0x; 0x, Xs 0x,

Hence using (5.1) with k = r + 1, we conclude that there exist functions c;; € C*(V)
satisfying

’) r
(5'4) ;,;‘“Di.q=ZCiijg on V (1 §i§k—1).
i=

s
Finally, (5.3) and (5.4) imply that rank W'*1"[D: g1 < r + 1 on V, which contra-
dicts the choice of D, ;.

The result of our considerations is the following. Starting with D, = id and
repeating the described choice, we find successively the desired operators D,, Ds, ...
.... D,.(This process is finite because the condition rank W4™[D;; g;] = g necessitates
qgsm)

Remark 5.2. It can be proved (see Section 6 for a special case g = m) that the
number q of operators obtained by Procedure 5.1 is equal to the dimension of the
linear space generated by the functions g, g, - .-, gm € C*(U).

Example 5.3. Lct us apply Procedure 5.1 to an m-tuple of functions g;(x.y) =
= (xy)7', 1 £j < n,in C*(R x R). We explain why this application with x; = x,
x, =y and U =R x R" yields the complete m-tuple id, 9/ox, ..., 0™ "[ox™" 1.
Denote D; = 0"~ '[ox'~* for i = 1,2, ..., m. The functions g; are defined so that

det WDy 9] (x,y) = 1120 (k= 1)1yt **¢ "D £ 0 on U,

forany 1 £ k < m. So it remains only check that rank W*™[ Dy, ..., Dy_y, D; g;] <
< k, where D is any partial derivative satisfying D,_; < D < D,. We verify that
the last row of the mentioned matrix W*™[D,, ..., D,_,, D; g,] is a linear com-
bination of the previous ones: there are functions ap, ; € C*(U) such that the identities

k=1

(5'5) ng = .ZlaD.iDigj (1 =js m)

hold whenever D,_; < D < D,. The last fact follows from the equalities
03 : .

(56) Wiy = %i(y), 15jsm, (ny)eU
dy y 0x

Ly differentiating and using induction with respect to k. For example, the result
of the application of 9/dx to the both sides of (5.6} is
d’g;

; 1 dg; x 0%g;
xy) ==y +>"L(x,y),
8x6y( ) y(’)x( ) y 0x? (x:)
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which gives (5.5) with D = 0*|ox dy. The result of application of 9/dy to (5.6) is

2
P9 () = =2 2 (x0) 4 220 (1)
ayr y ox y dy 0x

= Wiy 4 z(1%(x,y) + fazgj(x,Y))’

y 0x y\y 0x y ox?
which gives (5.5) with D = d%/dy*. So (5.5) holds if Dy = @*[0x* < D < D, =
= 93/ox3.

6. PROOF OF THEOREM 3.2

Let the function f1, f2, ..., f be linearly independent on every open subset of X.
The fact that the set X is open being clear, we will show that X is dense. For any open
subset U = X we seek for an open subset ¥V = U and a complete m-tuple of operators
Dy, D,, ..., D, such that (3.1) holds on V. Let us apply Procedure 5.1 to the m-tuple
f1:f2s s fm- We find an open V < U, an integer ¢ < m and a complete g-tuple
of operators Dy, D,, ..., D, such that rank W%"[D;; g;] = q =
= rank W?*"""[D,, D; f;] on V for each De 2(V). We can change the ordering
J1.f2 -+ [ 50 that det W D;; f1, f5, ..., f,] % 0 on some open V' = V. Since we
have det Wi*'[D;, D; fy.f5.....f;41] =0 on V' for each De 2(V’), Lemma 4.1
implies that f, . is a linear combination of fi, f5, ..., f, on V', which is a contra-
diction.

7. DIFFERENTIAL EQUATIONS FOR FINITE-DIMENSIONAL
SUBSPACES OF C%(X)

Theorem 7.1. Suppose that functions fy,f5, ..., fn€ C*(X) and that operators
D, =id, D,,..., D, satisfy the condition W™[D; f;] 0 on X. Then there is
a unique system of equations

(L) DDf = ¥ ap(x) Dif

in which D and r go through the sets 2"(X) and {1, 2, ..., m}, respectively, with the
following property: A function fe C*(X) is a solution of (7.1) if and only if f is
a linear combination of f1,f2, s fm-

Proof. For each D e 2'(X) and each r = 1,2, ..., m, the matrix
Wwm* 1D, DD,; f;] has rank equal to m. Consequently, the last row of this matrix
is a linear combination of the previous ones. So there are functions ap,; such that

m
DDrfj E._zlaDri' Difj on X (1 =Jj= m).
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Cramer’s rule implies that

(72) ap = det WDy, ... Diey, DDy Digy - Dpifi] - 5
" det W[ D,; f;]

Hence ap,; € C °°(X) are determined uniquely. So there is a unique system of equations
(7.1) with solutions fy, f3, ..., f,. It is clear that every linear combination of fy, f5, ...
..., f. is @ solution of this system. Conversely, if f is a solution of (7.1) with ap,; as
in (7.2), then det W™*'[D;, DD,; f;,f] = 0 on X for each D € 2'(X). Now Lemma
4.1 implies that f is a linear combination of fy, f2, ..., fm

Remark 7.2. Some equations of the system (7.1) may be trivial: if the operator DD,
lies in {Dy, D,, ..., D}, then (7.1) is reduced to
_{t if DD, =D,
@pri =00 otherwise .
Moreover, if the m-tuple Dy, D,, ..., D,, is chosen according to Procedure 5.1,
then (5.1) and (7.2) lead to ap,; = 0if DD, < D;. We hope to continue our discussion
of the system (7.1) on another occasion.

Example 7.3. We find the system of differential equations for a 3-dimensional
linear subspace of C*(R* x R*) generated by functions fi(x, y) = 1, fo(x, y) =
= xy?andf(x, y) = x’y. A suitable (complete) 3-tuple of operators is (Dy, D;, D3 =
= (id, 0/0x, 0/dy), because

1 xy* x%y
det W3[Dy;f;] =10 y* 2xy|= —3x*»*+0 on R" x R*.
'0 2xy x*
Applying 9/0x and 9/dy to each D;, we obtain the family of operators {9/0x, d/dy,
0*[ox?, §*[ox dy, 0*|0y?}, each of them will stand on the left-hand side of (7.1).
However, only 3 of the 5 equations are nontrivial and we can easily find them:
4

2y
7.3 =—fi— —
(7.3) Jax 3xfx 3xzfy,

2 2
xy = —Jxt — >
Sy 3yf 3xfy

—2x 4
——fet—f.
3y? ! 3yfy

For example, the first equation is computed from

Sy =

L xy* x*y f
0y 2xy f, | =0.
0 2xy x* f,
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In the end let us emphasize once more that any solution of (7.3) is a linear com-
bination of the starting functions fy, f, and f5.

8. NECESSARY CONDITIONS FOR DECOMPOSITION

The following theorem is a considerable extension of the previous results con-
cerning the determinants (1.2) with one-dimensional x and y.

Theorem 8.1. Suppose that a function H e C*(X x Y) can be written in the form
(1.1) with f1,f5, ... fne C*(X) and g,, g5, ... gne C™(Y). If Uc X and V< Y
are any open subsets then we have
(8.1) det W"*'[D;dJH=0 on UxV

for any Dy, D,, ..., D, € D(U) and for any dy,d,, ..., dps, € D(V). Moreover,
if H% 0 on U x V, then there are open subsets U < U and V = V and two com-
plete ri-tuples D, D, ..., Dse 9(U) and dy, d,, ..., d; e D(V) satisfying

(8.2) det W*[D;;d]+0 on U xV
and
(83) det W**'[D, DD ;d,,ddJH=0 on U x V

forany p,se{1,2.....11},any De 2" (U) and any d e D' (V). The number w < m
may depend on the choice of U x Vin X x Y.

Proof. If His of the form (1.1) on X x Y, then W™*[D; d;] H is a product of the
(m + 1) x m matrix W™**"[D;; f,] and the m x (m x 1) matrix W™m*1[g;: d;].
Consequently, rank W™*![D;; d;] H < m, which yields (8.1).

Given U < X and V < Y, we choose the smallest # < m such that

(8.4) det W**'[D;dJH=0 onevery Ux VcUxV,

for any Dy, Dy, ..., Dy, y € D(U) and any dy, d,, ..., dz1q € D(V). Then there are
mi-tuples Dy. D,, ..., Dy e 9(U) and dy, d,, ..., ds € 9(V) such that

(8.5) det W'[D;dH]+0 on U x 7,

where U = U and V < Vare open subsets with coordinates. Now we use Procedure
5.1 for the ri-tuple of functions d,H(x, o), d,H(x, y,), .., dwH(x, ¥o), where

Yo € Vis fixed. We find a complete m"-tuple Dy, D,, ..., D,.. € 2(0), m’ < i, and
an subset U’ < U such that

(8.6) rank W% 5. d H] (-, y,)=m on U’
and
(8.7) rank WG Dy d.H] (—, yo) =m' on U’

for any D e 9(0). Since (8.6) and (8.7) with D = Dy, D, ..., Dy yield
rank W[ D;; d;] H(x, yo) < m’ for xeU’,
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from (8.5) we conclude that m’ > i and therefore it = m’. In view of (8.6), we
may suppose that

det W*[D;d]JH+0 on U x 7V,

where the open subsets U < U and V < V are restricted if necessary. Using now
Procedure 5.1 for the ri-tuple of functions DyH(x,, y), D,H(xq, ¥), ..., DaH(xo, ¥),
where x, € U is fixed, and repeating the arguments as above, we find a complete
ri-tuple dy, d,, ..., ds such that (8.2) holds with suitable open subsets U = U and
V < V. Since (8.3) follows immediately from (8.4), the proof is complete.

9. SUFFICIENT CONDITIONS FOR DECOMPOSITION

Now we are in a position to prove our main result on the decomposition (1.1).

Theorem 9.1. Let X and Y be smooth connected manifolds and let He C*(X x Y).
Suppose that there are two m-tuples of operators Dy =id, D,,..., D, € 9(X)
andd, =id, d,, ..., d, € 2(Y) such that

(9.1) det Wr[D;;d;JH+0 on X xY
and
(9.2) det W™*1[D,, DD,;d;,ddJH=0 on X x Y

forany r,se{l,2,...,m)}, for any De 2'(X) and any d e 2'(Y).

Then there exist functions fi,f,,...,fne C*(X) and gy, 4,,...,dme C*(Y)
such that H is of the form (1.1)on X x Y.

Moreover, having fixed xo € X and y, €Y, all such m-tuples f = (fy,f2, -+ fin)
and g = (g4, 92, ..., gm) satisfying (1.1) have the form

(9-3) f(x) = CT[d:H(x, yo), doH(x, yo), ..., duH(x, yo)]" (x€X),
g(y) = CT'W5'[DH(x,, ), DH(xg, ¥), ..., DuH(xo, ¥)]T (yeY),

where W, stands for W"[D;, d;H] (x,, yo) and C is any regular m x m constant
matrix.

Proof. Let D e 2'(X) and d € 2'(Y). Due to (9.1) and (9.2), the last row of the
matrix W™*1[D;, DD,; d;, dd;] H is a linear combination of the previous ones. It
means that there are functions ap,; € C*(X x Y) such that

(9-4) DD.d;H '——‘_;ami .Dd;H

for every j = 1,2,...,m, and

(9.5) DD, ddH =} ap,;,. Ddd.H .
i=1
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From (9.4) we can compute dp,; using Cramer’s rule:

_ det W"[Dy,...,D;_y, DD,, Dyyy, ..., D5 d,; 1 H
apyi = 1 .
" det W"[D;d,| H

Hence ap,; is independent of d e 2'(Y) and s = 1,2, ..., m. If we now carry out

differentiation d in the equation (9.4) and substract the equation (9.5) with s = j,
we get

0 =Y dap,;.Dd,H

i=1

for every j =1,2,...,m. That is why dap,(x,y) =0 for every (x,y)eX x Y
and every d € 2'(Y), which means that ap,; is independent of y € Y. Consequently,
for every y € Y, the function H(—, y) is a solution of the family of equations

(9.6) DD,f = _zia,,,i(x) DS,

where r goes through the set {1.2,...,m} and D goes through the set 2'(X). Let
yo € Y be fixed. From (9.4) we see that dH(—, yo), d2H(—, ¥o). ..., dnH(—. yo)
and H(—.y) = d;H(—, y) with arbitrary fixed y e Y are solutions of the system
(9.6). According to Theorem 7.1, every solution of (9.6) is a linear combination of
dH(—, yo), d2H(—. yo), ..., dnH(—, y,)- So we have

(97) H(x,y) = ilde(x, ¥o) 9(»)

for every (x,y)eX x Y. Consequently, putting f}(x) = d;H(x, yo) we get the
decomposition (1.1) for H. To compute g(y), differentiate (9.7) and put x = x:

DiH(—\'o» )’) = .ZlDide(an ,Vo) gj(}’)
j=
for j = 1,2, ..., m. This can be rewritten in the matrix form as

(9.8) (DyH(x¢, y), DH(xg, ¥), -, DyH(xo, ¥))T = Wog(y) .,

where W, = W™[D;; d;H] (%o, yo) and g = (94, g2, .., gm)" - Multiplying (9.8) by
Ws ', we get (9.3) with C equal to the unit matrix. It remains to show that if

(9.9) H(x, y) = f1(x) . 9(y) = £77(x) . 97(») »
where f,f~ € C*(X, K™) and g, ¢~ € C*(Y, K™), then
(9.10) f7=C"f on X and ¢- =C'g on Y,
where C is a constant regular matrix. (9.9) leads to the equality
WrDg d;] H = WDy fo] Wrlg,; d;] = WDy ] W[gss dj]

where fy, fi» ds» G5 are components of f, S, 9,9, respectively. Since the matrix
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W™[D;; d;] H is regular (see (9.1)), the matrix

C = Wrgs d;](W"[gs ;1) = (W"[Dis £])" W"[D;; f]
is also regular and depends neither on x € X nor on y € Y. Using the first row and
column of W™[D; f,] = W"[D;f] C and W™[g,; d;] = C"*'W™[g,; d;], respec-
tively, we obtain (9.10) because D, and d, are identical operators.

10. LOCAL SUFFICIENT CONDITIONS FOR GLOBAL DECOMPOSITION

Here we weaken sufficient conditions for global decomposition found above to
local ones.

Theorem 10.1. Let X and Y be smooth connected manifolds, let He C*(X x Y)
and let m 2 1 be an integer. Suppose that for every couple (x,y)e X x Y there
is a neighbourhood U x V of (x, y) and two m-tuples D, = id, D,, ..., D, € 9(U),
dy =1id, d,, ...,d, e D(V) such that
(10.1) det W"[D;d;]H=+0 on U x 7
and
(10.2) det W"*1[D;, DD,; d
forany r,se{l1,2,...,m} and for any D e 2'(U), d e 2'(V).

Then there exist functions fi,fz, ..., fm€ C?X), 91,92, .-, 9m€ C®(Y) such
that H is of the form (1.1) on X x Y.

dd]JH=0 on UxV

Jj’

Remark 10.2. Under the assumptions of Theorem 10.1, Theorem 9.1 ensures only
a local decomposition (1.1) of H in the neighbourhood U x ¥ of each point (x, y) €
€X x Y. The goal of Theorem 10.1 is to show that such local decompositions can
be “‘glued together”. We emphasize that such a conclusion is not correct unless the
domain of definition of H is a Cartesian product (see the example of a “‘stapler”
in [4, pp. 43 —44]).

Remark 10.3. If we look for m-tuples of operators satisfying the assumptions of
Theorem 10.1, we can restrict ourselves to the class of complete m-tuples. Indeed,
if (10.1) and (10.2) hold for some pair of m-tuples Dy, D,, ..., D,  and dy, d,, ..., d,,
that may depend on the couple (x, y), then there are complete m-tuples satisfying
(10.1) and (10.2) on some neighbourhood of (x, y). This fact can be proved in the
same way as the second part of Theorem 8.1.

To prove Theorem 10.1 we need the follow’ng general result on the decomposition
(1.1) without any regularity properties of the function H.

Proposition 10.4. (Neuman [5] and [6]). Let X and Y be two nonempty sets. If
a function H: X x Y — K can be written in the form (1.1) on X x Y, then

(10.3) det Wn*![x; y;]H =0
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for every (m + 1)-tuple x;, X2, ...s Xus1 € X and every (m + 1)-tuple y, y,, ...
e Ymi1 €Y.

Conversely, if there are two m-tuples x, x,,...,x,€X and y, Vs, ..., yme Y
such that

(10.4) det W™[x;; y;] H # 0

and (10.3) holds for every Xpy1 € X, Ymiy €Y, then H is of the form H(x, y) =
= f7(x). g(y), where the components of f:X — K™ and g: Y > K™ are linearly
independent on their domains of definition. If H admits another decomposition
H(x, y) = f~"(x). g~ () with some mappings f~: X - K™ and g~: Y - K™, then
there is a unique regular matrix C such thatf = C*f~ on X and g = C" ¢~ on Y.

Moreover, if X and Y are topological spaces and H is continuous on X X Y,
then fe C(X, K™) and ge C(Y,K™). If X and Y are smooth manifolds and H e
€ C*(X x Y), then fe C*(X, K™) and ge C*(Y, K™).

The following lemma forms the main part of the proof of Theorem 10.1 and may
be of interest in itself.

Lemma 10.5. Let X and Y be arcwise connected topological spaces. Let H e
€ C(X x Y) and let y, € C([0, 1], X), y, € C([0, 1], Y) be continuous curves. Sup-
pose that for every couple (x, y) e X x Y there is a neighbourhood U x Vof (x, ¥)
and mappings f~ € C(U, K™) and g~ € C(V, K™) with linearly independent com-
ponents on any open subset of their domain of definition such that

(10.5) H=f"T.9g" on Ux7V.

Then there is a neighbourhood U of v,([0,1]) in X and a neighbourhood V of
72([0, 1]} in Y and mappings fe C(U, K™), g € C(V, K™) such that H is of the form
(1.1)on U x V.

The proof of Lemma 10.5 is rather technical and we postpone it to Section 11.
Due to this lemma and Proposition 10.4 we can proceed to

Proof of Theorem 10.1. In view of Theorem 9.1 the assumptions of Theorem 10.1
ensure that the assumptions of Lemma 10.5 are also satisfied. Fix (xo, yo) € X x Y.
There is a neighbourhood U x ¥ of (x,, y,) such that H is of the form (1.1)on U x ¥
with fi, 5, ... fne C(U) and §y, §,. ..., §me C(¥) linearly independent on their
domains of definition. According to [1, Sec. 4.2.5] there are xy, x5, ..., X, € U and
Y1, Y2s ---» Ym € ¥V such that (10.4) holds. Given arbitrary (x, y)e X x Y, we find
curves y; € C([0, 1]), X), y, € C([0, 1]), Y) such that x,, X, ..., X,,, x€7; ([0,1])
and yy, Y3, ..., Yms ¥ € 72([0, 1]). Due to Lemma 10.5 there are neighbourhoods U
of 74([0, 1]) in X and V of y,([0, 1]) in ¥ such that H is of the form (1.1)on U x V.
In view of the first part of Proposition 10.4

det W™ [x;, x;y;, ] H=0.

Using the second part we conclude that H is of the form (1.1) on X x Y. Because of
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He C*(X x Y) we obtain fe C*(X, K™), g C*(Y, K™). The linear independence
of their components on every open subset follows from (10.1) and Lemma 3.1.

11. PROOF OF LEMMA 10.5

For the reader’s convenience we first outline the main idea of the proof. To avoid
unnecessary repetition, we agree that the letters U, V will always stand for nonempty
open sets, while the letters f, g will denote continuous mappings into K™ whose m
components are linearly independent on any open subset of their domain of definition.

Suppose that the hypotheses of Lemma 10.5 are fulfilled. The first step of our
proof is to show:

(i) There are sets U,, ¥, and mappings f, g, such that y,([0, 1]) = U, = X,
7,0)e Vo =« Yand H=f".g, on Uy x V.

Having fixed U, and fe C(U,, K™) from (i), we will consider the set

P = {t€[0, 1]: there are sets U,, ¥, and a mapping g, such that
71([0,1]) = U, = Uy, 7,([0,1]) = V, = Yand H = fT. g, on
U, x V,}.

Then (i) implies that 0 € P. Obviously, P is open in [0, 1] and ¢ € P implies that
[0, 1] = P. Since the conclusion of Lemma 10.5 can be stated as 1 € P, we need
only to verify that t € P whenever [0, 1) = P. This can be done as follows. Suppose
that [0. 1) = P, where ¢ is fixed, and consider the set

R = {t€[0, 1]: there are sets U,, ¥, and a mapping g such that
1([0,7]) = U, = Uy, y2([0,1]) = V., = Yand H=fT.g, on
U, x V).

We need only to show that 1 € R because then we can put U, = 0, V.=7",
g, = g, and conclude that t € P. Since R is obviously open in [0, 1] and [0, 7] = R
whenever 7 € R, it remains to prove the following two assertions:

(i) O€eR,

(iii) if [0,7) = R for some 7 < 1, then 7€ R.
Now we give the proofs of (i)—(iii).

ad (i). In view of (10.5) we have H = f T g~ on U, x ¥,, a neighbourhood of
the point (7,(0), y2(0)). Put g, = ¢, V§ = V¥, and consider the set @ = {re [0, 1]:
there are sets U,, V/ and a mapping f; such that y,([0, 7]) = U, = X, y,(0) = ¥, =
< V5 and H = £ . g, on U, x V/}. Obviously 0€ Q, Q is open in [0,1] and
[0, 7] = Qif Te Q. Our goal is to show that 1 € Q. So we need only to prove that
1€ Q if [0, 1) = Q. Suppose that [0, 7) = @, with a fixed © < 1. From the as-
sumptions of Lemma 10.5 we have H = f~Tg~ on U x V, a neighbourhood of
(71(7), 72(0)). Since y,(6) = 94(7) as ¢ — 7, we have 71([o, 7]) = U for some o < t.
Now o € Q implies that H = fT g op U, x V,, where U, and V, are as in the
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definiticn of Q. Then H = f~7 g~ = T g, on (U U,) x (VA V,), which is
a nonempty open set contammg (yl(a) 7,(0)). Proposition 10.4 yields f, = CTf~
on UnU, and g, = C~ g~ on Vn V. with a constant regular matrix C. Con-
sequently, we can put U, = U u U,, V) = V V, and define £, e C(U,) by
[ fAx) if xeU,,
S(x) = {cTr(x) if xeO.

Then 7,([0,7]) = U; = X, y,(0)e V, < V5 and U, x V, = (U, x Vjju
U (0 x(VnV,)). Since H = f. g, = f7.go0on U, x V,and fT. g, = (CTf™)".
(C™'g”)=f"".97=H on U x (VnV,), we conclude that H = £ . g, on
Ul x V.. Sot€Q.

ad (ii). Starting with H = fT. g, on U, x V, and repeating the arguments
given above in the proof of (i) with the curve y, and the point y,(0) replaced by
72|[0’,] and yl(O), respectively, we find U,, ¥, and g, as required for O to be in R.

ad (iii). Supposc that [0,f) = P, [0,7) = R and that H = f""¢~ on U x V,
a neighbourhood of the point (y,(), y,(f)). We find ¢ <t and s <t such that
71([0, 7]) = U and y,([s, t]) = V. Since o € R and se P, we have H = f7 . g, on
O, x V,andH = fT. g;on U, x V,, where U,, V, and U, V, are as in the definitions
of Rand P, respectively. The open sets U n O, n U,and V1 ¥, A V, are nonempty,
because (7;(0), 72(s)) lies in their product. Consequently, Proposition 10.4 yields
f= CTf onUr\U,,yo_C,g on VeV, f=Cif~” on Un U, and ¢, =
= C;'¢~ on Vn V,, with constant regular matrlces C, and C,. However, C3 f~ =
= Cle~ on Un U, n U, implies that C; = C,. So we will write C, = C, = C.
Putting U, = (U vU0)nU; and 7, = (17 N V)UV, we easily observe that
yl([O 7)) c U, c U, and y,([0,¢]) = V., < Y. Since g, = = 4 (=C'¢7) on
VP, n V,, the following definition of a continuous mapping ¢, : V — K™is correct:

~oy 2 Jady) it yev,
9. (») = {g;(y) if ye?P,nV.

This definition implies that

fT.9.=f".9 =H on U xV,,
fT.9.=f".9,=H on U, x(V,nV)
and
=(C"f)'.g9, =(f7C).(C'¢")=f"T".9°=H on
(TnU) x(P,n V).
These identities yield H = f7 . g, on U, x V,, because U, x V, is a subset of
(U, x V)u [0, x (Vo V)JUu[(UnU) x(P,nP)].

So we conclude that t € R, which completes the proof of (iii).
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