Aplikace matematiky

Zdeněk Sobotka

General stress-strain relationship of anisotropic bodies and the concept of the transformed strain. (Advanced note)

Aplikace matematiky, Vol. 9 (1964), No. 6, 467-469

Persistent URL: http://dml.cz/dmlcz/102925

Terms of use:

© Institute of Mathematics AS CR, 1964

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

PŘEDBĚŽNÁ SDĚLENÍ

GENERAL STRESS-STRAIN RELATIONSHIPS OF ANISOTROPIC BODIES AND THE CONCEPT OF THE TRANSFORMED STRAIN
 [ADVANCED NOTE]

Zdeněk Sobotka
(Received July 20, 1964.)

The author presents the general stress-strain relationships and the law of the deformation theory of plasticity of anisotropic bodies.

The general relation between the stress and strain components may be expressed in the following form

$$
\begin{equation*}
\sigma_{i j}=f_{i j}\left(B_{k l m n} \varepsilon_{m n}\right) \tag{1}
\end{equation*}
$$

where $B_{k l m n}$ are the components of the fourth-rank tensor of anisotropy.
Introducing the transformed strain tensor of the rank two

$$
\begin{equation*}
\beta_{k l}=B_{k l m n} \varepsilon_{m n}, \tag{2}
\end{equation*}
$$

we may consider the general function

$$
\begin{equation*}
\sigma_{i j}=f_{i j}\left(\beta_{k l}\right) \tag{3}
\end{equation*}
$$

of two coaxial tensors $\sigma_{i j}$ and $\beta_{k l}$.
The preceding function may be, under certain conditions, developed into absolutely convergent power series as follows

$$
\begin{equation*}
\sigma_{i j}=A_{0} \delta_{i j}+A_{1} \beta_{i j}+A_{2} \beta_{i \alpha} \beta_{\alpha j}+A_{3} \beta_{i \alpha} \beta_{\alpha \beta} \beta_{\beta j}+\ldots \tag{4}
\end{equation*}
$$

where $A_{0}, A_{1}, A_{2}, A_{3}$, etc. are scalar coefficients and $\delta_{i j}$ is the Kronecker delta.
The left-hand side of (4) being a symmetrical tensor of the second rank, it follows from the tensorial dimensionality that the absolutely convergent series of the terms on the right-hand side is also represented by symmetrical tensors of rank two, which may be expressed according to the Cayley-Hamilton theorem in terms of three principal tensors

$$
\delta_{i j}, \quad \beta_{i j}=B_{i j k l} \varepsilon_{k l}, \quad \beta_{i \alpha} \beta_{\alpha j}=B_{i \alpha k l} B_{\alpha j m n} \varepsilon_{k l} \varepsilon_{m n}
$$

and by functions of the three principal transformed strain invariants

$$
\begin{align*}
I_{\beta} & =\beta_{i j} \delta_{i j}=B_{i j k l} \delta_{i j} \varepsilon_{k l}, \tag{5}\\
I I_{\beta} & =\beta_{i j} \beta_{i j}=B_{i j k l} B_{i j m n} \varepsilon_{k l} \varepsilon_{m n}, \tag{6}
\end{align*}
$$

$$
\begin{equation*}
I I I_{\beta}=\beta_{i j} \beta_{i \alpha} \beta_{\alpha j}=B_{i j k l} B_{i \alpha m n} B_{\alpha j p q} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q} . \tag{7}
\end{equation*}
$$

Then we have the following constitutive stress-strain relation

$$
\begin{equation*}
\sigma_{i j}=\Phi_{0} \delta_{i j}+\Phi_{1} B_{i j k l} \varepsilon_{k l}+\Phi_{2} B_{i \alpha k l} B_{\alpha j m n} \varepsilon_{k l} \varepsilon_{m n} \tag{8}
\end{equation*}
$$

The scalar functions of the invariants $\Phi_{0}, \Phi_{1}, \Phi_{2}$ follow from three equations which are analoguous to those for isotropic materials

$$
\begin{align*}
\sigma_{i j} \delta_{i j}= & 3 \Phi_{0}+\Phi_{1} B_{i j k l} \delta_{i j} \varepsilon_{k l}+\Phi_{2} B_{i j k l} B_{i j m n} \varepsilon_{k l} \varepsilon_{m n}, \tag{9}\\
\sigma_{i j} \sigma_{i j}= & 3 \Phi_{0}^{2}+\Phi_{1}^{2} B_{i j k l} B_{i j m n} \varepsilon_{k l} \varepsilon_{m n}+ \tag{10}\\
& +\Phi_{2}^{2} B_{i \alpha k l} B_{\alpha j m n} B_{i \beta p q} B_{\beta j r s} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q} \varepsilon_{r s}+ \\
& +2 \Phi_{0} \Phi_{1} B_{i j k l} \delta_{i j} \varepsilon_{k l}+2 \Phi_{0} \Phi_{2} B_{i j k l} B_{i j m n} \varepsilon_{k l} \varepsilon_{m n}+ \\
& +2 \Phi_{1} \Phi_{2} B_{i j k l} B_{i \alpha m n} B_{\alpha j p q} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q}, \\
\sigma_{i j} \sigma_{i \alpha} \sigma_{\alpha j}= & 3 \Phi_{0}^{3}+\Phi_{1}^{3} B_{i j k l} B_{i \alpha m n} B_{\alpha j p q} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q}+ \tag{11}\\
& +\Phi_{2}^{3} B_{i j k l} B_{i \alpha m n} B_{\alpha \beta p q} B_{\beta \gamma r s} B_{\gamma \delta t u} B_{\delta j a b} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q} \varepsilon_{r s} \varepsilon_{t u} \varepsilon_{a b}+ \\
& +3 \Phi_{0}^{2} \Phi_{1} B_{i j l l} \delta_{i j} \varepsilon_{k l}+3 \Phi_{0} \Phi_{1}^{2} B_{i j k l} B_{i j m n} \varepsilon_{k l} \varepsilon_{m n}+ \\
& +3 \Phi_{0}^{2} \Phi_{2} B_{i j k l} B_{i j m n} \varepsilon_{k l} \varepsilon_{m n}+3 \Phi_{0} \Phi_{2}^{2} B_{i j k l} B_{i \alpha m n} B_{\alpha \beta p q} B_{\beta j r s} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q} \varepsilon_{r s}+ \\
+ & 3 \Phi_{1}^{2} \Phi_{2} B_{i j k l} B_{i a m n} B_{\alpha \beta p q} B_{\beta j r s} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q} \varepsilon_{r s}+ \\
& +3 \Phi_{1} \Phi_{2}^{2} B_{i j k l} B_{i \alpha m n} B_{\alpha \beta p q} B_{\beta \gamma r s} B_{\gamma j t u} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q} \varepsilon_{r s} \varepsilon_{t u}+ \\
& +6 \Phi_{0} \Phi_{1} \Phi_{2} B_{i j k l} B_{i \alpha m n} B_{\alpha j p q} \varepsilon_{k l} \varepsilon_{m n} \varepsilon_{p q} .
\end{align*}
$$

The third term in (8) represents the second-order effects. In the case of infinitesimal deformation, (8) becomes

$$
\begin{equation*}
\sigma_{i j}=\Phi_{0} \delta_{i j}+\Phi_{1} B_{i j k l} \varepsilon_{k l} \tag{12}
\end{equation*}
$$

The invariant functions may be expressed from

$$
\begin{align*}
\sigma_{i j} \delta_{i j} & =3 \Phi_{0}+\Phi_{1} B_{i j k l} \delta_{i j} \varepsilon_{k l}, \tag{13}\\
\sigma_{i j} \sigma_{i j} & =3 \Phi_{0}^{2}+2 \Phi_{0} \Phi_{1} B_{i j k l} \delta_{i j} \varepsilon_{k l}+\Phi_{1}^{2} B_{i \alpha k l} B_{\alpha j m n} \varepsilon_{k l} \varepsilon_{m n} \tag{14}
\end{align*}
$$

after introducing the relations (5) and (6) as follows

$$
\begin{align*}
& \Phi_{0}=\frac{1}{3}\left(I_{\sigma}-I_{\beta} \sqrt{\left.\frac{3 I I_{\sigma}-I_{\sigma}^{2}}{3 I I_{\beta}-I_{\beta}^{2}}\right)}\right. \tag{15}\\
& \Phi_{1}=\sqrt{\frac{3 I I_{\sigma}-I_{\sigma}^{2}}{3 I I_{\beta}-I_{\beta}^{2}}} \tag{16}
\end{align*}
$$

where $I_{\sigma}=\sigma_{i j} \delta_{i j}, I I_{\sigma}=\sigma_{i j} \sigma_{i j}$ are the invariants of the stress tensor.

After some rearrangements, the author has obtained the stress-strain relations of the deformation theory of plasticity for anisotropic bodies,

$$
\begin{equation*}
\sigma_{i j}-\sigma \delta_{i j}=\frac{2 \sigma_{i}}{3 \beta_{i}}\left(\beta_{i j}-\beta \delta_{i j}\right) \tag{17}
\end{equation*}
$$

where $\sigma=\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)$ is the mean stress

$$
\sigma_{i}=\frac{1}{\sqrt{ } 2} \sqrt{ }\left[\left(\sigma_{11}-\sigma_{22}\right)^{2}+\left(\sigma_{22}-\sigma_{33}\right)^{2}+\left(\sigma_{33}-\sigma_{11}\right)^{2}+6\left(\sigma_{12}^{2}+\sigma_{23}^{2}+\sigma_{31}^{2}\right)\right]
$$

the effective stress, $\beta_{i j}=B_{i j k l} \varepsilon_{k l}$ the transformed strain components,

$$
\beta_{i}=\frac{\sqrt{ } 2}{3} \sqrt{ }\left[\left(\beta_{11}-\beta_{22}\right)^{2}+\left(\beta_{22}-\beta_{33}\right)^{2}+\left(\beta_{33}-\beta_{11}\right)^{2}+6\left(\beta_{12}^{2}+\beta_{23}^{2}+\beta_{31}\right)^{2}\right]
$$

the transformed effective strain and $\beta=\frac{1}{3}\left(\beta_{11}+\beta_{22}+\beta_{33}\right)$ the transformed mean strain.

Then, the concept of the transformed strain makes it possible to express the stressstrain relationships for anisotropic bodies in a manner analogous to that of the isotropic case.

Adresa autora: Doc. Ing. Zdeněk Sobotka Dr. Sc., Ústav teoretické a aplikované mechaniky ČSAV, Vyšehradská 49, Praha 2.

