Aplikace matematiky

Vaclav Dolezal
A bound for the damping coefficient of RC- and RL-networks

Aplikace matematiky, Vol. 8 (1963), No. 5, 341-355

Persistent URL: http://dml.cz/dmlcz/102868

Terms of use:

© Institute of Mathematics AS CR, 1963

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102868
http://dml.cz

SVAZEK 8 (1963) APLIKACE MATEMATIKY CisLo 5

A BOUND FOR THE DAMPING COEFFICIENT
OF RC- AND RL-NETWORKS

VAcLAV DOLEZAL
(Received February 16, 1963.)

Two estimates concerning the damping coefficient of an RC- and RL-
network, i.e. bounds for the greatest eigenfrequency of the network, are
derived in the paper. The estimates are given in terms of the structure and
values of eiements of the network.

0. INTRODUCTION

In many applications of network theory, particularly in the design of pulse-
networks, the following question is of utmost importance: Given a network without
outer sources, what is the rapidity of decline of the transient state as t —» o0 ?

In order to answer this question, let us consider this problem more closely. It will
be assumed that the reader is acquainted with concepts and some results which were
introduced in [1] or [2].

Thus, let M = (G, R, L, S) be a regular passive Kirchhoff’s network, and let J,, g,
be real constant vectors which represent the initial values of currents and electrical
charges, respectively. Denoting the solution of N in the t-domain corresponding to J,,

qdo by J, then (see [1], eq. (2.3) or [2], eq. (5.5)),

(0.1) Z(J) = A(p) Z(LJ oS0 — SqoHo) »
where #(J) denotes the Laplace image of the vector J,
(0.2) A(p) = X[X'Z(p) X]™' X', Z(p)=Lp+ R+ Sp™",

and where X is a matrix whose columns form a complete set of linearly independent
real solutions of the equation a'x = 0. (a is the incidence matrix of the graph G.)
Let us denote A(p) = [X'Z(p) X]™'; then we have the following assertion:

Theorem 0.1. If the matrix A(p) has no poles in the half-plane Re p = 0 nor at
infinity, then each element J, of the solution J is a regular distribution, and the
corresponding function J(t) satisfies

(0.3) [J()] S Mexp(—pt), t=0,

where M > 0 and p is a fixed positive number independent of Jy, qo.
Note that the assumption of Th. 0.1 is satisfied if the network N is dissipative, i.e.
if the matrix X'RX is positive definite. (See [1], [2].)
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For the proof the following Lemma will be useful (see [2]):

Lemma 0.1. If Q is a positive semidefinite n x n matrix and A a real constant
n X r matrix, then A°"QA = 0 implies QA = 0.

Proof of Th. 0.1.: From (0.1) we have Z(J) = K,(p) — K,(p) with K,(p) =
= A(p) LJ,, K5(p) = A(p) Sqop~". From (0.2) it is clear that K,(p) has no pole
at infinity; moreover K, (p) has a zero at infinity. Actually, putting A(p) =
= B, + B(p), where B(p) has a zcro at infinity, then B, is positive semidefinite
(see [2]). Multiplying the identity (B, + B(p)) X"(Lp + R + Sp™ ") X =1 by p~!
and letting p — oo, we have
(0.4) B,X'LX =0.

From (0.4) it follows that BoX'LXB,, = 0, and consequently, by Lemma 0.1, BoX'L =
= 0. Thus we have
K,(p) = X(By + B(p)) X'LJ, = XB(p) X"LJ,, g.e.d.

On the other hand, evidently K,(p) has a zero at infinity, and has no pole at p = 0.
Indeed, multiplying the identity A(p) X'(Lp + R + Sp~ ') X =1 by p and setting
p = 0, we get
(0.5) A0)X'Sx =0.

Hence, A(0) X'SXA'(0) = 0, so that we have by Lemma 0.1, 4(0) X*S = 0. Con-
sequently, 4(0) S = XA4(0) X'S = 0 and the statement is proved.

Summarizing the previous results it follows that each element J, of the vector J
is a regular distribution; moreover, recalling the elementary properties of Laplace
transforms, we can write

q
(0.6) J = 'Zl P(t) exp it ,
i=

where P () are vector-polynomials and «; are the poles of A(p), which, of course,
satisfy the inequality Rex; < 0 for j = 1,2, ..., q. But from (0.6) the inequality
(0.3) follows immediately, which completes the proof.

Using (0.6) again, it follows that for u in (0.3) we may set any number which
fulfills the inequality
(0.7) u < A= — max Rex;.

=100

Morevoer, if every pole x; with Re x; = —2 is simple, then we can write ¢ < 4
instead of 4 < 4in (0.7). The number 4, due to its remarkable property, will be called
the damping coefficient of the network M.

1. RC-NETWORKS

In order to derive an estimate for A of an RC-network, let us first carry out some
preliminary considerations.

Lemma 1.1. Let R + 0, S + 0 be positive semidefinite n x n matrices such
that R + S is positive definite, and let Z(p) = R + Sp~'. Then Z~'(p) exists and
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each pole of Z~'(p) is real negative. Moreover, if d(p) = det (Rp + S), then 1)
each root of d(p), except p =10, is a pole of Z™'(p) and vice versa, 2) if
d(2,) = 0 and (R2g + S) xo = 0, x, % 0, then xqRxo > 0.

Proof: It is obvious that Z~'(p) exists, because Z(1) = R + S is a regular matrix
so that det Z(p) £ 0; moreover, we have the identity

(1.1 Z '(p) = p(Rp + S)™"' = p[det (Rp + 5)]“ [4u(p)] -

From (1.1) it follows that if p, & oo is a pole of Z~'(p), then necessarily p, is a root
of d(p). Conversely, suppose that p, is a root of d(p) with multiplicity kK > 1, and
that each element A,(p) is divisible by (p — p,)™, m = 0. Then from the identity
(Rp + 8)[Au(p)] = I d(p) we have det [4,(p)] = [d(p)]"™"; denoting the multi-
plicity of the root p, of det[A4;(p)] by ¢, we have ¢ = (n — 1)k and q = nm.
From this it follows that m < (n — 1) k/n < k. Consequently, if p, # 0 is a root
of d(p), then p, is a pole of Z~'(p) and statement 1) is proved.

Let us now consider the polynomial d(p). Suppose that p, = A, + iw, is a root
of d(p); then there is a vector z = x + iy # 0 such that (Rp, + S)z = 0, and
consequently,

(1.2) Z(Rpy + S)z=0.

From (1.2) we have

(1.3)  x(Rpo + S)x + y'(Rpo + S) y + i{x'(Rpy + S)y — y"(Rpy + S)x} = 0.
But due to the symmetry of Rp, + S the term {...} vanishes so that

(x‘ﬁx + y‘INQy) Jo + x'Sx + y'Sy + i(x'Rx + y'Ry) w, = 0.

Consequently,
(1.4) (x*Rx + y'Ry) 0y = 0,
(1.5) (x'Rx + y'Ry) 2y + x'Sx + 'Sy = 0.

Suppose now that w, * 0; then by positive semidefiniteness of R, we have from
(1.4) x'Rx = y'Ry = 0. Substituting this into (1.5), we get x'Sx + y'Sy = 0, and
consequently, x‘(IN( +S)x + y‘(ﬁ + S)y = 0, which contradicts the assumption
on definiteness of R + S and on z + 0. Thus, w, = 0. If now there were x'Rx +
+ y'Ry = 0, then by (1.5) there would be x'Sx + y'Sy = 0, which is again a con-
tradiction. Hence, x'Rx + y'Ry > 0, and by (1.5), 1, < 0. Since p, = 4, is real,
z can also be taken real (i.e. y = 0), so that we have (R4, + §) x = 0, x'Rx > 0 and
statement 2) is proved.

It remains to show that the root p = 0 (if it exists) of d(p) is not a pole of Z~'(p).
Suppose conversely that p = 0 is a pole of Z7'(p) of order m = 0, i.e.

(l6) Z_l(p) = Amp_m + /(lm—lp_mq}-l + ... + Alp—l + AO + P(P):
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where A; are constant matrices and P(p) has a zero at p = 0. Then the identity
Z(p) Z" '(p) =1 yields

(7)) SA,p " "+ SA,_ip" + ... + SA,p™2 + SAp~ " + SP(p) p7' +
+ RA,p™™+ ...+ RA,p~2 + RA,p~" + RA, + RP(p) =1 .

But from (1.7) it follows that

(1.8) SA4, =0, SA, + R4, =0, k=1,2,...,m.

For k = m we have from the second equation (1.8) A4),S4, _, + AL,RA, =0, i.e.
A\ RA, = 0. However, from Lemma 0.1 it follows that RA4,, = 0, and by the first
euqation (1.8), (R + S) 4,, = 0. Consequently, 4,, = 0. From this we have 54,,_, =
=0, and SA,_, + RA,,_; =0 (for k = m — 1). Repeating this procedure we
get A, = O0fork =1, 2,..., m,and Lemma 1.1 is proved.

Now, the following important proposition is true:

Lemma 1.2. Let R +0, S+ 0 be positive semidefinite matrices with R+S
positive definite, and let — A be the greatest negative root of det (Rp + §), then

x'Sx

(1.9) A= inf ——,
xem X RX

where M is the set of all real vectors x which fulfill the conditions a) x'Rx > 0,
b) x'Ry = 0 for any solution y of the equation Sy = 0.

Observe that due to Lemma 1.1, the number —4 is simultaneously a pole of
(R + Sp™")™! nearest to the imaginary axis.

Note: If the matrix R is positive definite, then it can be shown (see [3], pp. 59)
that equality holds in (1.9). -

Proof of Lemma 1.2.: Let — 1 be the greatest negative root of det (INQp + §)
Then there is a real non-zero vector ¢ such that

(1.10) (=R +8)¢ =0,
and, consequently, —2E'RE + E'SE = 0. Since £'RE > 0 by Lemma 1.1, we have
s ESE
¢'RE
Moreover, as 4 > 0, it folows that £'S¢ > 0.

Let y be any solution of Sy = 0. Then from (1.10) we have —Ay'R¢ + 'S¢ = 0,
and consequently y'R¢ = 0, i.e. £'Ry = 0.

(1.11)

Defining now the function ®(x) of a vector argument x on M by &(x) = (x'Sx):
:(x'Rx) and using the above facts, we have ¢ € M and ¢(&) = A. Hence, 1 2 inf &(x)
and the inequality (1.9) is proved. xel
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Let us now apply these results to an RC-network. As stated in [ 1] and [2], a passive
Kirchhoff’s network M = (G, R, L, S) is called an RC-network if L= 0, and an
RL-network if S = 0.

For the sake of brevity let us introduce the following notation:

Let G be an oriented graph with r branches and with the incidence matrix a;
further, let M # O be a positive semidefinite r x r matrix. Then the r x n matrix X
whose columns constitute a complete set of linearly independent real solutions of the
equation a'x = 0 will be called M-canonic, if

X'‘MX = diag (my, my, ..., m,,0,0,...,0),
where 0 < h <nandm; >0fori=1,2,..., h.

It can be readily seen that an M-canonic matrix X always exists, provided G
contains at least one loop; indeed, given a graph G, choose a complete set of linearly
independent loops L,, L,, ..., L, with corresponding vectors y;, y,, ..., ¥, Choosing
a loop L; with y; My, >0, put x; = y;; next, choosing another loop L;, and
putting X, = xx; + Vi, it i1s obvious that the number x can be chosen such that
x\Mx, = 0. If x)Mx, >0, put x, = x,, if x;Mx, =0 put x, = X,. Taking
a further loop L;,, set X3 = VX, + ux, + Vi, provided the first case takes place.
Then again we can find v, # such that x)Mx; = 0, x;Mx; = 0. If x}Mx; > 0, set
X3= X3, in the opposite case x;= x, or x,= x,_,. Repeating this process, we finally
obtain a set of linearly independent vectors x,, x,, ..., x, such that x;Mx; > 0
for i=1,2,...,0h, xMx; =0 for i=h + 1,...,n, and x;Mx, = 0 for i *+ k,
i.e. the matrix X which has x,, x,, ..., x, as its columns is an M-canonic matrix.

Let us make the following remark which is useful in practice. If we specify, for
example, M = S = [S,;], where S is the diagonal matrix appearing in the definition
of an RC-network (the elements of S represent the reciprocal values of capactities
in individual branches), then obviously the following rule is true:

Let Ly, L, be loops (not necessarily different) of a graph G with corresponding
vectors Xy, x,, respectively; then the number x\Sx, is equal to the sum of reciprocal
values of all those capacities C;; which are common to both loops L, and L,, taking
each number S;; with factor + 1, if the i-th branch of G appears in both loops L,
and L, with the same orientation, and with factor —1 in the opposite case.

It is clear that the same rule holds for the numbers x;Rx,. In concrete cases, there-
fore, the numbers y:Sy,, y;Ry, which are needed in the construction of the S- or
R-canonic matrix X, can be found by inspection directly from the scheme of the
network in question.

In order to estimate A, the concept of norm of a matrix will be necessary.
n
If x is a real constant n-dimensional vector, let x| = ('} x7)% x; being the
i=1

components of x. If 4 = [A,] is a real constant n X n matrix, let the norms be
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defined by

4l = (3 a3,

4], = max Y [Aul.
i=1,.., nk=1
Then the following statement is true:

Lemma 1.3. Let x be a real constant n-dimensional vector, A a real constant
n X n matrix; then

(1.12), l4x] = 4]y =] -
(1.13), [x'Ax| < ||A]|; [x]*-

Moreover, if A is symmetric, then
(1.12), [4x] < |4l <],
(1.13), Ix*Ax| < [ A], [x]? -

Proof: Since (1.12);, (1.13), are simple consequencies of the Schwarz inequality,
let us prove (1.12), and (1.13), only. Putting u = Ax we have for the i-th compo-
nent u;:

“f = (Z Ayx,)? = Z Z AuApxix, = ;‘Z Z [Aul 145 (Vf + xrz) =
k=1 k=1r=1 k=1r=1

n

n n n n
= Z Z [ Al [A] /\'f = Z |Air’kz [Aul xl% = “A“2 Z [Aul le-
k=1r=1 =1 k=1

r=1

Consequently, due to the symmetry of 4,
ol < 1l 3 % 1452 = [l 35 4ud) < L )2

and (1.12), is proved. (1.13), follows immediately from (1.12), and the Schwarz
inequality.
Now, we can state the main theorem.

Theorem 1.1. Let M = (G, R, 0, S) be a regular passive RC-network, X an S-
canonic matrix, and let X'SX % 0, X'RX = 0. Denoting by

(1.14) X'SX = diag (St;, S35, ..., S5, 0,0,...,0),
S >0 for i=1,2,...h, 1<h<n, let
(1.15) X'RX = [.R‘“f_'f.‘ﬁ],
R12§R22

where R, isan h x h, R;, an h x (n — h)and R,, an (n — h) x (n — h) matrix.
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(The set of columns of Ry, and R,, is empty if h = n.) Then for the damping
coefficient A of N there holds
min S

(1.16) A= —— ,
”Rn — Ry1R;; R12H1,2
where either the first or the second norm can be taken. (If h = n, then, of course,
Ry — Rlsz—le‘lz = X'RX.)
Moreover, the following inequality holds:
min S}
(l17) /3 g i=1,..., h ,
tr(Ryy)
where tr (Ry,) denotes the trace of the matrix Ry;.

Observe that computation of the diagonal elements of X'SX and X'RX only is
necessary for the evaluation of the estimate (1.17); the cstimate (1.17), however, is
less accurate than that given by (1.16).

Proof of Th. 1.1.: According to Lemma 1.1, — 1 is the greatest negative root of
det (ﬁp + S) with R = X'RX,S = X'SX. Moreover, it is obvious that both R and §
are positive semidefinite, and that R + S is positive definite due to the assumption
on regularity of N. (See [1], [2].)

Let us first consider the case that h < n. Choosing an n-dimensional real vector &
whose first h components are zero and the remaining n — h components constitute
a non-zero vector &*, then by (1.14), (1.15) we have &\(R + §) & = &*'R,,&% > 0.
Hence, R,, is positive definite, and consequently det R,, % 0.

Referring to Lemma 1.2, construct the set 9. By a well-known theorem of algebra,
every solution of the equation Sy = 0 can be written as y = Mu, where the columns
of M constitute a complete set of linearly independent solutions of Sw = 0. Since the
rank of S is h, M is an n x (n — h) matrix with rank n — h. Due to the special
form of S, we may set

(1.18) M = [‘1’]

where [ is the unit (n — h) x (n — h) matrix. Furthermore, since every vector
x € M fulfills the equality x'Ry = 0, we have x*RMu = 0 for any u, so that x'RM =
= 0. Consequently, M'Rx = 0 (R is symmetric). On the other hand,

Riy Ry

} — [Ryy Ry].

(1.19) M'R = [0;1][ L
' Ri2 Ry,

From (1.19), however, it follows that M'R (which is an (n — h) x n matrix) has
rank n — h.

Using again the theorem of algebra it follows that every solution of M'Rx =0
can be expressed as x = Qpn, where the columns of Q constitute a complete set of
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linearly independent solutions of M'Rz = 0. Since M'R has rank n — h, Q is an
n x h matrix with rank h. At the same time, we have M'Rx = M‘IN{Qn for any 7,
and consequently

(1.20) M'RQ = 0.

Let us now define the (n — h) x h matrix O* by
(1.21) 12+ Ry0% =0,
i.e. by O* = — R;,'R},, and the n x h matrix § by

(1.22) g- [Q’]

where I is the h x h unit matrix. Obviously § has rank h. On the other hand, by
(1.19), (1.21) we have

~ ~ . 1
M'RQ = [R‘IZ;RZZ] I:Q*} = Ri, + R,,0* = 0.

Thus, in view of (1.20) we may put Q = . Hence I consists of all vectors x given
by x = Qp, excluding those x for which x'Rx = 0.
Referring now to eq. (1.9) and denoting 5* = diag (ST;, 532, ---» Si), We have

(1.23) x'Sx = n’Q'SQn = n'[1/0*'] [S*O] [1} n=mnSs*.

0i0][LO*
Similarly,
- ~ , R iR I
(1.24) x'Rx = n‘Q‘RQr] = ;7‘[1 Q*‘] [\“ _,Alz‘] [*’il n=
Ri2iR;; o*

=Ry + R2Q*)n =n'(Ryy — R ;R Ry 1.

Observe also that due to (1.24) the matrix R;; — R;,R5,' R}, is positive semidefinite
and non-zero.
Using now the assertion of Lemma 1.2 and (1.23), (1.24), we have

(1.25) 1z inf— N R
e n'(Ryy — RaRap Ry m

where P is the set of all h-dimensional real vectors excluding those for which
n'(Ryy — R12R1—21R‘22)’7 = 0.
At the same time, for any vector n we have

h
(1.26) n'S*n =% Sin? = |n)*. min S},
i=1 i=1,....,h

where #; are the components of 5. On the other hand, denoting R* = R, —
— R,,R5, R}, and using Lemma 1.3, we can write for any n € %P,

(1.27) 0 < n'R*n < [|R*|2 [n]? -
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Consequently, by (1.26), (1.27) and (1.25),

min S}
(1.28) A > ELeh
[R*[.2

and the inequality (1.16) is proved.

If h = n,then y = 0 is the uniq~ue solution of §y = 0, and, consequently, M is the
set of all vectors x for which x'Rx > 0. The remaining part of the proof remains
unchanged.

In order to prove the inequality (1.17) observe that positive definiteness of R,,
implies positive definiteness of R;,'. Consequently, R;,R; 'R}, is positive semide-
finite, and for any vector n we have

(1.29) n'R*n < n'Ryqn

From this it follows that

(1.30) n'R*n < ”Rllul “’1“2 ;
hence, by (1.25),
. min S?}
(1.31) J z inf ”‘S*" e
ey n'R* Ry

On the other hand, if we denote the elements of R;; by R}, then from the positive
semidefiniteness of Ry, (see 1.29) we have R}iR}, — R% = 0 for any pair i, k =
=1,2,..., h. Thus, by definition,

h h
(1-32) lanlll = (.’(ZLRTkz)% = ( kZ_,IRﬁR:k)% =1ir (Ru) .

Substituting this into (1.31) we get immediately (1.17). Hence, Th. 1.1 is proved.

Note: Applying Th. 1.1 to concrete cases, we can use either the first or the second
norm of the matrix R*. In order to obtain the sharpest bound we choose, of course,
the smaller norm. Let us also remark that the estimate (1.16) can be further improved
if the norms “AH1,2 are replaced by the norm ”AH* = k¥, where K is the greatest
characteristic number of the matrix A'A4. To obtain k, however, it is necessary to
solve the characteristic equation of 4'4, so that use of the norm ||A|[* is of limited
practical value.

Concluding this section, let us summarize the previous results into directions for
solving concrete cases.

Given an RC-network R, 1) construct the S-canonic matrix X making use of the
rule mentioned above, 2) compute the matrix X'RX and then R,; — R,,;R;; R},
(see (1.15)), 3) use inequality (1.16) with the smaller norm. If great accuracy is not
necessary, then instead of 2) establish only the first h diagonal elements of X'RX
and use (1.17).
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2. RL-NETWORKS

The case of an RL-network is in some respect simpler than the case of an RC-
network. Here we have Z(p) = Lp + R with L= X'LX, R = X'RX, where the
matrices L, R represent the inductances and resistances of the network, respectively,
and where X has the usual meaning.

Now, the following statement is true:

Lemma 2.1. Let L=+ 0, R + 0 be positive semidefinite matrices such that L + R
is positive definite, and let Z(p) = Lp + R. Then Z~'(p) exists and each pole
of Z~'(p) is real non-positive. Moreover, p = 0 is a pole if and only if det R = 0.

From Lemma 2.1 it follows that only the case det R =+ 0 is of interest from the
viewpoint of the properties of the damping coefficient. Therefore the estimates for 4
which are presented below consider this case.

Proof of Lemma 2.1.: The proof of the first assertion follows the same pattern
as that of Lemma 1.1. Thus let us prove the second assertion only. Assuming that
Z~'(p) has a pole of m-th order at p = 0, we have

(21) Z_l(p) = Amp—‘m + Am—lp_m+1 + ..o+ Alpv‘ + AO + P(p)9

where A, are constant real matrices and P(p) has a zero at p = 0. The identity
Z(p) Z~'(p) = I yields

(2.2) RA,p™™ + RA,_,p™™"' + ... + RA;p™" + R4, + RP(p) +
+ LA™ 4+ .+ LA,p™ " + LA, + LAy + LP(p)p =1 .

From this we have

(2.3) RA, =0, R4, +LA =0, k=23 ..,m,
(2.4) RAy+ LA, =1.
If now det R # 0, then from (2.3) it follows that A, = A,_; = ... = A; = 0.

Conversely, if A; = 0, then from (2.4) we have det R #+ 0 and the second assertion
is proved.

Using the same method as in Section | and taking into account the presence of
a pole at p = 0, we can easily prove the following estimates:

Theorem 2.1. Let N = (G, R, L,0) be a passive RL-network, X an R-canonic
matrix, and let X*RX be positive definite, X'LX #+ 0. Then for the damping coef-
ficient of N there holds

min R},
(2.5) A > i=leen ,
- xex..
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where RY; are the elements of X'RX. Moreover,
(26) A g i=1,.., n .

(The proof is left to the reader.)

Note that as in Th. 1.1, the estimate (2.6) is less accurate than (2.5), but requires
less comptutation.

3. CONCLUSION

In order to clariiy the procedures outlined above let us present two simple examples.

Example 1. Consider the RC-network as in Fig. 1 and let us find a bound for its
damping coefficient. Here we have

R = diag(2,0,1,2,0,1,2,1,3,1,2),
S = diag(0,1,2,1,2,0,0,0,0,0,0).

(The numbers standing next to individual capacities in Fig. 1 are the reciprocals
of capacities.)

The set of loops Ly, La, ..., L (dotted in Fig. 1) obviously constitutes a complete
set of linearly independent loops; for the corresponding vectors y; we have

yy =[1,-1,0,0,0,0,0, 0, 0,0, 0],
vy =[0, 1,1,0,0,0,0, 0, 0,0,—1],
»y=1[0, 0,0,1,0,0,0,—1, 1,0, 0],
vy =[0, 0,0,0,1,1,0, 0, 0,0, 0],
ys =[0, 0,0,0,0,1,1, 1, 0,0, 0],
ys = [0, 0,0,0,0,0,0, 0,—1,1, 1].
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Let us now construct an S-canonic matrix X. Putting x; = y; and using the rule
mentioned above, we have x}Sx; = I, y5Sy, = 3 and xSy, = —1. Setting x, =
= ax,; + y,, it follows that x1Sx, = ax|Sx; + x{Sy, = « — 1. Thus with o = 1
we have x}Sx, = 0 and

xy =[1,0,1,0,0,0,0,0,0,0, —1].
Also, x3Sx, = 2.

Furthermore, y3Sy; = 1, x}Sy;= 0, x3Sy; = 0, so that we can put x;= y,.
Similarly we obtain y,Sy, = 2, xSy, = x5Sy, = x5Sy, = 0, so that we set
x4 = y4. Continuing this process we find easily that the matrix with columns
Xis Xy eees Xgy X5 = Vs, Xg = Vg is the desired S-canonic matrix. From the above
equations it follows that
(3.1) X'SX = diag(1,2,1,2,0,0).

Hence, h = 4, n = 6.

Furthermore, we obtain

2, 2, 0,0, 0, 0
2, 5, 0,0, 0,-2
07 Oa 67 0; _l, "3
(3.2) X'RX =0, 0, 0,1, 1, 0f;
0, 0,—-1,1, 4, 0
"0, —23 —3’ O’ 03 6—
consequently, by (1.15),
2,2,0,0 0, 0 _
2,5,0,0 | 0,-2 4,0
B3 Ru=lgo60f R2=|_p 3] R”_[o,o].
0,0,0,1 I, 0

From (3.3) we get casily

24, 52, —12,0
0, —12, 51,3
0, 0, 3,9

(3-4) R* = Ryy — RIZRZ_ZIR‘IZ = le

From (3.4) it is apparent that |R*|, = ¢ ./1855 = 7-18 ..., and IR*|, = 22 =
= 7-33.... Thus, using the first norm we have from (1.16)

(3.5) =% o390

1855

Let us also compute the bound given by (1.17). From (3.3) we have tr (R,,) = 14,
so that

13.6) Az =0071....
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In order to check the accuracy of the estimates obtained let us establish the exact
value of A. Forming the matrix Rp + S with R = X'RX, § = X'SX by (3.2) and
(3.1), we get after several steps

det (Rp + S) = p*(314p* + 1547p° + 2176p* + 844p + 96) .

From this we obtain for — 4, i.e. for the greatest negative root of det (INQp + §), the
value 4 = 0-:2190....

Fig. 2.

Example 2. Let us find a bound for the damping coefficient of the ladder-structure
plotted in Fig. 2. From the graph of the network in question and from the rule
presented above it is apparent that the set of loops L,, L,, ..., L, corresponds to
an S-canonic matrix X. Thus, we can write immediately

(3.7) X'SX =diag (C;. ¢y L, ..., CY).

Furthermore, using the rule we have

Ry + R;; —Ry; 0; 0; ..., 0
—R;; R;+ R,; —Ry; 0; ...,
(3.8) X'RX = 0; —R,; R, + R;; —Ry; ...,
0; O, Oa 0’ cee s _Rn‘l; Rn—1+Rn

Concluding this article let us make the following remarks:

1. The knowledge of the upperas well as of the lower bound for eigenfrequencies p;
of an RC-network is often useful. An upper bound has been already given as the
number —A. For the lower bound, however, an estimate similar to (1.16) can be
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given. Indeed, if p; is an eigenfrequency of an RC-network, then there is a non-zero
vector ¢ such that

(3.9) (Rp; +8)¢=0

(ﬁ,g have the same meaning as in Section ). Futhermore, if y is any solution of

Ry = 0, then from (3.9) it follows that y'S¢ = 0. Using this and the same procedure
as in the proof of Th. 1.1, we get easily the following assertion:

Theorem 3.1. Let N = (G, R, 0, S) be a regular passive RC-network, X an R-
canonic matrix, and let X*SX # 0, X'RX + 0. Denoting X'RX = diag (R}, R}, ...,
v R, 0,0,...,0), RfF >0 fori=1,2,...k 1 <k=n, let

X'SX = [5115‘12] ,

where Sy is an k x k matrix. Then

_ IS = 5680l

3.10 < p;

(3.10) min R} -
i=1,..k

and

(311) tr(SIl) é i

p; being the eigenfrequencies of N.

The formulation and proof of an analogous theorem for RL-networks is left to
the reader.

2. In Sections 1,2 only the case of an RC- and RL-network was considered. As for
the general case of an RLC-network, it can be hardly expected that simple estimates
valid without additional assumptions can be stated. The reason for this may be
explained as follows: Let M; be an RC-network and let N, be the RC-network
obtained from N, by replacing the matrix R; by its multiple kR, ¥ > 0. Then,
obviously, each eigenfrequency p{® of N, is given by p{* = k™ 'p{V), where p'! are
the eigenfrequencies of N,. Similarly, considering RL-networks 0, N, with R, =
= kR;, then for the eigenfrequencies we have p'? = wkp'". Consequently, the
influence of ““damping’ caused by the presence of resistances is just opposite for an
RC-network and an RL-network.

In the case of a general network, however, when both inductances and capacities

are present, the influence of resistances becomes more complicated.
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Vytah

MEZ PRO KOEFICIENT TLUMENI RC- A RL-SITE

VAcLAV DOLEZAL

Clanek je vénovan odvozeni odhadt pro koeficient tlumeni RC- a RL-siti.
Koeficient tlumeni dané pasivni sité¢ je definovan jako ¢islo 4 = — max Re p,,

13

kde p; jsou vlastni kmitoCty sité. Je ukazano, jaky vyznam ma A pro odhad rychlosti
odeznéni prechodového déje v siti.

Hlavnim vysledkem prace jsou dva dolni odhady pro 4 pasivnich RC-siti, které lze
bezprostfedné vyhodnotit ze siruktury a hodnot prvka sité.

V dalsi ¢asti prace jsou uvedeny odhady pro A pasivnich RL-siti. PouzZiti vysledki
je ilustrovano na prikladech.

Zavérem je poukazano na rozsifeni vyloZenych metod pro vypocet dolnich odhadi
pro vlastni kmitoCty pasivnich RC- a RL-siti.

Pe3rome

MPEAEJ AJ151 KODPOULIMEHTA 3ATYXAHUWUS CETEN
TUITA RC 11 RL

BALUIAB JOJIEXAIJI (Vaclav Dolezal)

Cratbsi MOCBsilLiEHA BBIBOJY OLCHOK Kod(hduuueHTa 3aTyxaHust ceted Tuna RC
n RL.

Koadduument 3atyxanust JaHHON NMACCHMBHOM CETH ONpPEACNICH KaK 4ucio A =
= — max Re p;, rae p; — cobcrBennble yacToThl ceTu. [loka3aHo, kakoe 3HaYCHHE

1

UMeET A JUJISL OLICHKH CKOPOCTH 3aTyXaHHsI TICPEXO/IHOIO NPOLEcca B CETH.

["naBHBIM pe3yabTaToM paboThl SIBJISIFOTCS JABC HUXKHHC OLCHKH JJISE A ACCHBHBIX
ceteil Tina RC, koTOpble MOXHO BBIBCCTH HCMOCPCACTBEHHO M3 CTPYKTYPbI W 3Ha-
YECHUH IJICMCHTOB CCTH.

B ciicyrouleii yactu paboThl NPUBCACHBI OLCHKH /ISt A MaCCHBHBIX ceTeid Tuna RL.
ITpumMeneHue pe3yJibTaTOB WJUIFOCTPUPYETCSl HA TIPUMCpPaX.

B 3akitoyeHue ykazaHbl BO3MOXHOCTH pACILIMPEHHsl OMMCAHHBIX MCTOJOB Ha
BBIYMCJICHUE HMIKHUX OLICHOK COOCTBECHHBIX YacTOT naccuBubiXx cetel Tuna RC u RL.

Author’s address: Ing. Vdclav Dolezal C.Sc., Matematicky ustav CSAV, Zitna 25, Praha 1.
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