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SVAZEK 10 (1965) APLIKACE M A T E M A T I K Y ČÍSL01 

SOME FUNDAMENTAL PROPERTIES OF ELECTRICAL NETWORKS 
WITH TIME-VARYING ELEMENTS 

VACLAV D O L E Z A L 

(Received March 23, 1964.) 

In this paper several conditions for the existence and uniqueness of a solu
tion of electrical networks with time-varying elements are given; furthermore, 
passive networks are considered from the viewpoint of the uniqueness and 
stability of solutions, and certain estimates for the solution are derived. 

0. INTRODUCTION 

The question whether a network possesses a unique solution is far more important 
in the case of a network with time-varying elements than in the classical case of net
works with constant elements. As a matter of fact, "almost every" network with 
constant elements is incapable of oscillations provided no exciting forces are present 
and the initial state is zero; however, the same is not true if the network elements 
vary with time. Indeed, consider a simple circuit containing an inductance L(t) and 
a resistance R(t). If there is no electromotive force in the circuit and the initial value 
of current is zero, then the current x(t) flowing through the circuit fulfills the following 
equation 

(0-1) (L(t) x(t))' + R(t) x(t) = 0 , x(0) = 0 . 

If we specify L(t) = t and R(t) = t — 4, then it can be easily verified that (0-1) 
has, in addition to the trivial solution x(t) = 0, also the solution x(t) = t3 exp (— t), 
t ^ 0. In other words, the circuit in question need not remain in the equilibrium 
state despite the absence of any exciting force. Observe also that if L(t) and R(t) are 
constant, the phenomenon just described cannot occur unless LR = 0. For this 
reason the first paragraphs of the paper deal with conditions under which the net
work possesses a unique solution. 

It is also needless to emphasize that the question of stability of a network solution 
is of major importance in applications. As it will be shown in Section 2, for a certain 
type of network with time-varying elements, which appear as an analogue of classical 
passive networks, quite simple criteria of stability can be given. This type of networks 
also permits us to establish some estimates of solutions which are useful in the 
qualitative analysis of the network behaviour. 
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1. THE CONCEPT OF A NETWORK AND ITS SOLUTION 

It will be assumed that the reader is acquainted with some of the basic concepts 
introduced in [1] or [2], particularly with those related to oriented graphs. For this 
reason and due to the fact that the description of the structure of a network with 
time-varying elements is the same as that of a network with constant elements, the 
meaning of concepts concerning graphs will be only indicated briefly. 

Thus, let G be an oriented graph with branches hu h2,..., hr and nodes u l5 u2, . . . 
..., us, which does not contain a branch beginning and ending in the same node, nor 
an isolated node, and which contains at least one loop. (See [1], [2].) Furthermore, 
let a be the branch-node incidence matrix of G; i.e., for the element aik of a standing 
in the i-th row and fc-th column, we have 

aik = 1 if uk is the terminal node of branch hh 

aik = — 1 if uk is the initial node of branch hh 

aik = 0 if uk is not incident with ht. 

As in [1] and [2], every product c'/z, where c is a constant r-dimensional vector 
and /V = [hl9 h2, ..., hr\ (ht being branches of G) will be called an 1 — complex. 
If, in particular, an 1-complex c^h fulfills the equation aKc = 0, it will be called a cycle. 
Note that the 1-complex representing a loop of G is a cycle. 

Moreover, if X is an r x n matrix whose columns constitute a complete set of 
linearly independent solutions of the equation ayx = 0, then the elements of the 
vector Xyh constitute a complete set of linearly independent cycles of the graph G. 

Note also that the matrix X may advantageously be obtained from any complete 
set of linearly independent loops of the graph G, i.e. if x\h is an 1-complex representing 
a loop ££\ from a complete system <£l9 5£l9 ..., $£n of linearly independent, then we 
can put X = [x1|x2j . . . \xn\ 

Now, we can state the definition of a network with time-varying elements. Let G 
be an oriented graph and let L(t), R(t), S(t) be r x r matrices defined on <0, oo) such 
that the element Ljk(t), Rjk(t)9 Sjk(t) of the matrix L(t)9 R(t)9 S(t)9 respectively, 
is assigned to the ordered pair of branches (hj9 hk)9;, fc = 1, 2 , . . . , r; then the ordered 
quadruple N = (G, L(t)9 R(t)9 S(t)) will be called a network. 

Furthermore, let E(t) be an r-dimensinal locally integrable vector function defined 
on <0, oo), (i.e., J J |Ki(OI &t < oo for every finite T = 0 and every component Et(t) 
of E(t))9 and let J0, q0 be constant r-dimensional vectors; then a locally integrable 
r-dimensional vector function J(t) will be called a solution of N corresponding to 
E(t) and initial conditions J0, q09 if 

(1.1) cs |L ( r ) J(t) - L(0) J0 + fK(T) J(T) dT + f S(T) f ^J(a) da + q0\ dA = 

-ŕЦlЦт) dт 
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for every cycle csh of the graph G and almost every t = 0, and if 

(1.2) as J(t) = 0 

for almost every t = 0. 
Before stating conditions for the existence and uniqueness of a solution, let us 

explain briefly the physical meaning of the definitions just stated. As in the classical 
case of a network with constant elements, the graph G describes the structure of the 
network, i.e. the interconnection of individual elements. The matrices L(t), R(t), S(t) 
represent the mutual inductances, resistances and susceptances (reciprocals of capaci
ties) between individual branches, respectively, and the vectors E(t), J(t) the values 
of branch electromotive forces and branch currents, respectively. Finally, J0 repre
sents the initial values of branch currents and q0 the initial values of condenser 
charges. 

Then equation (1.1) is the formulation of the first Kirchhoff law (or, more 
precisely, an equation obtained from this by formal integration between limits 0, t), 
and equation (1.2) expresses the second Kirchhoff law. (See also [1], [2].) 

Next, let X be the matrix introduced above; then it can be shown easily that 
every solution x of the equation asx = 0 can be written as x = Xy, where y is an 
n-dimensional vector. Thus, using this fact, and putting J(t) = X w(t) in view of 
(1.2), and c = Xp by definition of a cycle, it follows that the system (1.1), (1.2) is 
equivalent to the following, more convenient system of equations 

(1.3) XN L(t) X w(t) + f V R(x) X w(x) dT + f Xx S(x) X \W(G) da dx = 
Jo Jo Jo 

= Xs TE(T) dT - X" f 5(T) go ^T + Xx L(0) J0 , 
Jo Jo 

(1.4) J(t) = XW(t). 

On replacing the repeated integration in (1.3) by a single one, (1.3) can be written as 

(1.5) L(t) w(t) + P Q(t, T) W(T) dT = f(t) , 
Jo 

where 

L(t) = Xs L(t) X , Q(t, T) = Xs R(x) X + f Xx S(z) X dz , 

f(t) = Xs P ( £ ( T ) - S(x) q0) dx + Xs L(0) J0 . 

However, (1.5) is the type of a vector integral equation which has been considered 
in [3]; if det L(t) 4= 0 for every t = 0, i.e. if L~x(t) exists, then (1.5) is equivalent 
to a sector equation of Volterra type, and a unique solution always exists. Thus, we 
have, 
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Theorem 1.1. Let N = (G, L(t), R(t), S(t)) be a network, a the branch-node 
incidence matrix of G and X a constant matrix whose columns constitute a complete 
set of linearly independent solutions of the equation axx = 0. If the matrices L(t), 
R(t), S(t) are continuous in <0, oo) and if 

(1.6) det Xy L(t) X 4= 0 

for every t £> 0, then for any vectors E(t), J0, q0 a unique solution J(t) of N exists 
and is continuous in <0, oo). Moreover, J(t) fulfills the equality J(0) = J0 provided 
a 7 0 = 0. 

Condition (1.6) is satisfied if for every non-zero cycle cyh and every t ^ Owe have 

(1.7) S L(t) c 4= 0 . 

Observe the physical meaning of condition (1.7); it merely expresses the fact that 
the magnetic energy stored in coils due to any non-zero direct current regime given 
by the structure of the network is non-zero at any instant t = 0. Indeed, the vector 
c in the cycle expression cxh fulfills the equality aKc = 0; thus, it may be interpreted 
as a vector of direct currents which are determined by the structure of N only. 

However, condition (1.7) (and also (1.6)) appears as a rather strong requirement 
on the network. Actually, consider the following, by no means exceptional case: 1) 
the matrix L(i) is diagonal with non-negative elements, i.e. there are no mutual induct
ances in the network, 2) the graph of the network contains a loop 5£ such that, for 
a certain t0 = 0, the total sum of instantaneous inductances contained in $£ is zero. 
If then d"h is the 1-complex representation of ££, we obviously have <f L(t0) d = 
= 0 and Theorem 1.1 does not yield any result about the existence of a solution. 

On the other hand, condition (1.6) or (1.7) guarantees the existence and uniqueness 
of the network solution independently of matrices R(t), S(t), i.e., a unique solution 
exists for arbitrary matrices R(t), S(t). 

Let us now present another condition for the existence and uniqueness which im
poses weaker requirements on network inductances than those given in Theorem 1.1. 

Theorem 1.2. Let N = (G, L(t), R(t), S(t)) be a network, let matrices L(t), R(t), 
S(t) be continuous in <0, oo) and L(t), R(t) symmetric positive semidefinite for every 
t = 0; moreover, let an integer k exist 1 g k < n, such that for every t = 0 there 
are exactly k linearly independent cycles c\h, c\h,..., c\h fulfilling the equality 

(1.8) c\L(t)ct = 0 , i = 1, 2, ..., k. 

If 

(1.9) c\L(i) + R(t)) c > 0 

for any non-zero cycle csh and every t = 0, then for any vectors E(t), J0, q0 with J0 

satisfying the equality a V 0 = 0, the network N possesses a unique solution. 
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N o t e 1. In the requirement (1.8) there is no need for the set of cycles c\h, c\h, ... 
. . . , c\h to be fixed for every t = 0; thus the sets c\h, c\h,..., c\h for tx = 0 and 
c\h, c\h, ..., c\h for 0 = t2 =|= t1 may be distinct. 

N o t e 2. It can be shown that condition (1.8) may be replaced by the equivalent 
condition rank Xs L(t) X = n — k for every t = 0. Similarly, condition (1.9) is 
equivalent to the condition 

(1.10) detX^O) + R(f))x* ° 
for every t = 0. 

Let us indicate briefly the proof of Theorem 1.2. We shall make use of the following 
assertion (cf. [3], Theorem 1.1): 

Let the following conditions be satisfied: 

1) The n x n matrix A(t) has a continuous derivative in <0, co) and there is 
a fixed integer h < n such that rank A(t) = h in <0, co). 

2) The n x n matrices W(t, T), dW(t, x)jdt are continuous in the region 0 :_ T = 

S t < co. 
3) Both matrices A(t) and PV*(t) = W(t, t) are symmetric and A(t) -f- W*(l) is 

positive definite for every t _ 0. 
4) The n-dimensional vector function f(t) is absolutely continuous in <0, co). 
5) There is a constant n-dimensional vector £ such that 

A(oK=/(o). 
Then there exists a unique integrable vector x(t) such that the equation 

»t 

A(t) x(t) + W(t, T) X(T) dT = f(t) 
J 0 

is satisfied almost everywhere in <0, co). 

Since the network solution is defined by (1.4) and (1.3) or (1.5), we may put L(t) = 
-= A(t), Q(t, T) = W(t, T). Then it is obvious that in view of the assumptions of 
Theorem 1.2, the requirements 2) and 4) are satisfied. Moreover, since J0 fulfills the 
equality aKJ0 = 0, we have J0 = Xy, and consequently, f(0) = Xy L(0) Xy = 
= L(0) y. Hence, 5) is satisfied with £, = y. 

Next, choosing a t _ 0, let c\h, c\h, ..., c\h be a set of exactly k linearly indepen
dent cycles which fulfill the equality (1.8), i. e. if cy L(t) c = 0 for a cycle c'h, then 
c = Cq with C = \_cl\ c2\ ...\ cfc], q a constant vector. Since L(t) is positive semi-
definite, (1.8) implies that L(t) ct = 0, (cf. [1], Lemma 5.3), and consequently, 
X* L(t) Xyt = L(t) yt = 0 with ct = Xyt for i = 1, 2, ..., k; furthermore, yh i = 
= 1, 2, ..., k, are linearly independent. 

On the other hand, assuming that L(t) y = 0, we have yxXy L(t) Xy = 0, so that 
Xy = Cq by assumption. However, C = XY with Y = [yt j y2 ! . . . | yk~\, i e., 
X(y — Yg) = 0; hence, y = Yq. Consequently, rank L(t) = n — k and 1) is satis
fied. 
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Finally, if cyh is a non-zero cycle with c = Xy, then y + 0 and by (1.9) we have 
y"X\L(t) + R(t)) Ky > 0, i.e. L(t) + K(f) = L(t) + Q(t, f) is positive definite. 
Thus, 3) is also satisfied. Consequently there is a unique vector w(t) fulfilling (1.3), 
and therefore a unique solution J(t) of N. 

The physical meaning of the inequality (1.9) is straightforward; it expresses the 
fact that the energy stored in both resistors and coils is positive for any non-zero 
direct current regime given by the structure of the network only. 

The assumptions of Theorem 1.2 may be simplified, if in addition both the matrices 
L(t) and R(t) are diagonal, i.e. if there are no mutual inductances and resistances 
in the network. Then cycles may be replaced by 1-complexes corresponding to loops 
in conditions (1.8) and (1.9). 

As a matter of fact, let d\L(t) + R(t)) d > 0 for every t = 0 and every 1-complex 
d^h corresponding to a loop. Referring to Theorem 1.2 in [1], for every cycle c'/z = 

r r 

= X cini there are loops represented by d\h = X eijhp i = 1,2,..., I such that 

c = X <*idi (oLt numbers) and such that etj + 0 implies Cj =j= 0 for i = 1, 2, ..., /, 
i = l 

j = 1, 2 , . . . , r. Thus, by hypothesis we have X Tte
2i > 0 for every j = 1, 2, ..., l, 

i = l 

where Tt are the diagonal elements of the matrix L(t) + R(t) for a chosen t = 0. 
Consequently, Tfe?f > 0 for at least one pair (;*, i*). Hence Tt*c2* > 0, and (1.9) 
is satisfied. 

In a similar manner the modification of condition (1.8) may be proved. Thus, we 
have the following useful rule: 

I. Let N = (G, L(t), R(t), S(t)) be a network with L(t), R(t), S(t) continuous in 
<0, co), and let L(t), R(t) be diagonal matrices with non-negative elements for 
every t = 0; moreover, let an integer k, 1 •— k < n, exist such that for every t — 0, 
there are exactly k linearly independent loops of G which do not contain any 
positive inductance. If for every t = 0 each loop of G contains either a (positive) 
inductance or a (positive) resistance, then N possesses a unique solution for any 
vectors E(t), J0, q0 with asJ0 = 0. 

A further simplification of conditions for the existence may be obtained, if "the 
available network elements" are positive on the entire half-axis <0, oo), or, more 
precisely: 

The network N = (G, L(t), R(t), S(t)) will be called L-, (R-, S-) -definite, if L(t) = 
= diag (Ln), (R(t) = diag (Rit), S(t) = diag (Sh)) and either Lxi = 0 or LVl > 0 
for t = 0,i = 1, 2, ..., r, (RH = 0 or RH > 0, Sit = 0 or S„ > 0). 

Referring to the previous results it is obvious that for an L-definite network N, 
condition (1.8) is satisfied automatically; moreover, if N is L, K-definite (i.e. L-and 
K-definite), then (1.9) is satisfied for every t = 0 and every non-zero cycle cKh, provided 
it is fulfilled at some t0 — 0. Consequently, we have the following rule: 
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II. If N is an L, R-definite network with U(t), R(t), S(t) continuous in (0, oo), 

and if every loop contains either an inductance or a resistance at a t0 ^ 0, then for 

any vectors E(t), J0, q0 with ayJ0 = 0 there is a unique solution of N. 

Note that condition (1.8) (or the J< 

requirement on rank Xs L(t) X) is 

essential for the uniqueness as well as 

the existence of a solution. In order 

to see this consider the network N 

plotted in Fig. 1, where a coupling 

with mutual inductance L12 = 1 

between coils Lx = 1 and L2 is 

present and where L2 = n(t) posses

ses a continuous derivative in 

<0, oo) and fulfills the conditions 

17(f) > 1 for t e <0, 1), n(t) = 1 for 

t ^ 1. Assuming that the network 

is in an equilibrium state at t = 0, 

i.e. J10 = J2o = 0, and that el9 e2 are constant functions, from Kirchhoff laws we 

obtain the following equations 

(1.11) J! + J2 + 

J! + Гj(t) J2 + 

(J! + J2) dт = e, 

(Ji + J2) dт = e2 . 

Observe that here we have X' L(t) X = ' 
u LM(0J 

i.e. rank Xy L(t) X is not constant for all t ^ 0. 

From (1.11) we obtain 

(1.12) J, + J2 = eiexp(-t), 

(n(t) - 1) J2 = e2 - ex . 

If in particular e2 = el9 then (1.12) yields Jx = et exp ( — t), J2 = 0 on <0, 1), and 

Jx = et exp ( — t) — cp(t), J2 = cp(t) on <1, oo), where cp(t) is an arbitrary function. 

Consequently the network in question possesses infinitely many solutions. 

On the other hand, if e2 + el9 then N obviously does not possess any solution. 

Let us now consider KC-networks with time-varying elements which merit particular 

attention due to their importance in practice. In this case more involved results can 

be stated than for general RLC-networks. 
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As in the classical case, the network N will be called an KC-network, if L(t) == 0. 
Under this assumption, equation (1.3) defining the solution of the network involves 
only terms which are absolutely continuous in <0, oo), i.e. (1.3) is fulfilled everywhere 
in <0, oo). Thus taking the first derivative of both sides of (1.3), we obtain 

(1.13) R(t) w(t) + S(t) f W(T) dt = X\E(t) - S(t) q0) 

with R(t) = JT R(t) X, S(t) = X" S(t) X. Moreover, since L(0) = 0, we can omit 
to prescribe the initial condition J0. 

Carrying out the same considerations as before with (1.13), we can state the fol
lowing assertions: 

Theorem 1.3. Let N = (G, 0, R(t), S(t)) be an RC-network with R(t), S(t) conti
nuous in <0, oo), and let X have the usual meaning. If 

(1.14) dot Xx R(t)X + 0 

for every t ^ 0, then N possesses a unique solution J(t) for every vectors E(t), q0. 
Moreover, J(t) is continuous provided E(t) is continuous. 

The condition (1.14) is satisfied if for every non-zero cycle csh and every t = 0 
we have 

(1.15) cxR(t)c + 0 . 

Theorem 1.4. Let N = (G, 0, R(t), S(t)) be an RC-network with R(t), S(t) sym
metric positive semidefinite for every t ^ 0 and R'(t), S'(t) continuous in <0, oo). 
Let an integer k, 1 ^ k < n exist such that for every t g: 0 there are exactly k 
linearly independent cycles c\h, c\h, ..., c\h which fulfill 

(1.16) c\R(t)ci = 0, i = l, 2 , . . . , k. 

Moreover, let E(t) be an absolutely continuous vector in <0, oo) and q0 a constant 
vector such that there is a constant vector £ with 

(1.17) c\R(0) { + 5(0) q0) = c" E(0) , a^ = 0 

for every cycle cyh. If 

(1.18) c\R(t) + S(t))c > 0 

for every non-zero cycle cxh and every t g: 0, then N possesses a unique solution 
corresponding to E(t), q0. 

The physical meaning of condition (1.18) is obvious; on the other hand, condition 
(1.17) expresses a certain "compatibility" of initial values. Indeed, interpreting £ 
as a vector of direct branch currents, then obviously (1.17) expresses the fact that, 
on neglecting capacities in N and considering it as a network containing only constant 
resistances represented by the matrix K(0), the vector £ is a solution (in direct cur-

38 



rents) corresponding to the vector of constant branch voltages E(0) — S(0) q0. 
In other words, the initial state of the network N, considered as a direct current 
problem, exists in reality. 

N o t e 3. It can be shown easily that condition (1.16) is equivalent to 

(1.19) rank Xs R(t)X = n - k 

for every t = 0, and (1.18) to 

(1.20) det X\R(t) + S(t)) X * 0 

for every t = 0, where the matrix X has the usual meaning. 
Furthermore, using the fact that every solution £ of the equation a'f = 0 can be 

written as £ = X£> we obtain easily that (1.17) is equivalent to the following condi
tion: There is an n-dimensional vector \ which fulfills the equality 

(1.21) Xs R(0) Xt = X\E(0) - 5(0) q0) . 

Analogously as in the case of a general KLC-network, the assumptions of Theorem 
1.4 can be simplified if the network does not contain mutual resistances nor mutual 
capacities. Then we have the following rules: 

I. Let N = (G, 0, R(t), S(t)) be an RC-network such that R(t), S(t) are diagonal 
with non-negative elements for t _ 0 and R'(t), S'(t) are continuous in <0, oo). 
Let an integer k, 1 :g k < n exist such that for every t = 0 there exist exactly k 
linearly independent loops of G which do not contain any resistance; moreover 
let each loop of G contain either a resistance or a capacity for every t = 0. If the 
vector E(t) is absolutely continuous and 
if E(6) and q0 fulfill condition (1.17) 
for every loop(cyh being the 1-complex 
representation of the loop), then a 
unique solution of N-exists. 

II. Let N be an R, S-definite RC-
network with R'(t), S'(t) continuous in 
<0, oo), and such that each loop con
tains either a resistance or a capacity 
at t0 = 0. If the vector E(t) is absolu
tely continuous in <0, oo) and E(0), q0 

fulfill (1.17), then N possesses a unique 
solution corresponding to E(t), q0. 

In order to illustrate the application of the preceding rules let us present a simple 
example. 

E x a m p l e 1. Consider the KC-network plotted in Fig. 2, where 

Fig. 2. 

A = t + l , 
Cл 

= 1, c2 
= exp(--0. c3 

= 2(2 - e x p ( --з t ) ) , 
L, R2 = •2, «i = 1 . e2 

= 2 cos t , « 1 - 1 > q2 a3 = 2. 
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Obviously, the network in question is R, S-definite, since all the elements involved 
are positive and no mutual couplings are present. Referring to Rule II, each of the 
loops hi + h2, —h2 + h3 + h4, — h4 + h5, hx + h3 + h4, -h2 + h3 + h5, 
ht + h3 + h5 (which constitute the system of all loops of the network graph) con
tains either a resistance or a capacity at t0 = 0. For the initial state we have Si(0) = 
= c;\o) = 1, s2(o) = c~\o) = 1, s3(o) = C3-

1(o) = 1/2, R,(O) = 1, R2(o) = 2, 
ei(0) = 1, e2(0) = 2; it can be verified easily that the vector £ with components 
{ t = £2 = - l , £3 = 0, £4 = - 3 / 2 , £5 = 3/2 fulfills condition (1.17). Thus, the 
considered network has a unique solution. 

Concluding this section, let us make the following remark. In Theorems 1.2 and 1.4 
it was assumed that the matrices L(t), R(t) and R(t), S(t), respectively, are symmetric 
and positive semidefinite for t ^ 0. This assumption, of course, limits the applicability 
of these theorems as far as networks with negative elements are considered. However, 
it may be omitted, if the conditions (1.8), (1.9), (1.16), (1.18) are replaced by others, 
which, unfortunately, are more complicated. For example, Theorem 1.2 remains 
true if (1.8) is replaced by rank Xy L(t) X = n — k for every t ^ 0, and (1.9) by the 
following condition: If Ux(t), V(t) are n x (n — k) matrices defined on <0, oo) with 
rank U(t) = rank V(t) = n - k for every t ;*> 0 such that U(t) Xy L(t) X = 0 
and X" L(t) X V(t) = 0, then det U(t) Xs R(t) X V(t) + 0 in <0, oo). 

A more detailed treatment of these problems may be found in [3]. Note also that 
these conditions guarantee existence and uniqueness, if the solution concept is 
extended to distributions. 

2. PASSIVE NETWORKS 

Next, let us turn our attention to a particular kind of networks with time-varying 
elements whose behaviour ressembles the behaviour of classical passive networks 
with constant elements. Let us begin with a definition. 

Let N = (G, L(t), R(t), S(t)) be a network and let the r x n matrix X have the 
usual meaning; the network N will be called passive, if 

1) the matrices X" L'(t) X, X" R(t) X, Xs S'(t) X are continuous in <0, oo), 

2) there is an integer h, 1 ^ h ^ n, such that rank Xs L(t) X = h for every t ^ 0, 

3) for every t ^ 0 each of the matrices X" L(t) X, X\L(t) + 2K(t)) X, X" S(t) X, 
— Kx S'(t) X is symmetric and positive semidefinite. 

Note that if the network N does not contain mutual couplings, i.e. if L(t), R(t),S(t) 
are d i a g o n a l , then conditions 1), 2), 3) may be replaced by the following simplified 
onese, which, of course, are stronger but often more convenient from the practical 
point of view: 

1)* The elements L'H(t), Ra(t), S'ti(t), i = 1, 2, ..., r are continuous, the elements 
Lit(t), Ln(t) + 2RH(t), i = 1, 2, ..., r, non-negative and the elements Su(t), i = 
= 1, 2 , . . . , r non-negative, non-increasing in <0, oo). 
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2)* There is an integer h, 1 :g h S n, such that for each t ^ 0 there are exactly 
n — h linearly independent loops of G each of which contains no inductance. 

In order to state the fundamental properties of passive networks let us introduce 
the following notation: 

Let if2 be the set of all r-dimensional vector functions x(t) which satisfy 

(2.1) f ||x(T)||2dT < CO 

for any finite t ^ 0, where ||x(f)|| denotes the norm of the vector x(t). 

Theorem 2.1. Let N be a passive network and let J(t) e ££2 be its solution corres
ponding to E(t) e 3?2 and zero initial conditions; then 

(2.2) I V ( T ) J(x) dT ^ 0 

for every t ^ 0. 

The proof of this important statement follows from Note 4 in [3]. Nevertheless, 
let us indicate heuristically the mathematical background. Let J(t) be a solution of N 
corresponding to E(t), J0 = q0 = 0, i.e. let (1.3), (1.4) be satisfied. Denoting q(t) = 
= j 0 W(T) dT, we have from (1.3), 

(2.3) 1 ( 0 q' + f R(x) q'(x) dx + f S(x) q(x) dx = Xx f E(x) dx 
jo Jo Jo 

with L(t) = X"L(t) X, R(t) = X" R(t) X, S(t) = Xx S(t) X. Assuming for simplicity 
that a continuous q"(t) exists, we obtain from (2.3) 

(lq')' + Rq' + Sq = X'E , 

and consequently, 

(2.4) q'(Lq')' dx + f q"Rq' dx + qy'Sq dx = Pq^X'E dx 
Jo Jo Jo Jo 

for every t >̂ 0. Integrating formally by parts, 

q"Lq'dx, 

and also 

Ii = f q"(Lq')' dT = fr'Lq% -
Jo 

J! = J q"Lq' dx + f qx'Lq" dx . 
Jo Jo 

Summing up these equalities it follows, by symmetry of L(t), 

Jt =\Vq'Lq%+\['q"L'q'd? . 
2 2 J 0 

41 



On the other hand, (2.3) yields L(0) q'(0) = 0, so that 

(2.5) 

Similarly, 

J. - \ ť(t) L(t) q'(t) + I (%''(*) l'(x) q'(x) dx • 
2 2 J 0 

V'Š« dt = lq%y0 - f q\Šq)' dx = 
o Jo 

= qXO 5(0 «(') - I tfS'q AT - * q'Sq AT ; 
Jo Jo 

hence by symmetry of S(t), 

(2.6) J 2 = 1 4 X 0 S(t) 4(0 - - f «'W S-'(t) «(-) dT . 
2 2 J 0 

Introducing (2.5), (2.6) into (2.4) and rearranging, we have 

(2.7) q"(t) L(t) q'(t) + f V ' ( T ) (£'(T) + 2R(T)) q'(x) &T + q\t) S(t) q(t) -

- j q\T) S'(T) q(x) dT = 2 j (?W(T) JTF(t) dT . 
Jo Jo 

However, since N is passive, the left hand side of (2.7) is non-negative for any 

t _ 0 by assumption 3); thus, 

I q"(т) X"E(т) dт = 0 

The inequality (2.2) follows immediately using q"(x) X" = (Xq'(x))" = (^ vv(t))v = 

= J\x). 
Applying the methods developed in [3], we may omit the assumption on the exist

ence of q"(t) made above. 

The integral in (2.2) has the physical meaning of the total energy supplied into the 

network by EMF-sources in the time interval <0, t>. Thus, passivity of the network 

expresses the fact that the variability of its elements is such that there is no flow of 

energy from the network into the EMF-sources. 

Furthermore, we have the following assertion: 

Theorem 2.2. Let N = (G, L(t), R(t), S(t)) be a passive network and let either 

there be satisfied 

(2.8) det X\L(t) + L(t) + 2R(t) + S(t)) X + 0 

for every t = 0, or 

(2.9) det X\S(t) - S'(t)) X * 0 

42 



for every t ^ 0. If N has a solution J(t) corresponding to E(t), J0, q0 and J(t) e St?2, 
then J(t) is the unique solution of N in S£2 corresponding to E(t), J0, q0, 

(For proof see Theorem 3.2 in [3].) 

Referring back to conditions 1)*, 2)* which guarantee the passivity of a network 
without mutual couplings, (2.8) may be replaced by the following condition: Putting 
Kt(t) = LH(t) + LH(t) + 2RH(t) + SH(t), i = 1, 2 , . . . , r, then for every loop & 
of G the sum of all Kt(t) such that the branch ht is contained in &, is positive for 
every t ^ 0. 

Let us now consider the stability of passive networks and derive some useful 
estimates for their solutions. For this purpose introduce the following notation: 

The passive network N = (G, L(t), R(t), S(t)) will be said to fulfill one of the 
following conditions Ci9 i = 1, 2, 3, if there is a positive number ah i = 1, 2, 3, 
such that for every t ^ 0 and every constant vector £, we have 

Ct: CX'L^X^a^l2, 

C2: VX\L'(t) + 2R(t))XZ>a2l£l2, 

C3: CX"S(t)X^a3\\Z\\2, 

where ||^|| denotes the norm of the vector £. 

Observe that if a condition Ct is satisfied, then the corresponding matrix X'(...) X 
is positive definite for every t ;> 0. 

Let J(t) be the unique solution of a network N corresponding to vectors E(t), J0, q0; 
the solution J(t) will be called stable (in the Liapunov sense) with respect to initial 
condition J0, if to every e > 0 there is a 5 > 0 such that for every solution j(t) of N 
corresponding to vectors E(t), J0, q0 with ||J0 — J0|| < S we have ||J(t) — J(t)|| < s 
for every t g; 0, 

Now, the following important assertion can be proved: 

Theorem 2.3. Let N = (G, L(t), R(t), S(t)) be a passive network, X a fixed matrix 
having the usual meaning, and let the constant vector J0 fulfill asJ0 = 0; if any one 
of conditions C{, i = 1, 2, 3, is fulfilled (with the chosen matrix X) and J(t)eS£2 

is a solution of N corresponding to E(t) = 0, J0, q0 = 0, then J(t) is determined 
uniquely in S£2 and the following estimates are true; 

1) If C! is satisfied, then 

(2.10) p(t)\\ ^ \\X\\ (a^J, L(0) J0f<
2 , t^ 0 . 

2) If C2 is satisfied, then 

(2.H) j " II J(r)||2 dr ^ ||X||2 a^J0 L(0) J0 , t ^ 0 . 
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3) If both C1 and C2 are satisfied, then 

(2.12) P || J ( T ) | 2 dT g | | Z | | 2 a^T0 L(0) J 0 ( l - exp ( - ^ t)\ .. 

4) If C3 is satisfied, then 

t > 0 . 

(2.13) ҐJ(1 
J o 

) d т ѓЏKa^ĄЩJoУ'2, í > 0 . 

In (2A0) to (2.13) the vector norm is the same as in the conditions Ct; the matrix 
norm ||X|| is associated with the vector norm used. 

(For the proof see Theorem 3.3 in [3].) 
From the theorem stated previously we have the following statement: 

Corollary. If N is a passive network fulfilling condition C l 5 then each of its 
solutions is stable with respect to the initial condition J0. 

Indeed, if J(t) is a solution of N corresponding to E(t), J0, q0, and J(t) a solution 
corresponding to E(t), J0, q0, then due to the linearity of equations (1.1), (V2), 
j(t) — J(t) is a solution of N corresponding to 0, J0 — J0, 0. Thus, by Theorem 2.3 
we have 

P(t) - j(t)i ^ ||z|| («r-(j0 - j0y L(O)(J0 - jo))1'2 ^ 

**it2\x\\m\U2Vo-Jo\. 
whence the proof follows. 

The estimates (2.10) to (2.13) deal only with those network solutions which cor
respond to vectors E(t) = 0, J0, q0 = 0. However, simple estimates for solutions 
corresponding to E(t) and zero initial conditions may also be given; starting from the 
equality (2.7) or making use of Theorem 3.4 in [3], we may easily prove the following 
assertion: 

Theorem 2.4. Let N be a passive network fulfilling both conditions Cx and C2 

with a fixed matrix X, and let E(t) e j£?2. Then N possesses a unique solution J(t) 

corresponding to E(t) and zero initial conditions, J(t) e 3?2 and we have 

(2.14) jj|j(T)||2 dT S 4||X||2 aj2 (l - exp ( - ^ t\J j V £(T)||2 dT 

for every t ;> 0. 

Moreover, if N is a passive RC-network fulfilling condition C2 and E(t)eS£2, 

then N possesses a unique solution J(t) corresponding to E(t) and zero initial 

condition q0i J(t)z££2 and we have 

(2-15) 

for every t = 0. 
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The estimates given in Theorem 2.4 may be used not only for a qualitative analysis 

of passive network behavior but also for the establishment of error bounds of a given 

approximative solution. Indeed, if an approximative solution J(t) of the network N 

is known, we can find a vector E(t) for which J(t) is the exact solution. Then, of course, 

J(t) — J(t) is a solution corresponding to F(t) — E(t) and ||J(t) — J(t)|| may be 

estimated either by (2.14) or (2.15). 

On the other hand, Theorem 2.4 may also be used for estimating network solutions 

which correspond to vectors F(t) = 0, J0 = 0, q0 + 0, since by (VI), (V2) this 

case is equivalent to E(t) = — S(t) q0, J0 = q0 = 0. 

The application of previous inequalities for estimating a solution corresponding 

to all three vectors E(t), J0, q0 is straightforward. 

From estimates (2.12) and (2.14) we also have the following physically important 

consequence: 

If the passive network N fulfills the assumptions of Theorem 2.4 and E(t) is 

periodic, then resonance cannot occur in N. 

Indeed, if E(t) is periodic, then j 0 ||XX E(T)\\2 dx ^ at; consequently, if J(t) is the 

solution of N corresponding to E(t), J0, q0, then due to linearity of (V3) we have 

by(2.12)and(2.14),ftflj(T)||2 

dT g at + P with suitably 

chosen constants a, /?. On the 

other hand, suppose that re

sonance occurs in N, i.e. 

J(t) = t fi(t) + v(t), where 

pi(t), v(t) are periodic and fi(t) 

is not zero almost everywhere. 

Then obviously f0 | |J(r) | | 2 dT 

increases with t as rapidly as 

at3 + b, which is a contra

diction. 

Concluding this paper let 

us present an example il

lustrating the application of 

Theorem 2.4. 

Lг(t) 

R3(t) 

Fig. 3. 

E x a m p l e 2. Consider the network without mutual couplings indicated in Fig. 3 

which is initially in an equilibrium state (i.e. J0 = q0 — 0) and is excited by an 

E M F e(t) inserted into the branch ht. For this network let 

(2.16) Lx = 3 + exp (-•£*) ; L2 = 2 - exp ( - t ) ; 

R± = | ( 1 + t) ; R2 = 2 ; 

Sí = 2 ; 

L3 = 3 + cos ř ; 

R2 = 2 ; R3 = 5 - e x p ( - i ř ) ; 

S 2 = 3 ( 1 + e x p ( - ( ) ) ; S 3 = l . 
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Our object is to estimate the current regime in the network (provided it exists and is 
determined uniquely). 

First let us show that the network in question is passive. Choosing loops 
hi + h2 + h3, — h2 + h4 + h5, h3 + h5 + h6 (which constitute a complete system 
of linearly independent loops) and using the matrix notation introduced above, we 
can put 

(2.17) 

1, 0, 0 
1, - i , o 
1, 0, 1 
0, 1, o 
0, 1,1 
0, 0, 1 

Furthermore, since the matrix L(t) (with L u = Ll5 L44 = L2, L55 = L3, Lik = 0 
for i, k =(= 1, 4, 5 or i + k) is diagonal with non-negative elements for t ^ 0, 
X% L(t) X = L(t) is positive semidefinite for t ^ 0. By the same argument, X' S(t) X 
is positive semidefinite, and since Sl9 S2, S3 are non-increasing in <0, co), — Xs S'(t) X 
is also positive semidefinite. 

Next, consider the matrix 

(2.18) K(t) = X\L(t) + 2R(t)) X = 
Kn, 0 , 0 
0 , K22, K23 

0 , K23, K33 

where Ku = L'x + 2KX, K22 = L2 + L3 + 2K2, K33 = L3 + 2K3, K23 = L3. From 
(2.16) we have Ku = |(1 + t) - i e x p ( - ^ t ) = 1,K22 = 4 + exp(-*) - sin t = 3, 
K33 = 10 — 2 exp ( — it) — sin t ^ 7 for every t ^ 0, and K23 = — sin t. Thus 
K22K33 — K23 ^ 21 — sin2 t ^ 20, so that the matrix K(t) is in point of fact 
positive definite for t j> 0. Consequently, the considered network is passive by defini
tion. 

Now, consider the quadratic form C L(t) £; we easily get 

(2.19) VU = L^ 2 + (L2 + L3) £ + L3£
2 + 2L3^3 

Using the obvious formula 

(2.20) Ax2 + IBxy + Cy2 ̂  | ^ ± _ _ _ A_ _1! + ^ Y / 2 j ^2 + ^ ? 

we have from (2.19), 

(2.21) VU ^ Ltf + i{L2 + 2L3 - (L2 + 4L2)1'2} (£2 + £2) = 

= min [L i ; i{L2 + 2L3 - (L2 + 4L2)1'2}] . ||£||2 
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with the vector norm ||£||2 = £2 + £2 + £2. BUt s i n c e ^ ._ p o s i t i y e fo_ ^ Q> w_ 
may write, by (2A6), 

i {L, + 2L, - (Z_ + 44)'"} _ 11_ , + 2Lj _ 2L> /. + J|\} _ 

for every t __ 0. Since Lt __ 3, (2.21) yields 

(2-22) Vty)Z>Mq*; 
hence, the network fulfills condition Cx with ax _ JL 

Analogously we obtain 

(2.23) {'_£(.) . = K-.tf + K22£2 + K . . ^ + 2K23^3 _? 
__ min [K n ; \{K22 + K33 - ((K22 - £33)2 + ^ y / - } ] . | - |p _ 

Since K33 - i_22 = 6 - 2exp(-_-f) - exp(-.() = 3 f o r e v e r y t ^ 0 , we have 

i{K22 + K33 - ((K22 - K33f + 4K2
3)

1/2} __ 

i k 2 2 + K33 - (K33 - K22) (1 + !__!_—\ 
2 1 V 2(K33-K22f) 

~2 

Љl > , _ ì _ 8 
, - к , . "~ 3 ~ 3 ' ^22 

As K1X ^ 1 for every t = 0, (2.23) yields 

(2.24) vk(t)z* \\q\ 
Thus, the network fulfills condition C2 with a2 = 1. 

Finally, the matrix norm defined by ||M|| = (£M2
fc)1/2 i s associated with the 

i,k 

vector norm ||£|| used above; thus with this norm we have, from (2.17), \\x\\ = 3. 
On the other hand, (Xy E(t))y = [e(t)9 0, 0] so that j| JT E(t)\\ = \e(t)\. 

Substituting these results into inequality (2.9) of Theorem 2.4, we obtain the requir
ed estimate 

| V(T)| |2 dr _ 36(1 - exp(-^t))2 f.2(T) dT 
o Jo 

6 

with ||J(0||2 = £ j2(0> Ji(f) b e i nS t n e current in branch ht. 
i = l 
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Výtah 

O NĚKTERÝCH ZÁKLADNÍCH VLASTNOSTECH ELEKTRICKÝCH 
OBVODŮ S ČASOVĚ PROMĚNNÝMI PRVKY 

VÁCLAV DOLEŽAL 

V práci jsou vyšetřovány obecné lineární elektrické sítě s časově proměnnými prvky. 
V prvé části po zavedení pojmu sítě a jejího řešení jsou uvedeny některé podmínky 
existence a jednoznačnosti řešení, vycházející ze struktury a vlastností prvků dané 
sítě. 

Ve druhé části je věnována pozornost jistému speciálnímu typu sítí — sítím pasiv
ním. Je předně ukázáno, že pasivní síť s proměnnými prvky je schopna pouze konzu
movat energii ze zdrojů; dále jsou uvedeny věty o jednoznačnosti a stabilitě řešení, 
a posléze některé odhady pro normu řešení. 

Použití vyložených výsledků je ilustrováno na několika příkladech. 

Резюме 

О НЕКОТОРЫХ ОСНОВНЫХ СВОЙСТВАХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 
С ПЕРЕМЕННЫМИ ВО ВРЕМЕНИ ЭЛЕМЕНТАМИ 

ВАЦЛАВ ДОЛЕЖАЛ ( У а с ^ Оо1е2а1) 

В работе исследуются общие линейные электрические сети с переменными во 
времени элементами. В первой части, введя понятие сети и ее решения, форму
лирует автор некоторые условия существования и однозначности решения, 
исходящие из структуры и свойств элементов данной сети. 

Во второй части работы уделяется внимание другому специальному типу 
сетей — сетям пассивным. Прежде всего показано, что пассивная сеть с перемен
ными элементами способна только потреблять энергию от источников; далее 
приведены теоремы об однозначности и устойчивости решения, а затем некото
рые оценки нормы решения. 

Применение изложенных результатов иллюстрируется на нескольких при
мерах. 

ААгет аШога: 1п§. Уас1аь Во1ега1 С. 8 с , Ма1ета1юку йзгау С8АV, 2гша 25, Ргапа 1. 
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