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SVAZEK 7 (1962) i APLIKACE MATEMATIKY CisLo 3

APPROXIMATION OF SOLUTIONS OF DIRICHLET'S PROBLEM ON
NEARLY CIRCULAR DOMAINS AND THEIR APPLICATION IN NUME-
RICAL METHODS

JarosLAv KauTsky

(Received 23rd February 1961.)

This paper deals with approximations of the solution of the Dirichlet
problem on the ncarly circular domains. A formula for the boundary values
of these approximations is derived and proved (theorem 4.1) and some
applications are shown.

INTRODUCTION

The continuous dependence on the domain is an important property of the solution
of elliptic partial differential equations. This continuity has been the subject of
a number of papers. However, in numerical calculations mere continuity is not very
efficient. Similarly as for real functions, where differentiability is a particular case
of continuity, it turns out useful to define and study an analogous generalized diffe-
rentiability of the mentioned dependence of solution on the domain of definition.
The weak (Gatteau) and strong (Frechet) differentials are frequently used in non-
linear functional analysis (see e. g. [1]); but their application would both lead to
some difficulties and restrict our results. Therefore we shall define our problem
as follows.

Let Q « Q, be two domains and let the number ¢ characterise their difference.
Let u be the solution of a certain differential boundary problem on Q. The problem
is to obtain boundary conditions (values, etc.) g J=0,1,... on the boundary
of Q,, such that the solutions u; of the boundary problem on €, with boundary
conditions g; respectively, satisfy

14
U=y 1u,~+0(c"”).
i=o j!

The role of the u; in the dependence of the solution of the boundary problem on the
changing of the domain is similar to ¢. g. that of the terms of a Taylor series expansion
of a function (except for the factor 1/)!).
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If the boundary problems in Q, are casily solvable (e. g. if there exist explicit
formulae), then it is often useful to approximate the solution of the given boundary
problem in © by the series

Lol
Lot
Jj=0]:
where the u; are solutions in £,. We shall derive and prove the general formula for
the boundary conditions g; for Dirichlet’s problem and further we shall present
some applications of these results.

Several papers are concerned with analogous problems, but from another points
of view. In [2], a formula for approximate conformal mapping of a nearly circular
domain onto a disc is proved by a variational method. In | 3] this problem is reduced
to solution of integral equation by succesive approximations. Here the first approxima-
tion yields the same formula for the approximate conformal mapping as in [2].
We shall show in the fourth paragraph that this formula follows simply from our
results. In [4] (p. 155) a similar formula is studied concerning the dependence of
Green’s function for the Dirichlet problem on variations of the domain. In the
paper [5], boundary conditions g; for the first biharmonic problem in the halfplane
(g, is then a pair of functions) are derived by an intuitive method based essentially
on the definition of weak differential. The processis this: The variation of the boundary
is characterized by a real parameter A, the exact solution and all the approximations
are expressed on the boundary of the canonical domain Q, by the Taylor expansions
of the corresponding functions; on comparing coefficients of powers of 1 we obtain
formulae for the boundary conditions g ;. The results in [ 5] concern the concentration
of notch stresses. In the present paper we shall not attempt to justify this process;
but it may be said that this method yields similar theorems for the first problem
of plane elasticity (as defined e. g. in [6]). This process is also used in [ 7], where the
analycity of the density of the potential of a doublet distribution with respect to
a parameter 4, which characterizes the variation of the boundary is proved. Also [§]
deals with the change of potential in dependence on the boundary.

1. DEFINITIONS AND NOTATION

We shall deal with an approximate solution of the Dirichlet problem on domains
near to a disc.

Let 0 < & < ry, let u(f) be a continuous real function of a real variable with
period 27, 0 < p(f) £ 8. Let C, be a curve in the plane, determined by the equation
(1) = ro — (1), where (r, 1) are polar coordinates, let Q, = E[r, ;1 < ry — p(1)].
Let G(r, t) be a continuous real function defined on Q* = ?2“0* — Q, (here 0, & mean
functions of ¢ identically equal to 0, 3; A is the closure of the set A). Let u(y, G)

be a harmonic function on @, (its value at the point (r, 1) € @, will then be u(u, G, r, 1))
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continuous on Q,, and satisfying the ecquation

u(p, G, rg — (1), 1) = G(ry — p(1), 1)
for t € €0, 27) (the function u(p, G) is harmonic, if
*u(u, (1) 1 du(p, G) . 1 u(p, G) —0

or? r or r2 o

holds). Let di(y, G) be a harmonic function on €, such that the function f(z) =
= u(p, G, r, 1) + iii(u, G, r, 1), where z = r exp (it), is holomorphic on Q, and that
ii(n, G, 0) = 0 (here 0 in d(y, G, 0) means the polar coordinate of the origin). The
existence and uniqueness of the functions v and & follow from the continuity of the
functions p(1) and G(r, ). The function 4 is called the conjugate to u.

Functions of Holder classes (Hélder functions) will be defined as follows. Let Q
be a set of complex numbers, let f be complex-valued function on Q, let 0 < k¥ £ 1,
¢ > 0. We shall say that fis a Holder function on Q with exponent x and coefficient &
(and we shall write fe Hy(x, &) or feHg(x) or feH(x, ¢)), if z,, z, € Q implies
If(zl) - f(zz)[ =< glz; — z,]%. We shall often identify the set of complex. numbers z
with the plane with polar coordinates (r, r) after the usual relation z = re'.

The aim of this paper is to formulate boundary conditions G (r, ¢) such that
L
(1) u(p, G, r, 1) = 3 0 u(0, Gy, 1, 1) + O(eP*)
=0 !
on Q,, where

w

(2) g = max ||
te{0,2m), j=0.1,..., n{p)

next, to determine assumptions concerning G and p which are sufficient for (1), and
to show how to choose n(p) in (2). It comes out that to obtain G (r, t) it is sufficient
to solve the Dirichlet problem on Q,. It is immediately apparent that for the problem
of dependence of solution of the Dirichlet problem on variation of the boundary,
the formula (1) has a role similar to that of Taylor’s formula concerning dependence
of function values on variations of argument.

2. LEMMAS

Theorem 2,1. Let the diameter d of the set Q be finite. Let ky £ k), f; € HQ(KJ-, £j),
JE £ M, for j=1,2and z € Q. Then the following relations hold:

a) &y £ ey d 7% implies Hy(i,, €,) = Hglky, &),

b) fi + f2 € Holky, &1 + d*27%igy),

) fifa€ ”sz(’\l, Maey + M d ™ 'g,),
d)y my > 0 implies 1/f; € Hg(ky, €,/m3).

The proofs follow easily from the definition of Hélder functions.
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These properties and formulae are exhibited explicity in order to draw attention
to the change of the Holder coefficient ¢ which will be important in the sequel.
The next theorems, which concern modifications of well known properties (e. g. see
[9]), are proved for similar reasons.

Theorem 2,2. To every x with 0 < i < 1 there exists a constant M such that
feHe(x, 8

W) = *lf 1= o

2ni

implies

is continuous on Q4 and
e He (i, Ms) .

Proof. First the continuity of  follows from analogous theorems in [9]; the
integral defining ¥ exists on C, according to assumptions on f(z). We have to prove
that there exists an M such that for every pair z,, z, € C,

(=) = ()l < Melz, — 2l

We may assume

(3) 0O<argz, —argz; =m.

We shall denote by o, (and by a,, respectively) the arc on €, with end-points

roe(Burg z1=-argzz)i/2 , roe(.?:xrg zp—argzy)if2 ,

which does not contain (respectively, which contains) the points zq, z,. (The end-
points are chosen so that the arc o, has a length double that of the arc with the end-
points z, z, and is symmetric to the latter. Also, o, is a simple arc for every choice
of zy, z, satisfying (3); it may coincide with C,.)

Decompose
(4) ‘l’(:’z) — l//(zl =Jy = I+ Iy + Ty,
where
Jy g o= lJ j(é) T2 g
27‘“’ o5 f — Zl,Z
{ ) s
J; = — o - '72 . 2 1 ,
2ni J‘,,,U(g) 1) (¢ —z2) (&~ =) :
Jy 1 J f(z1) = f(z2) 4e
i J,, & — 2z,

Tet s(él. 62) be arc-length from ¢, to &, in the positive direction. Evidently, the
inequalities
1€, = &l £ 5(&4, &) < alg, — &
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hold for s(¢y, &) < 3mrg, where a = 37/2 /2. Let us estimate in turn the integrals
of (4); first denote s(zy, z,) = 2c.

) il = fm(s)ﬁ Jtdss S j j) s o

=5 a' (" + (3c)") < Mglzy — z,°;
K

-
oy é — Zy

where x = (arg z, — arg z,)/2, so that 0 < x < 7/2. Since

1
|Jal = elzy — 2, —
4 1 2l o

= ¢glzy — z,|"

_ S3ix
lim im—e_f— = — 3,
x—0+1 — e
therefore
(6) 14l £ Myelz, — z,|*.

Next decompose g, into two arcs o7, g7, of equal length; of there o} is nearer to the

point z,. Then
ds

1
7 sl < ez, — <
@ el J 60) =il ) — =l

1, ds ds
Selzy — 2yl —a*" (j J — ,7¥) =
2n S(E(s). 21) 5T TES) 22) e s(znn E(5)) "N (220 5))
_ EIZ _, |_1_a2—;¢ nr0+c—L N nrg—C dS _
T e (s=2¢s'™ ). (s+2¢)s'7"

o(s 4+ o) + (s — o)

1 _
= glz; — z,| ——a*7F 5 5 ds £
2n 2¢ s —c
1 1+3h
gﬁlzl“‘zz"—a c*” 1<M1l:]‘,,—22]",
¥4 1 —k
because
(s+eyf+(—c stec 1 §—c¢ 1
sl_c2 S*C(S‘f‘C)ZK Sl((s_()Zu
and for 2¢ £ 5 £ nry, 0 £ ¢ = 7ry/2 we have
s+ ¢
1< <3,
s—c

The statement of theorem 2,2 follows from (4), (5), (6) and (7).

Theorem 2,3. To every k with 0 < k < 1, there exists a constant M such that

G e He(x, €)
implies
l@(0, G, r, )] < Mz, @(0, G) e He(x, Me).
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Proof. According to Poisson’s formula,

N 1
(0, G, r, 1) :;tf

n

, 2ror sin 7 dt
[G(ro, t — 1) — G(ro. 1)] 5 g +
n rg -+ r° — 2rgrcost

J" 2ror sin T dt

. .
2t + P = 2rgrcost

1
4+ — G(rg, t
2n (0 )

Here the second integral vanishes (the conjugate function to a constant). For the
first integrand there exists an integrable majorant independent of r, because G is
a Holder function and because

2rorsint 1 —cost T
3 3 = 5 cotg —
ro + r° — 2rorcost ro — r)° 2
© © [ —cost + (ro —r)?
2ror
and
2rgr sin T | T
3 2—0 =< |cotg
ro + r° — 2rgrcost 2

By limiting r — r, we obtain
1 L4
(0.6, 70, 1) = f [G(ro.t = ) = Gilrg, ] cotg . .
TE -7

From the maximum principle for harmonic functions there follows
?

[#0, G, r, )] = sup |i(0, G, ro, t')] < af |—|* cotgE drt
1'e(2,0m) o 2
and the first part of theorem 2,3 is proved. Since
& &—z -z ¢ z JE—z E—z
we have that
#0,6,re = L[ L[ G066 g
if27ni ), E-—z
+ _ij‘ i@l _ @) .,,Ag,é.__ 1 E@ __gg_ — M(O, G,r, I) R
27 Je \ € z E—z i Je, & —z

so that the second part of theorem 2,3 follows easily from theorems 2,1 and 2,2.

Theorem 2,4. Let k = 0 be an integer. Let there exist a continuous &* G(r, 1)/ot*
forr = ry. Then on Qy, — {0} we have

Ak 13 k k
a) Oku(O,G,r,l):u< ai:,;;z), ?—kﬁ(O,G,r,t)=ﬁ<0,ajG r,t),
0

jo3)

0, -
ot ot t <’

o . “oay G
b) o u(0,G, r 1) =3, = (O, e r, I) ,

or j=0 F

where w; is u for j even, ii for j odd and the a, ; are costants.

191



Proof. a) For k = 0 the proof is trivial. Next, let k = 1 and f(z) = u(0, G, r, 1) +
+ i d(0, G, r, 1), where z = re”; let G*(&) = G(ry, ), where & = rge™ and let

ze @y — {0}. Then

u(0, G, r, 1) .00, G, 1, 1) J e z G*(¢)
8 Rk oy e A z) = izf'(z) = = i |
) ot ot 8tf() /) T Je, (& — 2)? :
since in the integral
i G E+
AR Jeee
2ni o & ¢&—z

for every z e €, the orders of integration and derivation may be interchanged.
Further

d d

— G(rg, 7) = i& — G*(&),

ot ) d¢ (©)

#(g) £ .
u O,—a-g,r,t + il O’Q—(—;—’r’{ _ L ig,giil%,_i,td£=
ot ot 2ni J ¢, dé & -z

%
21 6% d¢  _ au(0,G,r 1) N ; 0a(0, G, r, 1)
¢ (£ —z) ot ot

whence

a

by (8) For general k the statement a) is then easily proved by induction.
b) Let z = re” e Q, — {0} again. We shall prove the statement by induction.
For k = 0 this is trivial, a4, = 1. Next assume that
Fu(0, G 1) S ay &G
-1 2 it Vi 0,7t
or i=o r ' or’
where a,..; ; are constants and w; is defined as in theorem 2,4. From the Cauchy -
Riemann equations (in polar 'coordinates) and from a) it follows that

w:(_l)flwm 0, 99’,,,‘ )
or ) r’ ot

Thus
&u(0, G, r, 1)

or*

k—1 i 1
1 —k G 1 G

_ N AR R AV w0 —
- j;() ak—l,ll: pC Wj <0’ o e I) +( 1) o Wi+i (O’ ot e t>]

k-t i k i—1 »

(1 —k)a,_q; MG —1)y . 07
_ Z ( ) k-1, Ww; (07 v .' 7, t) 4 Z (-—————) ‘,:k 1j-1 W <0, %*? 1, I)

= j=1 ’ ol

0 rk or’

J
which again has the form described in the theorem; the a, ; are idependent of z
and they are defined by a recurrent formula (6% js the Kronecker’s sign)

ag; =1 =k)(1 =&Y apy ; + (=17 (1 = 0 ap_y ;- -
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Note: Obviously
G(FO' 1) = O(‘L) > Ge HCU(.K’ 8)
implies
u(0, G, ro, 1) = O(), u(0, G)e He(x, ¢) .
Moreover, from theorem 2,3 it follows that
G(ro, 1) = O(2), G eHer,e)

implies
i#(0, G. ro, 1) = O(s) , (0, G) € He (w, O(e)) .

Using this and thcorem 2,4 we obtain that

HG(rot) e

o O(P) L J=0,1,..,k, ;‘)F e HCO(K> €)
implies
Oku(O, G, ro, 1) *u(0, G) v
ok = O(¢), T e He(x, O(¢)) .

3. FORMULATION AND FUNDAMENTAL PROPERTIES OF THE BOUNDARY
CONDITIONS OF THE APPROXIMATIVE SOLUTIONS

In this section we shall define the boundary values of the approximative solutions
mentioned in section 1. However, instead of a direct definition we shall formulate
a theorem about the properties of these boundary values, for the following reasons:
1. The definition recursive, and for purposes of defining G(r, 1) (see end of section 1),
the continuity of

(0, G))
ork i
on Q, for j =0,1,...,k — 1 is necessary; 2. in the sequel we shall need an upper
estimate of these approximations.
Theorem 3,1. Let I, m = 0 be integers, let 0 < x < 1. Let
M mG(r, 1)
ari atl+m—-i

exist and be continuous on Q* and let

Altmes
070 Hex),

i A dtme
ortorTmT!

where i = 0, 1, ..., L. Then there exist constants K ., Ki.m such that if the function
u(t) possesses m + | — 1 derivatives and if the relations

W) <e, i=01..,m+1-1, pm D e Hk, €)
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hold, then the functions
k

O Gl =t 5 - 3 (F) gy PO G
=1

are continuous on Q% for k = 0,1, ..., I, and moreover

0 Gl |6"G (ro, 1)
6,7"
The proof is performed by induction on I. For I = 0 we have Gy(r, 1) = G(r, 1)
and the proof is trivial. Let I > 0 and assume that the theorem holds for I* =
=0,1,..., 1 — 1, and that the assumptions of the theorem are fulfilled. The functions
G,(r, 1) are continuous on Q* for k = 0, 1, ..., I — 1. Consider the function
G, 1) _
at"]

. (;'D[@”“f‘(--{l(t))‘6’+f‘G(r, ) «1<l>a’"_f‘(—ﬁt(f))j(7j+j"‘(0’ Giop ’)].

i om=ir artors  =\j)  amh ori ap

% A 1
€ IIC(J(I\ I\l m ) _S_ Kl,m &

n

For m — j, £ m + 11— 1 (we have [ > 0) and because of the assumptions of
G(r, 1), to prove theorem 3,1 (see theorem 2,1) it is sufficient to show that for j, =
=0,1,...,m, j =1, ..., ] the function

&0, G, j,

(10) Fy(r, ) = 070 L)

orf vt
is continuous on Q* and that the relations
(11) IFy(r, )] £ Ke'™J
(12) Fy e He(k, K*' )

hold. However, from theorem 2,4 it follows that

i . f;J'lJrsz .
Fy(ro) = 3 Y, <0, N2 t).

ot +j2

Because of theorem 2,3 and note following it, for verifying (10), (11) and (12) it
is sufficient to fulfil the relations
[Fo(r, )] £ Ket™i, F,eHefic, K¥et ),
where
(7j’+lel_J.-(l‘, t)
T o
and j, = 0,1,...,j,j, = 0,1,...,m, j = 1, ..., l. But these relations follow directly
from our assumptions because for the given j,, ji,j we have that

Fy(r,1) =

[ —j+jy4+j,—isl4+m—i for i=0,1,..,1—],
l—j+j,+,—1=l+m-1.




Thus the functions G, u satisfy the conditions needed in using the theorem for
I* < [. This concludes the proof of theorem 3,1.

The constants K, ,,, K}, depend on I, m, ry, 6 and on the boundary value G
(in fact, on the maxima of the absolute valucs of the corresponding derivatives of G).
The essential result of theorem 3,1 is the independence on ¢ and p of these constants.
Further note that using a theorem weaker than 2,3 would mean a great increase
of assumptions on the function u(f).

4. THEOREM ON APPROXIMATIVE SOLUTIONS OF THE DIRICHLET PROBLEM
ON NEARLY CIRCULAR DOMAINS

In this section we shall deduce an approximation to the function u(, G, r, t) from
the functions u(0, G, r, 1) (the G, of theorem 3,1).

Theorem 4,1. Let p be a positive integer, let 0 < k < 1. Let there exist continuous
1 G(r, 1)

arigr 1
on Q*, let
rriG(r, 1)
——arﬂ 1
be bounded on Q* and let
PTG
T (k)
6rl atp+1—1
for i =0,1, ..., p. Then there exists a constant K, such that if the function p(t)
possesses p derivatives and if the relations p'® e H(x, ¢), |n(1)] < ¢ hold for
i=0,1,...,p, then for (r, 1) € Q, we have

(13)

P
u(p, G,y 1) = Y ll,»u(O, G,r 1) K,e"t.

1=01.

(The function G(r, 1) are defined by (9) in theorem 3,1 and were proved continuous.)
Proof. First prove that
P y(0, Gy, 1y )

a},p—l-("l

exist for [ = 0, 1, ..., p on Q* and that the inequality
ap—1+1 Sy
(14) Y U(O, Cl’ r, 1)

holds on Q*, where K,,,, are constants independent of . This is a simple consequence
of theorems 2,4 and 3,1. Since
TN U(0, Gy t) T N a, gy &G,
- Z . wj O’ - bl

- ot
orp i1 or’

!
K€

[IA

i+
ar? 1

P
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it is sufficient to apply theorem 3,1 form < p— 1+ 1,1 =0,1,..., p. The assump-
tions of our theorem are sufficient for using theorem 3,1 for these m, I. From the
existence of

—1+
P (0, Gy 1y 1)
Orp~l-l~1

on Q% and from (14) it follows (using Taylor’s theorem) that

(15)

- Ny &7u(0, Gy, o, t 3
u(o’ G, ro — l“\t) I) Z "( )) H( ari ) )]1 < Kp,lgp' 1

Similarly from the assumptions on G(r, 1) we have

(16) Glro — sy — 3 = “(’)) o )] o nges

<o ort

Furthermore, from the definition of G (r, 1) we obtain

(17) Z”: (—,u(r)) 1/7 G(ro, t) . i (—;1(1) u(0, Gy, ro, ):
i=o I ot Sl j! art
Z" (r))’ 3'G(ro, 1) pZ P (= u(0) du(0, Gy ro, 1)
=0 ar! j=oizo 11! ors
z”: (t))' ’(1(191) 3 i i (—p(1))! u(0, G, 1y, 1) _
= or! Zoi=ijt(l — ) or!
‘ 8'G(r, t L/l u(0, Gy_j, 1o, 1)
iy [(—uo»f 1l S () 240G ]
=o ! or =0 \J ar

The required estimate (13) then follows easily from (15), (16) and (17), using the fact
that the function
p

. LA I
u(p, Gor, 1) = 3. - u(0, G, r, 1)

=0 l!

is harmonic on Q. This concludes the proof of thecorem 4,1.
Remarks similar to those concerning K, ,,, K7, (folowing theorem 3,1) now apply
to the constants K.

5. SOME APPLICATIONS

The results proved in theorem 4,1 may be applicd in many situations. On one hand,
it is possible to calculate directly the approximative solutions of the Dirichlet problem
on nearly circular domains. On the other hand, we can use theorcm 4,1 to derive
formulae for the approximative solutions of problems which are equivalent with
the Dirichlet problem or which have some other connection with it. We shall mention
two examples.
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a) A conformal mapping. Keep the notation from the preceding scctions and let
= 1. Because of the Riemann theorem, a conformal mapping of £, onto £,
exists; denote it by w = f(z, C,), and assume that f(0, C,) = 0, f'(0, C,) > 0. This
condition guarantees unicity of the function f(z, C,), and we have (see [2], § 43)
(18) flz, €)= zexp [u(p, Go. v, 1) + i i, Go, 1, 1)],
where for G, we choose Gy(r.1) = —logr (again we identify (r, ) = re = z).
As Go(r, 1) has all derivatives continuous on Q*, we have for the first approximation
of (18)

where
0 ) \
g(t) = [——log r— u(7) - (—log r — u(0, Gy, r, r)):l + O(e%) = pf7) + O(e?),
or =1
hence (ez =14z 4+ 12127 4.
) eir + z
(19) f(z,C) = ( - ( p(r) ——" dl‘) + O(e?),
~ el‘f —
where we assume
(20) @l e, WHE) £e, weHxe).
Formula (19) is deduced in [2], § 60, using a variational method, and it can also
be derived from [3] using the first approximation of the integral equation mentioned.
Applying higher approximations to function g(r) we can derive formulac with
higher degree of precision. The formula (19) is suitable for numerical calculations.
b) The problem of torsion. Again we use definitions and notation of sections 1 —4.
Consider a rod with transverse section Q,. The torsion moment which produces

the relative torsion of the axis of a homogeneous rod by an angle « is given by the
expression

M = J. w(x, y) dxdy,
Ja,

where w(x, y) is the solution of the equation
(21) Aw(x, y) = —a
with boundary condition
w(x, y)| C, =0
ajo > 0 is the so-called Lamc’s constant (see [lO], § 96). We can reduced equation
(21) to the Dirichlet problem by the substitution

w(x, y) = u(x, ))—2—1( +17).
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We have
Aulx, ) =0, u(x,)|C, - ;—’(x2 + y?)1C, .

Using polar coordinates x = rcost, y = rsint we obtain u = u(y, Gy, r, t), where
Go(r, 1) = ar’/4.1f we assume (20) again, we have, according to theorem 4,1

u(p, Go, r, 1) = u(0, Gy, r, 1) + u(0, G, r, 1) + O(e?),

where
a 5
u(0, Gy, r, 1)—5 re .
J ., . a
Gy(r, 1) = —p(t) — (Go(r, 1) — u(0, G, , 1)) = — = r (1),
ar 2
u(0, Gy, r, 1) = — g ro u(0, p, 1, 1).

Hence

2Zn pro—p(t)
M :J‘J‘ wdx dy f—f J r(u((), Gy + Gy, 1, 1) — Zrz) drdt + O(e?) =
ro— /A(t)
J f —rté—rz)drdt +J J J‘ <—~Ar0y(r))

varOS

drdrdt + O(e?) = mary _

. + O(&®
reg 4+ r? —Zrorcos(t—r) 8 2 =),

where we have put
2n

.§l=i p(t) dr .

2n o

However this is the torsion moment corresponding to a circular rod of radius r, — &
(ignoring terms of order &?).

Let us notice that the transverse section of such a circular rod has the same area
as 0, (again except for terms of order &%), The substitution of the rod with section Q,
by a rod with circular sections of the same area is used generally in the technical
theory of elasticity. Here we have derived that this intuitively used method is equi-

valent to the first of our approximations. Using higher approximations, we can de-
rive formulae of higher degrees of precision.
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Vytah

O APROXIMACICH RESENI DIRICHLETOVY ULOHY NA OBLASTECH
BLIZKYCH KRUHU A O JEJICH APLIKACICH V NUMERICKYCH
METODACH

JarosrLAv KAuTskyY

V praci se aproximuje feSeni Dirichletovy tlohy na oblastech blizkych kruhu
pomoci feseni Dirichletovy ulohy na kruhu s vhodné¢ volenymi okrajovymi podmin-
kami. Po pfipravnych uvahach, ve kterych jsou zpfesnény nékteré znamé vlastnosti
Holderovskych funkei a Cauchyovych integrald na hranici oblasti, je ve tfetim
odstavei definovana vzorcem (9) hodnota okrajové podminky k-té aproximace.
Ptitom u(, G, r, 1) znadi fe§eni Dirichletovy tlohy v bodé o polarnich soufadnicich
r, 1, na oblasti E[r, t; r < ry — p(1)] a s okrajovou podminkou G, tj. splifujici vztah
u(p, G, ro — (), 1) = G(ro — p(1), 1); u(0, G, r, 1) je tedy feSeni Dirichletovy ulohy
na kruhu o poloméru r,. O téchto aproximacich je ve &tvrtém odstavei za jistych

P
piedpokiadii o hladkosti G a u dokazéano, ze Y u(0, G, r, 1)/I! aproximuje u(p, G, r, 1)
1=0

s presnosti fadu p + 1. Z tohoto vysledku je patrno, Ze definované aproximace,
které maji charakter Fréchetovych diferencial vzhledem ke zméné oblasti, jsou
obdobou ¢lent Taylorova rozvoje.

Dale jsou v praci ukazany aplikace téchto aproximaci jednak na konformni
zobrazeni oblasti blizkych kruhu, jednak na vypodet torsniho momentu pfi krouceni
prutu o prifezu blizkém kruhovému.
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Pe3rome

OB ATI[IPOKCUMAIUAX PEMEHWSA 3AJAYN OUPUXJIIE
HA OBJIACTAX, BJAU3KUX KPVYIY, U UX TTPUITOXEHMAIX
B UNCJHEHHBIX METOAAX

SIPOCJTIAB KAYTCKH (Jaroslay Kautsky)

B cTaThe MPOU3BOAMTCS ANMPOKCHMATINA pelliedus 3asaun Jupuxne ua o6racTsx,
GJM3KUX KpYyry, NpH NOMOIUM PellieHus 3amaun JIMpuxae Ha Kpyre ¢ 3a/aHlibIMH
NOAX0AALIMM 08pPa3oM KpaeBbIMH yCloBHsSMU. [locie NpefBapUTEbHBIX PACCY-
NEeHHil, YTOUHAROLIMX HEKOTODPbIe W3BECTHBIe cBoiicTBa ¢(yHkumit [enpaepa w wi-
terpanos Kol Ha rpanuue obnacTv, ONPEAescHo B TPEThEM OTACHE 3HAUYCHUE
KpAcBOro ycmosus k-oif anmpoxcumanun npu nomowmn cooThomenus (9). Ilpu
yrom u(p, G, r, 1) 03uavaeT pelcHue 3a1auu JAnpuxie B TOUKE, HOJAPHBIC KOOPIH-
HATBl KOTOPO#t 0B03HAYCHBI F, I, Ha obmacTh E[r, t:r < ro — p(t)] u ¢ xpaenbim
yeoBueMm G, T. €. PellieHite, yaoBaeTBopsitoiiee cooTrowenno u(y, G, ro — pu(t), )=
= G(ro — p(1), 1); cneposareasno, u(0, G, r, {) ssasicrest pemennem 3agaqn Jupuxmie
Ha Kpyre paauyca ro. B ueTBepTOoM oTselic 06 3THX anmpoKCHMANUSX NOKA3AHO,

P
NPH ONPENCACHHBIX NPEeANoIoKenusax o rnaakoctw G u u, uto y u(0, Gy, r, 1)/l!
=0

annpokcrumupyet u(y, G, r, l) € TOYHOCTBIO Nopsaka p + 1. M3 sroro pesyastata
BM/JIHO, YTO OTMHCAHHbIE AMIPOKCHMALMM, HOCSIIHE Xapakrep AndpepeHunaos
@penic N0 OTHOWIEHUIO K U3MEHEHNAM OOJTACTH, ABJAKTCI BUIOMIMEHEHHEM dile-
HOB pasjioxenus B psa Taitnopa.

3aTeM B paboTe MOKAa3aHbl NPWIIOXKCHMS OTHX ANNPOKCHMAaiMi, BO-NCPBBIX,
K KOH(POPMHOMY 0TOGpa)eHUIo obiracTeif, GIIH3KUX KPYIyY, BO-BTOPBIX, K BBIYUCIIC-
HWIO KPYTSILETo MOMEHTA ITPU KPYYCHWH CTEPXKHS, CCUCHME KOTOPOrO MOXOXKC HA
Kpyr.

Adresa autora: Jaroslav Kautsky C. Sc., Matematicky astav CSAV, Praha 1, Zitna 25.
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