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SVAZEK 10 (1965) APLIKACE MATEMATIKY ¢IsLo 1

SOME FUNDAMENTAL PROPERTIES OF ELECTRICAL NETWORKS
WITH TIME-VARYING ELEMENTS

VAcLAV DOLEZAL

(Received March 23, 1964.)

In this paper several conditions for the existence and uniqueness of a solu-
tion of electrical networks with time-varying elements are given; furthermore,
passive networks are considered from the viewpoint of the uniqueness and
stability of solutions, and certain estimates for the solution are derived.

0. INTRODUCTION

The question whether a network possesses a unique solution is far more important
in the case of a network with time-varying elements than in the classical case of net-
works with constant elements. As a matter of fact, “almost every” network with
constant elements is incapable of oscillations provided no exciting forces are present
and the initial state is zero; however, the same is not true if the network elements
vary with time. Indeed, consider a simple circuit containing an inductance L(t) and
a resistance R(t). If there is no electromotive force in the circuit and the initial value
of current is zero, then the current x(t) flowing through the circuit fulfills the following
equation

(0-1) (L(t) x(£)) + R(t) x(t) =0, x(0)=0.

If we specify L(t) = t and R(f) = t — 4, then it can be easily verified that (0-1)
has, in addition to the trivial solution x(f) = 0, also the solution x(f) = 13 exp (—1),
t = 0. In other words, the circuit in question need not remain in the equilibrium
state despite the absence of any exciting force. Observe also that if L(f) and R(t) are
constant, the phenomenon just described cannot occur unless LR = 0. For this
reason the first paragraphs of the paper deal with conditions under which the net-
work possesses a unique solution.

It is also needless to emphasize that the question of stability of a network solution
is of major importance in applications. As it will be shown in Section 2, for a certain
type of network with time-varying elements, which appear as an analogue of classical
passive networks, quite simple criteria of stability can be given. This type of networks
also permits us to establish some estimates of solutions which are useful in the
qualitative analysis of the network behaviour.
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1. THE CONCEPT OF A NETWORK AND ITS SOLUTION

It will be assumed that the reader is acquainted with some of the basic concepts
introduced in [1] or [2], particularly with those related to oriented graphs. For this
reason and due to the fact that the description of the structure of a network with
time-varying elements is the same as that of a network with constant elements, the
meaning of concepts concerning graphs will be only indicated briefly.

Thus, let G be an oriented graph with branches hy, h,, ..., h, and nodes uy, u,, ...

., U, which does not contain a branch beginning and ending in the same node, nor
an isolated node, and which contains at least one loop. (See [1], [2].) Furthermore,
let a be the branch-node incidence matrix of G; i.e., for the element a;, of a standing
in the i-th row and k-th column, we have

ay = 1ifu,is the terminal node of branch h;,
a;, = —1if u, is the initial node of branch h;,
a; = 0if u, is not incident with h;.

As in [1] and [2], every product ¢'h, where ¢ is a constant r-dimensional vector
and h' = [hy, h, ..., h,], (h; being branches of G) will be called an 1 — complex.
If, in particular, an 1-complex c'h fulfills the equation a‘c = 0, it will be called a cycle.
Note that the 1-complex representing a loop of G is a cycle.

Moreover, if X is an r x n matrix whose columns constitute a complete set of
linearly independent solutions of the equation a'x = 0, then the elements of the
vector X'h constitute a complete set of linearly independent cycles of the graph G.

Note also that the matrix X may advantageously be obtained from any complete
set of linearly independent loops of the graph G, i.e. if x}h is an 1-complex representing
a loop Z; from a complete system %, &,, ..., &, of linearly independent, then we
can put X = [x;/x,/ ... x,].

Now, we can state the definition of a network with time-varying elements. Let G
be an oriented graph and let L(t), R(t), S(¢) be r x r matrices defined on <0, o) such
that the element L;(f), R;(t), S;(f) of the matrix L(r), R(r), S(t), respectively,
is assigned to the ordered pair of branches (hj, hk), j. k=1,2,.., r;then the ordered
quadruple N = (G, L(t), R(t), S(t)) will be called a network.

Furthermore, let E(f) be an r-dimensinal locally integrable vector function defined
on <0, ), (i.e., [§ |E{t)] df < oo for every finite T = 0 and every component E ()
of E(t)), and let J,, g, be constant r-dimensional vectors; then a locally integrable

r-dimensional vector function J(t) will be called a solution of N corresponding to
E(t) and initial conditions Jo, gq, if

(Ll)c‘{LO)Jﬁ)—-LG»Jb-FJ:R@)J@)dr-kJ:S@)(J;KG)do-%qo>dr}==

=aja@m

0
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for every cycle c'h of the graph G and almost every t = 0, and if
(1.2) a'J(t)=0

for almost every t = 0.

Before stating conditions for the existence and uniqueness of a solution, let us
explain briefly the physical meaning of the definitions just stated. As in the classical
case of a network with constant elements, the graph G describes the structure of the
network, i.e. the interconnection of individual elements. The matrices L(t), R(t), S(t)
represent the mutual inductances, resistances and susceptances (reciprocals of capaci-
ties) between individual branches, respectively, and the vectors E(t), J(t) the values
of branch electromotive forces and branch currents, respectively. Finally, J, repre-
sents the initial values of branch currents and g, the initial values of condenser
charges.

Then equation (1.1) is the formulation of the first Kirchhoff law (or, more
precisely, an equation obtained from this by formal integration between limits 0, ¢),
and equation (1.2) expresses the second Kirchhoff law. (See also [1], [2].)

Next, let X be the matrix introduced above; then it can be shown easily that
every solution x of the equation a'x = 0 can be written as x = Xy, where y is an
n-dimensional vector. Thus, using this fact, and putting J(t) = X w(¢) in view of
(1.2), and ¢ = Xp by definition of a cycle, it follows that the system (1.1), (1.2) is
equivalent to the following, more convenient system of equations

(13) X L(t) X w(t) + J "X R(e) X we) dr + f "X s(0) X f (o) do dt =

0 0 0

T t
- X‘J E(r) dr — X° J S(7) 40 dt + X*L(0) T ,

(1.4) J(t) = X w(t).

On replacing the repeated integration in (1,3) by a single one, ( 1.3) can be written as

(1.5) L() w(t) + j " 0(t, 7) w(e) dr = £(1),
where

L) = X'L) X, 0(7) = X'RE®) X + J X' S(2) X dz,

1) = x° j (B) - S(2) q0) de + X L(0) T, -

However, (1.5) is the type of a vector integral equation which has been considered
in [3]; if det L(t) # O for every t = 0, i.e. if L7!(f) exists, then (1.5) is equivalent
to awector equation of Volterra type, and a unique solution always exists. Thus, we
have,
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Theorem 1.1. Let N = (G, L(t), R(t), S(t)) be a network, a the branch-node
incidence matrix of G and X a constant matrix whose columns constitute a complete
set of linearly independent solutions of the equation a'x = 0. If the matrices L(t),
R(t), S(t) are continuous in 0, o) and if

(1.6) det X' L(f) X # 0

for every t = 0, then for any vectors E(t), Jo, 4o a unique solution J(t) of N exists
and is continuous in {0, 00). Moreover, J(t) fulfills the equality J(0) = Jo provided
a‘J, = 0.

Condition (1.6) is satisfied if for every non-zero cycle c‘h and every t Z 0 we have
(1.7) ¢ L(t)e+0.

Observe the physical meaning of condition (1.7); it merely expresses the fact that
the magnetic energy stored in coils due to any non-zero direct current regime given
by the structure of the network is non-zero at any instant ¢t = 0. Indeed, the vector
c in the cycle expression c¢'h fulfills the equality a'c = 0; thus, it may be interpreted
as a vector of direct currents which are determined by the structure of N only.

However, condition (1.7) (and also (1.6)) appears as a rather strong requirement
on the network. Actually, consider the following, by no means exceptional case: 1)
the matrix L(t) is diagonal with non-negative elements, i.e. there are no mutual induct-
ances in the network, 2) the graph of the network contains a loop % such that, for
a certain t, = 0, the total sum of instantaneous inductances contained in & is zero.
If then d'h is the 1-complex representation of %, we obviously have d' L(to) d =
= 0 and Theorem 1.1 does not yield any result about the existence of a solution.

On the other hand, condition (1.6) or (1.7) guarantees the existence and uniqueness
of the network solution independently of matrices R(t), S(?), i.e., a unique solution
exists for arbitrary matrices R(t), S(t).

Let us now present another condition for the existence and uniqueness which im-
poses weaker requirements on network inductances than those given in Theorem 1.1.

Theorem 1.2. Let N = (G, L(t), R(f), S(t)) be a network, let matrices L(t), R(t),
S(t) be continuous in €0, o) and L(t), R(t) symmetric positive semidefinite for every
t = 0; moreover, let an integer k exist 1 < k < n, such that for every t = 0 there
are exactly k linearly independent cycles c\h, cyh, ..., c;h fulfilling the equality

(1.8) AL e =0, i=12..k.
If
(1.9) ' (L(1) + R(t)c >0

for any non-zero cycle c'h and every t 2 0, then for any vectors E(t), Jo, q, with Jo
satisfying the equality a‘J, = 0, the network N possesses a unique solution,

34



Note 1. In the requirement (1.8) there is no need for the set of cycles cih, c3h, ...
..., cxh to be fixed for every t = 0; thus the sets c\h, ch, ..., ¢, h for t; = 0 and
&yh, &h, ..., G hfor 0 £ t, + t, may be distinct.

Note 2. It can be shown that condition (1.8) may be replaced by the equivalent
condition rank X' L(t) X = n — k for every t = 0. Similarly, condition (1.9) is
equivalent to the condition
(1.10) det X'(L(t) + R(t)) X + 0
for every t = 0.

Let us indicate briefly the proof of Theorem 1.2. We shall make use of the following
assertion (cf. [3], Theorem 1.1):

Let the following conditions be satisfied:

1) The n x n matrix A(t) has a continuous derivative in <0, 00) and there is
a fixed integer h < n such that rank A(t) = h in €0, o).

2) The n x n matrices W(t, t), 0OW(t, 1)/0t are continuous in the region 0 < t <
St< .

3) Both matrices A(t) and W*(t) = W(t, t) are symmetric and A(t) + W*(t) is
positive definite for every t = 0.

4) The n-dimensional vector function f(t) is absolutely continuous in <0, o).

5) There is a constant n-dimensional vector & such that

A(0) & = f(0).

Then there exists a unique integrable vector x(t) such that the equation
' t
A(t) x(1) + j W(t, 7) x(2) de = 1(1)
0

is satisfied almost everywhere in {0, o).

Since the network solution is defined by (1.4) and (1.3) or (1.5), we may put L(t) =
= A(1), O(t,7) = W(t, 7). Then it is obvious that in view of the assumptions of
Theorem 1.2, the requirements 2) and .4) are satisfied. Moreover, since J, fulfills the
equality a'J, =0, we have J, = Xy, and consequently, f(0) = X' L(0) Xy =
= L(0) y. Hence, 5) is satisfied with & = y.

Next, choosing a t = 0, let ¢}k, c3h, ..., cih be a set of exactly k linearly indepen-
dent cycles which fulfill the equality (1.8), i.e. if ¢' L(t) ¢ = 0 for a cycle c'h, then
¢ =Cqwith C = [c;icy]... ' ¢.], g a constant vector. Since L(t) is positive semi-
definite, (1.8) implies that L(t)c; = 0, (cf. [1], Lemma 5.3), and consequently,
X'L(t) Xy, = L(t) y; = 0 with ¢; = Xy, for i = 1,2, ..., k; furthermore, y;, i =
= 1,2, ..., k, are linearly independent. .

On the other hand, assuming that L(f) y = 0, we have y'X" L(t) Xy = 0, so that
Xy = Cq by assumption. However, C = XY with Y=y, 1y,1...1 5] ie,
X(y — Yq) = 0; hence, y = Yq. Consequently, rank I(t) = n — k and 1) is satis-
fied.
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Finally, if ¢'h is a non-zero cycle with ¢ = Xy, then y & 0 and by (1.9) we have
y'X\(L(t) + R(t)) Xy > 0, ie. L(t) + R(t) = L(t) + Q(t, 1) is positive definite.
Thus, 3) is also satisfied. Consequently there is a unique vector w(t) fulfilling (1.3),
and therefore a unique solution J(t) of N.

The physical meaning of the inequality (1.9) is straightforward; it expresses the
fact that the energy stored in both resistors and coils is positive for any non-zero
direct current regime given by the structure of the network only.

The assumptions of Theorem 1.2 may be simplified, if in addition both the matrices
L(t) and R(t) are diagonal, i.e. if there are no mutual inductances and resistances
in the network. Then cycles may be replaced by 1- complexes corresponding to loops
in conditions (1.8) and (1.9).

As a matter of fact, let d*(L(f) + R(t)) d > 0 for every ¢t = 0 and every 1-complex
d'h correspondmg to a loop. Referring to Theorem 1.2 in [1], for every cycle ¢'h =

= Z c;h; there are loops represented by dih = Ze,l » i=1,2,...,1 such that

1,2,...,1,

I

Y
¢ =Y o;d; (; numbers) and such that e;; + 0 implies ¢; + 0 for i
i=1

j=1,2,...,r. Thus, by hypothesis we have 2 T,e >0 for every j =1,2,...,1,

where T; are the diagonal elements of the matrlx L(t) + R(t) for a chosen t > 0.
Consequently, Tie?; > 0 for at least one pair (j*, i*). Hence Ti.ch > 0, and (1.9)
is satisfied.

In a similar manner the modification of condition (1.8) may be proved. Thus, we
have the following useful rule:

L Let N = (G, L(t), R(t), S(t)) be a network with L(t), R(t), S(t) continuous in
{0, ), and let L(t), R(t) be diagonal matrices with non-negative elements for
every t = 0; moreover, let an integer k, 1 < k < n, exist such that for every t = 0,
there are exactly k linearly independent loops of G which do not contain any
positive inductance. If for every t = 0 each loop of G contains either a (positive)
inductance or a (positive) resistance, then N possesses a unique solution for any
vectors E(t), Jo, 4o with a*J, = 0.

A further simplification of conditions for the existence may be obtained, if ‘‘the
available network elements” are positive on the entire half-axis (0, oo), or, more
precisely:

The network N = (G, L(t), R(t), S(t)) will be called L-, (R-, S-) -definite, if L() =
= diag (Ly), (R(t) = diag(R;,), S(t) = diag(S;)) and either L; = Oor L; >0
fort=0,i=1,2..,r,(R;=00rR;>0,S;=0o0rS; >0).

Referring to the previous results it is obvious that for an L-definite network N,
condition (1.8) is satisfied automatically; moreover, if N is L, R-definite (i.e. L-and
R-definite), then (1.9) is satisfied for every ¢ = 0 and every non-zero cycle ¢'h, provided
it is fulfilled at some t, = 0. Consequently, we have the following rule:
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IL. If N is an L, R-definite network with L(t), R(t), S(t) continuous in (0, o),
and if every loop contains either an inductance or a resistance at a t, = 0, then for
any vectors E(t), Jo, @o with a‘J, = O there is a unique solution of N.

Note that condition (1.8) (or the
requirement on rank X' L(t)X) is
essential for the uniqueness as well as
the existence of a solution. In order
to see this consider the network N
plotted in Fig. 1, where a coupling
with mutual inductance L,, =1
between coils Ly =1 and L, is
present and where L, = 7(t) posses-
ses a continuous derivative in
{0, o) and fulfills the conditions
n(t) > 1 for te<0, 1), n(t) = 1 for
t = 1. Assuming that the network Fig. 1.
is in an equilibrium state at t = 0,
ie. Jio = Jpo = 0, and that ey, e, are constant functions, from Kirchhoff laws we
obtain the following equations

|
o

t
(1.11) Ji+ J, 4 _[(Jl + J,)dr =
V]
t
J1+11(t).12+f(.]1 + 1)) de = ey
0

Observe that here we have X' L(f) X = l:l’ 1 :I ,
1, 7(2)

i.e. rank X' L(f) X is not constant for all ¢ > 0.
From (1.11) we obtain
(1.12) Jy 4+ Jy = e exp(—1),
() —1)J, =€ — e .

If in particular e, = e,, then (1.12) yields J, = e; exp (—1?), J, = 00n <0, 1), and

Jy =eyexp(—1) — ¢(t), J, = ¢(t) on <1, ), where ¢(t) is an arbitrary function.

Consequently the network in question possesses infinitely many solutions.
On the other hand, if e, + e, then N obviously does not possess any solution.

Let us now consider RC-networks with time-varying elements which merit particular
attention due to their importance in practice. In this case more involved results can
be stated than for general RLC-networks.
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As in the classical case, the network N will be called an RC-network, if L(f) = 0.
Under this assumption, equation (1.3) defining the solution of the network involves
only terms which are absolutely continuous in <0, ), i.e. (1.3) is fulfilled everywhere
in €0, c0). Thus taking the first derivative of both sides of (1.3), we obtain

(1.13) Rt w(i) + 8(0) J w(z) dr = X(E() — S(1) q0)

with R(f) = X' R(t) X, §(f) = X" S(f) X. Moreover, since L(0) = 0, we can omit
to prescribe the initial condition J.

Carrying out the same considerations as before with (1.13), we can state the fol-
lowing assertions:

Theorem 1.3. Let N = (G, 0, R(t), S(t)) be an RC-network with R(t), S(t) conti-
nuous in <0, oo), and let X have the usual meaning. If

(1.14) det X' R(f) X + 0

for every t = 0, then N possesses a unique solution J(t) for every vectors E(t), q,.
Moreover, J(t) is continuous provided E(t) is continuous.

The condition (1.14) is satisfied if for every non-zero cycle ¢‘h and every t = 0
we have

(1.15) ¢ R(t)e+0.

Theorem 1.4. Let N = (G, 0, R(t), S(t)) be an RC-network with R(t), S(t) sym-
metric positive semidefinite for every t = 0 and R'(t), S'(t) continuous in <0, o).
Let an integer k, 1 < k < n exist such that for every t = 0 there are exactly k
linearly independent cycles c\h, cyh, ..., c,h which fulfill

(1.16) GiR()e; =0, i=12..k.

Moreover, let E(t) be an absolutely continuous vector in {0, c0) and q, a constant
vector such that there is a constant vector & with

(1.17) ¢ (R(0) & + S(0) go) = ' E(0), a'¢ =0
for every cycle c*h. If
(1.18) c'(R(t) + S(t))c >0

for every non-zero cycle c'h and every t = 0, then N possesses a unique solution
corresponding to E(t), q,.

The physical meaning of condition (1.18) is obvious; on the other hand, condition
(1.17) expresses a certain “compatibility” of initial values. Indeed, interpreting &
as a vector of direct branch currents, then obviously (1.17) expresses the fact that,
on neglecting capacities in N and considering it as a network containing only constant
resistances represented by the matrix R(O), the vector € is a solution (in direct cur-
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rents) corresponding to the vector of constant branch voltages E(0) — S(0) go.
In other words, the initial state of the network N, considered as a direct current
problem, exists in reality.

Note 3. It can be shown easily that condition (1.16) is equivalent to
(1.19) rank X'R(t) X =n — k
for every t 2 0, and (1.18) to
(1.20) det X'(R(t) + S(1)) X + 0

for every t = 0, where the matrix X has the usual meaning.

Furthermore, using the fact that every solution ¢ of the equation a'¢ = 0 can be
written as & = X&, we obtain easily that (1.17) is equivalent to the following condi-
tion: There is an n-dimensional vector & which fulfills the equality

(1.21) X" R(0) X¢ = X\(E(0) — S(0) qo) -

Analogously as in the case of a general RLC-network, the assumptions of Theorem
1.4 can be simplified if the network does not contain mutual resistances nor mutual
capacities. Then we have the following rules:

I. Let N = (G, 0, R(?), S(t)) be an RC-network such that R(t), S(t) are diagonal
with non-negative elements for t 2 0 and R'(?), S'(t) are continuous in {0, oo).
Let an integer k, 1 £ k < n exist such that for every t = 0 there exist exactly k
linearly independent loops of G which do not contain any resistance; moreover
let each loop of G contain either a resistance or a capacity for every t = 0. If the
vector E(t) is absolutely continuous and hy [C1

]

if E(0) and q, fulfill condition (1.17)
Sor every loop (c*h being the 1-complex
representation of the loop), then a 4
unique solution of N-exists.

II. Let N be an R, S-definite RC-
network with R'(t), S'(t) continuous in
0, ), and such that each loop con- R
tains either a resistance or a capacity
at ty = 0. If the vector E(t) is absolu-
tely continuous in {0, ) and E(0), g
Sulfill (1.17), then N possesses a unique Fig. 2.
solution corresponding to E(t), q,.

In order to illustrate the application of the preceding rules let us present a simple
example.

Example 1. Consider the RC-network plotted in Fig. 2, where
C,=1, Cy=exp(—1t), C3=22—exp(-3t),
Ri=t+1, R, =2, e=1, e;=2cost, g, =1, q,=qg3=2.

39



Obviously, the network in question is R, S-definite, since all the elements involved
are positive and no mutual couplings are present. Referring to Rule II, each of the
loops ky + h,, —h, + hy + hy, —hy + hs, hy + hy + hy, —hy + hy + hs,
hy + h; + hs (which constitute the system of all loops of the network graph) con-
tains either a resistance or a capacity at t, = 0. For the initial state we have S,(0) =
= C71(0) = 1, 8,(0) = C;7(0) = 1, 55(0) = C3(0) = 1/2, R,(0) = 1, Ry(0) =2,
€,(0) = 1, €,(0) = 2; it can be verified easily that the vector ¢ with components
=& =—1, & =0, & = —3/2, & = 3/2 fulfills condition (1.17). Thus, the
considered network has a unique solution.

Concluding this section, let us make the following remark. In Theorems 1.2 and 1.4
it was assumed that the matrices L(t), R(t) and R(t), S(t), respectively, are symmetric
and positive semidefinite for ¢ = 0. This assumption, of course, limits the applicability
of these theorems as far as networks with negative elements are considered. However,
it may be omitted, if the conditions (1.8), (1.9), (1.16), (1.18) are replaced by others,
which, unfortunately, are more complicated. For example, Theorem 1.2 remains
true if (1.8) is replaced by rank X" L(t) X = n — k for every t = 0, and (1.9) by the
following condition: If U'(t), ¥(t) are n x (n — k) matrices defined on <0, c0) with
rank U(f) = rank V(t) = n — k for every t=0 such that U(t)X'L(f)X =0
and X' L(r) X V(t) = 0, then det U(t) X" R(t) X V() # 0 in <0, o).

A more detailed treatment of these problems may be found in [3]. Note also that
these conditions guarantee existence and uniqueness, if the solution concept is
extended to distributions.

2. PASSIVE NETWORKS

Next, let us turn our attention to a particular kind of networks with time-varying
elements whose behaviour ressembles the behaviour of classical passive networks
with constant elements. Let us begin with a definition.

Let N = (G, L(t), R(t), S(t)) be a network and let the r x n matrix X have the
usual meaning; the network N will be called passive, if

1) the matrices X* L'() X, X' R(t) X, X" S'(f) X are continuous in <0, o),

2) there is an integer h, 1 < h < n, such that rank X" L(t) X = h for every t = 0,

3) for every t = 0 each of the matrices X" L(t) X, X'(L(f) + 2R(?)) X, X" S(t) X,
— X" S'(t) X is symmetric and positive semidefinite.

Note that if the network N does not contain mutual couplings, i.e. if L(z), R(t),S(¢)
are diagonal, then conditions 1), 2), 3) may be replaced by the following simplified
onese, which, of course, are stronger but often more convenient from the practical
point of view:

1)* The elements L (1), R;(t), S;{t), i = 1,2, ..., r are continuous, the elements
Li(1), Lift) + 2R,(t), i = 1, 2,...,r, non-negative and the elements S;(t), i =
= 1, 2, ..., r non-negative, non-increasing in <0, oo).
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2)* There is an integer h, 1 £ h < n, such that for each t = 0 there are exactly
n — h linearly independent loops of G each of which contains no inductance.

In order to state the fundamental properties of passive networks let us introduce
the following notation:

Let £ be the set of all r-dimensional vector functions x(¢) which satisfy
t
@.1) f [ dr < oo
0

for any finite ¢ > 0, where ||x(t)| denotes the norm of the vector x(t).

Theorem 2.1. Let N be a passive network and let J(t) e £? be its solution corres-
ponding to E(t) € £ and zero initial conditions; then

22) f "E'®) J(x) dr 2 0
for every t = 0. ’ :

The proof of this important statement follows from Note 4 in [3] Nevertheless,
let us indicate heuristically the mathematical background. Let J(1) be a solution of N
corresponding to E(t), Jo = qo = 0, i.e. let (1.3), (1.4) be satisfied. Denoting ¢(t) =
= [, w(t) dr, we have from (1.3),

(2.3) L) q + j ;ﬁ(f) ¢(c)de + j ') q(r) de = x° J E() de

0
with L(t) = X'L(t) X, R(f) = X' R(¢) X, 5(t) = X" S(t) X. Assuming for simplicity
that a continuous ¢"(f) exists, we obtain from (2.3)
(Lg') + Rg' + 8¢ = X'E,
and consequently,
t - t t - t
(2.4) J q"'(Lq’) dr + f q"Rq’ dt + j q"'Sqdt = f q'X'Edt
V] 0 (V] 0
for every t = 0. Integrating formally by parts,
t t
Jl — [ q\l(qu)l d‘f — [q\/Lq/]:) _J q\//Lq/ d‘L',
Jo 0
and also

t t
J, = f q"Lq’ dt + f q'Lqg" dz.

[ 0

Summing up these equalities it follows, by symmetry of L(f),
1 Ve wali 1 * NIFr
Jy=-[q"Lq'lo+ = | ¢"L'q' dz.
2 2],
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On the other hand, (2.3) yields L(0) ¢'(0) = 0, so that

(2.5) J, = %q”(t) L) ¢'(1) + % J ;q\'(f) L(x) ¢'(c) de.
Similarly,

t t
Jy = J q"'Sq dv = [q'8q]; ’J q'(Sq) dr =
0 0
= ¢'(1) §(1) a(1) - J q'S'q dr *J q'Sq’ dv;
0 0
hence by symmetry of 5(t),

1 1 & 1 t \ S
(2.6) 12 =2 ()50 () - J ¢'()) §'(c) () dt .
0
Introducing (2.5), (2.6) into (2.4) and rearranging, we have

27)  ¢"() L1 4 (1) + th"(r) (L'(z) + 2R(2)) q'(z) dz + q'(1) 5(z) a(t) —
— jt q'(r) §'(r) q(z) dr = 2 J‘tq"(z) X E(t)dr.

However, since N is passive, the left hand side of (2.7) is non-negative for any
t 2 0 by assumption 3); thus,

t
j q"'(1) X'E(r)dt 2 0.
0

The inequality (2.2) follows immediately using ¢"'(c) X* = (Xq'(7))' = (X w(z))' =
= J'(1).

Applying the methods developed in [3], we may omit the assumption on the exist-
ence of q”(t) made above.

The integral in (2.2) has the physical meaning of the total energy supplied into the
network by EMF-sources in the time interval <0, ). Thus, passivity of the network
expresses the fact that the variability of its elements is such that there is no flow of
energy from the network into the EMF-sources.

Furthermore, we have the following assertion:

Theorem 2.2. Let N = (G, L(t), R(t), S(1)) be a passive network and let either
there be satisfied

(2.8) det X'(L(t) + L(r) + 2R(1) + S(1)) X + 0
for every t = 0, or
(2.9) det X'(S(t) — S'(1)) X + 0
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for every t = 0.If N has a solution J(1) corresponding to E(t), Jo, qo and J(t) e £2,
then J(t) is the unique solution of N in £? corresponding to E(t), J,, q,.

(For proof see Theorem 3.2 in [3].)

Referring back to conditions 1)*, 2)* which guarantee the passivity of a network
without mutual couplings, (2.8) may be replaced by the following condition: Putting
K(t) = Li(t) + Li(t) + 2R,(t) + Si(t), i =1,2,..., r, then for every loop £
of G the sum of all K(t) such that the branch h; is contained in P, is positive for
every t = 0.

Let us now consider the stability of passive networks and derive some useful
estimates for their solutions. For this purpose introduce the following notation:

The passive network N = (G, L(t), R(t), S(¢)) will be said to fulfill one of the
following conditions C;, i = 1,2, 3, if there is a positive number a;, i = 1,2, 3,
such that for every t = 0 and every constant vector £ we have

Cy: EXL(1) XE z a2,
Cy: EX(L(1) + 2R(1) XE = ao[E]?,
Cy: £X° (1) X¢ z as|E?,

where ||¢|| denotes the norm of the vector &.

Observe that if a condition C, is satisfied, then the corresponding matrix X*(...) X
is positive definite for every ¢t > 0.

Let J(t) be the unique solution of a network N corresponding to vectors E(t), Jo, qo;
the solution J(t) will be called stable (in the Liapunov sense) with respect to initial
condition J,, if to every & > 0 there is a 6 > 0 such that for every solution J(r) of N
corresponding to vectors E(t), Jo, qo with |[Jo — Jo| < 6 we have | J(t) — J(1)]| < ¢
for every t = 0.

Now, the following important assertion can be proved:

Theorem 2.3. Let N = (G, L(t), R(t), S(t)) be a passive network, X a fixed matrix
having the usual meaning, and let the constant vector J, fulfill a*J, = 0; if any one
of conditions C;, i = 1,2,3, is fulfilled (with the chosen matrix X) and J(t) e £*
is a solution of N corresponding to E(t) = 0, Jo, o = 0, then J(t) is determined
uniquely in #? and the following estimates are true;

1) If C, is satisfied, then
@10 O] £ 1] (070 10) 55, 120,
2) If C, is satisfied, then

@.11) f )| dr < [X[? a5 LO) Jo, 12 0.

\
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3) If both C, and C, are satisfied, then

T
) [ s X1 5,10 3o (1 - e (= 24)), sz,
0 a
4) If C; is satisfied, then

f J(7) dr

0

(2.13) < | x]) (a5'J5 L(0) Jg)7*, 12 0.

In (2.10) to (2.13) the vector norm is the same as in the conditions C;; the matrix
norm || X | is associated with the vector norm used.

(For the proof see Theorem 3.3in [3].)

From the theorem stated previously we have the following statement:

Corollary. If N is a passive network fulfilling condition C,, then each of its
solutions is stable with respect to the initial condition J,.

Indeed, if J(¢) is a solution of N corresponding to E(t), J,, qo, and J(t) a solution
corresponding to E(), Jo, qo, then due to the linearity of equations (1.1), (1.2),
J(t) — J(¢) is a solution of N corresponding to 0, J, — Jo, 0. Thus, by Theorem 2.3
we have

17(t) = @) £ [X] (a1 To = Jo)' LO) (Jo = Jo))* <
< a2 x| JLO)J? o = Jo]

whence the proof follows.

The estimates (2.10) to (2.13) deal only with those network solutions which cor-
respond to vectors E(t) =0, Jy, 9o = 0. However, simple estimates for solutions
corresponding to E(f) and zero initial conditions may also be given; starting from the
equality (2.7) or making use of Theorem 3.4 in [3], we may easily prove the following
assertion:

Theorem 2.4. Let N be a passive network fulfilling both conditions C, and C,
with a fixed matrix X, and let E(t) € #*. Then N possesses a unique solution J(t)
corresponding to E(t) and zero initial conditions, J(t) € £* and we have

(2.14) f;];J(T)]]z de < 4| X|2 0y <1 —exp (— £ t>>2 f 1X* E(0)|? de

1 )
for every t = 0.

Moreover, if N is a passive RC-network fulfilling condition C, and E(t)e %2,
then N possesses a unique solution J(t) corresponding to E(t) and zero initial
condition q,, J(t) € #* and we have

(215) j ;IIJ(r)lI’ de < 4|X|? a5? j ;nr E(D)|? do
for every t = 0.
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The estimates given in Theorem 2.4 may be used not only for a qualitative analysis
of passive network behavior but also for the establishment of error bounds of a given
approximative solution. Indeed, if an approximative solution J(t) of the network N
is known, we can find a vector E(f) for which J(¢) is the exact solution. Then, of course,
J(t) — J(t) is a solution corresponding to E(f) — E() and ||J(t) — J(t)| may be
estimated either by (2.14) or (2.15).

On the other hand, Theorem 2.4 may also be used for estimating network solutions
which correspond to vectors E(r) =0, J, =0, g, * 0, since by (1.1), (1.2) this
case is equivalent to E(t) = —S(t) go, Jo = go = 0.

The application of previous inequalities for estimating a solution corresponding
to all three vectors E(t), Jo, q, is straightforward.

From estimates (2.12) and (2.14) we also have the following physically important
consequence:

If the passive network N fulfills the assumptions of Theorem 2.4 and E(t) is
periodic, then resonance cannot occur in N.

Indeed, if E(t) is periodic, then (g | X" E(t)|? dr < at; consequently, if J(z) is the
solution of N corresponding to E(t), Jo, g, then due to linearity of (1.3) we have
by (2.12) and (214), 5 |4(2)|2 b
dt < at + f with suitably
chosen constants a«, . On the
other hand, suppose that re-
sonance occurs in N, i.e.
J(t) =t u(t) + (), where (”
u(t), v(t) are periodic and pu(t)
is not zero almost everywhere. [ /(1)
Then obviously [§ || J(7)]? dr
increases with ¢ as rapidly as
at® + b, which is a contra-
diction.

Concluding this paper let e(t) ‘
us present an example il-
lustrating the application of Fig. 3.
Theorem 2.4.

R,)

Example 2. Consider the network without mutual couplings indicated in Fig. 3 F
which is initially in an equilibrium state (i.e. J, = g, = 0) and is excited by an
EMF e(t) inserted into the branch h,. For this network let

(2.16) Ly =3 +exp(—4t); L,=2—exp(—1); Ly =3+ cost;
Ry =3(1+1); R, =2; Ry =5 —exp(—it);
31 +exp(—t); S;=1.

Il

Sy =2; S,
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Our object is to estimate the current regime in the network (provided it exists and is
determined uniquely).

First let us show that the network in question is passive. Choosing loops
hy+ hy+ hy, —hy+ hy+ hs, hy+ hs + he (which constitute a complete system
of linearly independent loops) and using the matrix notation introduced above, we
can put

k] >

1 0
la _]a
1, O

(2.17) X=lo
0 1
0, O

3

] b}

—_—0 = O O

> >

Furthermore, since the matrix L(t) (with Ly, = L;, L4y = L,, Lss = L3, Ly, = 0
for i,k + 1,4,5 or i =+ k) is diagonal with non-negative elements for t = 0,
X' L(t) X = L(r) is positive semidefinite for ¢ = 0. By the same argument, X' S(1) X
is positive semidefinite, and since Sy, S5, S are non-increasing in <0, o), — X' S'(f) X
is also positive semidefinite.

Next, consider the matrix

K, 0,0
(2.18) K(t) = XL +2R{)X = 0 , Kyp Kp3 |,
0 s KZS, K33

where Ky; = L; + 2R, K,, = L, + L + 2R,, K33 = L + 2R3, K,5 = L;. From
(2.16)wehave Ky; = 3(1 +t) — texp(—3t) = 1,K,, =4 + exp(—t) —sint = 3,
K33 =10 — 2exp(—4t) —sint = 7 for every t =0, and K,; = — sin¢. Thus
K,,K33 — K33 = 21 —sin® t = 20, so that the matrix K(f) is in point of fact
positive definite for t = 0. Consequently, the considered network is passive by defini-
tion.

Now, consider the quadratic form &' L(f) &; we easily get

(2.19) ELE = L& + (Ly + L3) & + Ly&3 + 2L3EEs .

Using the obvious formula

A+C A - C)? 2
(2.20) Ax2+2Bxy+Cyzg{ ; —<( 4C) +B2> }(x2+y2),

we have from (2.19),

(2.21) ELE 2 Ly} + Ly + 2Ly — (L} + 4L5)2H (&8 + &) 2
min [Ly; ${L, + 2L, — (I} + 41%)'*}]. uglp

1\
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with the vector norm ||&* = & + & + &L But since L
may write, by (2.16), }

2 2
E{Lz + 2L, — (L + 4L2)1/2} > = {Lz + 2L, — 2L, (1 + L_)} _
3

is positive for t > 0, we

L,
= 2 (4L > —
8L3( 2= L) 258 - 2) =
for every ¢ = 0. Since L; > 3, (2.21) yields
(2.22) EL(eEz 6“5”2 .

hence, the network fulfills condition C, with a, — 33
6

Analogously we obtain

(2.23) EK(1) & = K, & + Kyl + K335§ + 2K;36,85 =

= min [K11$ HK,, + Ki3 — ((Kzz - K33)2 + 4K§3)1/2}] ) ”5”2 )
Since K33 — Ky, =6 — 2exp(——§-t) — exp(\t) 2 3 for every ¢ =0, we have
HKay + K33 — (Kzz — Ki3)2 4 4KZ)12) >

1 )
2 E{Kzz + K3 — (K33 — Kzz) (1 + —‘t&i—>} =

2(K33 - K22)2

K2
=Ky — — 23 >3 1_8
? T K- Ky 3T
As K,, = 1 for every t = 0, (2.23) yields
(2.24) &Kz g2,

Thus, the network fulfills condition C, with a, = 1.
Finally, the matrix norm defined by |M| = (Z M2)!2 is associated with the

vector norm ||&|| used above; thus with this norm we have, from (2.17), |X| = 3.
On the other hand, (X" E(1))" = [e(t), 0, 0] so that | X" E(t)| = e(t)]-

Substituting these results into inequality (2.9) of Theorem 2.4, we obtain the requir-
ed estimate

j ;u J@)|? dr < 36(1 — exp (=15))2 J (c) de

6
with || J(2)||> = Y J2(2), J(?) being the current in branch h;.
i=1
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Vytah

O NEKTERYCH ZAKLADNICH VLASTNOSTECH ELEKTRICKYCH
OBVODU S CASOVE PROMENNYMI PRVKY

VAcLAV DOLEZAL

V préci jsou vySetfovany obecné linedrni elektrické sité s Casoveé proménnymi prvky.
V prvé &dsti po zavedeni pojmu sité a jejiho feSeni jsou uvedeny nékteré podminky
existence a jednoznacnosti feSeni, vychdzejici ze struktury a vlastnosti prvkd dané
sité.

Ve druhé Edsti je vénovdna pozornost jistému specidlnimu typu siti — sitim pasiv-
nim. Je pfedné ukdzdno, Ze pasivni sit s proménnymi prvky je schopna pouze konzu-

a posléze nékteré odhady pro normu feseni.
Pouziti vyloZenych vysledkt je ilustrovdno na né€kolika pfikladech.

Pe3rome

O HEKOTOPKIX OCHOBHBIX CBOWCTBAX DJIEKTPUYECKUX LENEN
C INEPEMEHHBIMU BO BPEMEHI OJIEMEHTAMMU

BAILIJTIAB JOJIEXAIJI (Vaclav Dolezal)

B pa6oTe ucciemyroTcst 001ye JIMHEHHbIE JJICKTPUIECKIE CETH C IEPEMEHHBIME BO
BpPEMEHH 3JIEMeHTaMH. B niepBo# 4acTu, BBES IIOHIATUE CETH U ee pewleHus, Gopmy-
JIMPYET aBTOP HEKOTOPBIC YCIOBHS CYIECTBOBAHUS M OJHO3HAYHOCTH PELUCHH,
HCXOJSIIKE U3 CTPYKTYPHI ¥ CBOWCTB 3JIEMEHTOB JJAHHOM CeTH.

Bo BTOpOIf YacTH paboTHl y[ACNAETCST BHAMAHHE APYTOMY CHCHUATILHOMY THITY
ceTel — ceTsiM HacCUBHBIM. IIpej/ie BCEro nmokasano, YTO MacCUBHAS CETh C MEPeMeH-
HBIMH 3JIEMEHTAMH CIOCOOHA TOJILKO MOTPEOJIATh SHEPTUIO OT UCTOYHWKOB; Jajee
IpHUBEICHBI TEOPEMBI 00 OJTHO3HAYHOCTH M YCTONYMBOCTHU PElICHHS, & 3aTeM HEKOTO-
pble OIIEHKH HOPMBI pelleHHS.

TIpriMeHeHHe H3JIOXEHHBIX Pe3yJIbTATOB WLIIOCTPUPYETCS Ha HECKOJIbKHX TpH-
Mepax.

Adresa autora: Ing. Viclav Dolezal C. Sc., Matematicky ustav CSAV, Zitna 25, Praha 1.
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