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ON A PROBLEM OF MATHEMATICAL PHYSICS

Ivo MAREK

(Received July 31, 1964.)

1. INTRODUCTION

In several parts of mathematical physics, and in particular in the theory of nuclear
reactors, one often meets with the following problem: To determine a value y, €’ =
= (P or Yy = (—00, +00) such that py(y,) = 1 holds for the dominant eigenvalue
to(y) of an operator-function T = T{(y).

It is assumed that the operator-function T = T(y) is positive in some sense and
depends on y e I' continuously. For the effective construction of the parameter 7y,
it is useful if the derivative T’ = (d/dy) Texists but this condition is not necessary.

In this paper we shall deal with the solution of a problem originated by abstraction
from concrete data of some physical problems. By specifying the corresponding
Banach spaces and operators in these spaces and also various concepts of positiveness
one obtains solutions of concrete problems of mathematical physics. The method
which will be described seems to be suitable because of the often repetition of the
considerations which must be done in any particular case. Besides of this fact the
properties of spaces and operators will excell, which seems to be essential for the
solution of the problem meanwhile the unessential properties which are used for
solving of some concrete special problems fall off and the problem is thus formally
easier and clearer.

2. NOTATION AND DEFINITIONS

The following notation will be used:

@ — real Banach space, its elements, x, y, z, ...,
x — complex extension of %, z = x + iy, x, ye ¥,
%" and &' — space of linear continuous forms on % or % respectively,
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[#] or [#7] — space of linear bounded operators mapping % or Z into itself,
1 — identity operator,
T — complex extension of the operator T,

T: = T(x + iy) = Tx + iTy, x,ye%,

T* — adjoint operator to T,
T — complex extension of T%,
o(T) — spectrum of T,
R(2, T) — resolvent of T, R(A, T) = (AT — T)™ ',
r(T) — spectral radius of T,
A(T) — set of functions f which are analytical on all connected components of
the open domain 4(f) = o(T) (see [12], p. 288),
H — a cone of positive elements in % (see [4]).
Since no misunderstanding can occur, the symbol “ . ” will be used for the norms

in all the Banach spaces considered.
We shall assume that the cone " has the following property: Every x € % can
be expressed in the form
(2.1) x=lime(x, — ¥,), Xpy,€HX, ¢, >0.
The uniqueness of (2.1) is not needed.
We shall write x < yory > xify — xe A

Definition 1. An operator Te[#] is called A -positive (or merely positive) if
Txe A forxeA.

Definition 2. An operator Te[%¥] is called u,-positive if there is an uy € A,
”"o” = 1, such that for every x € A", x % O there are positive numbers o« = o(x),
B = B(x) and a positive integer p = p(x) such that

(2.2) aug < TPx < Pug .

Definition 3. An operator T'e [Z] is called a Radon-Nicolski operator. (RN-
operator) if it can be expressed in the form T =U + V, where U € [Z], Ve [Z],
U is a compact operator and

(2.3) HT) > r(V).
Some properties of RN-operators were investigated in [6], [9].

Definition 4. An uy-positive operator T is called strongly uq-positive if for every
y €% there existe a positive number o = o(y) and a positive integer q = q(y)
such that

(2.4) 0T < u,.
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Definition 5. An operator T€ [Jf] is called a majorant operator if there is an
eigenvalue py € o(T) such that

(2:5) 4] < |l

for all e o(T), A + po. :
It is known that a strongly u,-positive RN-operator is majorant [9]. Further

conditions for the majorancy of some positive operators may be found in [1], [3],

(8], [10].

Definition 6. An operator-function T = T(y), y€I = {J- o, V1+p> is called
continuous at yo € I' if to any ¢ > 0 there is a & > 0 such that | T(y) — T(y,)| < ¢
holds for all yeI with |y — yo| < 8; T = T(y) is called differentiable at y,eT'
if there is an operator T'(y,) € [#] such that

T'(y5) = nml [T(ro + ) — T(3o)]

in the norm of [#]. If T = T(y) is continuous or differentiable at all yeF then
we say that it is continuous or differentiable in I

Definition 7. Let T = T(y) be an operator-function, yeI', and let py(y) be a
dominant eigenvalue of the operator T(y) i.e.

2] < |uo()]

holds for any i€ o(T(y)), A # po(y). The value yo € I' for which.pg(ye) = 1 is called
a critical value of the operator-function T = T(y). ;

Definition 8. 4 vector v e A" is called uq-positive if there is a positive number
n = n(v) such that no > u.

Definition 9. A cone A < & is called norm monotone, if [[x[[ =< ”yu for-all
x<yin XA. . oo

3. FORMULATION OF THE PROBLEM

Given a family T = T(y), y€ I = {(y_ o, P+ oy Of ug-positive operators, mapping
a real Banach space % into itself. It is assumed that the operator-function T = T(y)
is continuous in I'. Furthermore it is assumed that to every T(y) there corresponds
a function fe (T) for which f(T(y)) = U(y) + V(y), where U(y), V(7)€ [¥],
U(y) is a compact operator, and that for the spectral radii R = r(f(T(7))), r =
= #(V(y)) the inequality R > r holds. It is shown that every T(y) has a dominant
positive eigenvalue value po(y) and that this value is a simple pole of the resolvent

R(4, T()). S
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Our first object is to guarantee the existence and the uniqueness of a y, e I' for
which f(ve) = 1, and second, to construct the value y, and also the eigenvector
corresponding to the eigenvalue uo(y(,). Moreover, we shall also exhibit examples
of concrete problems from mathematical physics which lead to the scheme considered
here.

4. EXISTENCE AND UNIQUENESS OF A CRITICAL PARAMETER

The purpose of this paragraph is a proof of the following proposition and its
consequences.

Theorem 1. Assume that

(a) The operator T(y) is strongly u,-positive for every y € I'.

(b) There exists a function fe W(T(y)) such that f(T(y)) = U + V is an RN-
operator.

(c) The operator-function T = T(y) is continuous in I.

(d) For every ugy-positive vector x € % and arbitrary y; < y,, y1, 72 € I there is
a positive number o = a(yy, ¥, x) such that

(4.1) [T(r:) = T(y,)] x > ox .

(e) The operator-function T = T(y) is differentiable in T
Then the following assertions hold:

1. There exists a dominant positive eigenvalue ,uo(y) of the operator T(y) for
any y € I'; this eigenvalue is a simple pole of R(2, T(y)), the corresponding eigen-
vector xo(y) lies in A" and xo(y) has the property that from vy = T(y)y for some v,
Vv £ 0, ye A, there follows y = ¢ xo(y) for some ¢ > 0.

2. The function p, = uo(y) is continuous decreasing in I'.

3. The function p, = po(y) is differentiable in I'.

Il

Before proving theorem 1 we shall show some assertions needed which are proved
in [6] under stronger assumptions than here. Namely, in [6] it is assumed that "
is a productive cone i.e. any y €% has the form y =y, — y, with y,, y, e A,
and that T'is a strongly # -positive operator (for the definition see [4]). The corres-
ponding proofs are similar.

Theorem A. Let a 4 -positive operator be such that f(T) = U + V is an RN-
operator, where f e A(T), ]f(l)l > (V) for |4 = ¢(T). Then T has at least one
positive eigenvalue u,, and to this eigenvalue there corresponds at least one posi-
tive eigenvector xy € A .

Theorem B. Let T be an A -positive operator such that f(T)=U + V is an
RN-operator, where fe U(T), |f(2)| > r(V) for |4| = H(T), and let there exist
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a vector ve A, HUH = 1, a positive integer p and a positive number 8 such that
(4.2) TPv > Pu.

Then there exists an eigenvalue u, € O'(T) such that
(4'3) Ho 2 ﬁ/ﬁ > w = Mo

for all 1€ G(T). Movreover, the eigenvector x, corresponding to the eigenvalue i,
lies in A .

Theorem C. Let T be a strongly ugy-positive operator such that f(T) =U+V
is an RN-operator, where f € A(T), |f(A)| > r(V) for |A| = (T). Then the spectrum
O'(T) contains a dominant positive eigenvalue py, of T. To this eigenvalue there
corresponds a uy-positive eigenvector x, with the property that vy = Ty for some v,
y £ 0, ye A, implies that y = cx, for some ¢ > 0. The value p is also a dominant
eigenvalue of the adjoint operator T* and the eigenfunctional x; corresponding to
U is strictly positive. In other words,

(4.4) T*xy = poxo, Xo(x) >0 for xed, x+o, | <pn
for Ae G(T*), A F n.

Moreover, the value i, is a simple pole of the resolvents R(A, T) and R(4, T*).

Note that theorems A, B, C are generalizations of theorems 6.1—6.3 from [4].
The proofs are similar. ‘

Proofoftheorem 1. Let y,, y, €I, y; < 7,. From assumption 1 and theorem C
there follows the validity of the first part of the theorem 1. There exist eigenvalues
Ho(y1)s o(y2) and uy-positive eigenvectors xo(y;), xo(y,) such that

T(31) xo(r1) = wo(r1) xo(v1)» T(v2) Xo(72) = Ho(22) xo(r2) -
2] < #o(1) for 2ea(T(v1)), A+ po(ve)
2] < 1o(y2) for 2€a(T(r)), A% no(y)-
From (d) it follows that
T(y1) Xo(r2) = T(r2) Xo(v2) + [T(r1) = T(r2)] xo(r2) >
= 1o(v2) Xo(v2) + @ x(y2) 5

thus, according to theorem B there is an eigenvalue v of the operator T(y,) and
a corresponding eigenvector y € 4. Moreover

v po(r2) +oa > pe(v2) . A =y
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for 4 € o(T(y,)). Hence and from theorem C there follows

y==«c xo()’x) s, V= l‘o()’x)‘

Therefore po(y2) < Ho(y;). Thus we have proved that the function o = po(y)
is decreasing in I'. Its continuity follows easily from assumption (c).

The differentiability of u, = uo(y) is guaranteed by the assumption (e), but since
in the proof requires some deeper results from the spectral theory, it will be performed
in detail.

Lemma 1. Let the operator-function T = T(y) have the properties decribed in the
assumptions of theorem 1. Then there exists the operator

(49) By(3) = lim [1()] " T0)

and the operator-function B, = B,(y) is continuous and differentiable in I'. The
vector By(y) x, where xe A", x % o, y €T, is uy-positive, and

(4.6) #o() Bi(y) x = T(y) By(y) x
holds for every yeI.

Proof. The existence of the limit in (4.5) and (4.6) were proved in [7, theorem 1].
The u,-positivity of T(y) implies that B,(y) x # o and thus B,(y) x is an eigenvector
of the operator T(y).

' Let the form x’ € @' be strictly positive. The existence of such a form is a conse-
quence of theorem C. We shall investigate the function  defined by

(T B.G) 2
O = ) x)

where x(® € o, x'¥ % o; thus x'(B,(y) x*) + 0 for yeI.

Lemma 2. The operator-function B, = B () is differentiable in T.
Proof. Let y, y + heTI. Then [7]

Vou ) = (B + h) = B,()] =

1 1 1 1
= — ~R(, T(y + h))dA — — — R(4, T di,
2ni cy.,,h ( (y )) Zm'JVCY h ( (y))
where
Coon = {l | ii - #0(? + h)' < ry+h} )

¢, ={2 | [4 — uo(y)| <r,}
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are circles with radii so small that

Ky = {22 = poy + )| <y},
K, ={]2 = n0)| £r}
imply
o(TM) 0 K, = {o(0)} . o(T(r + ) 0 Kypy = {po(y + h)} .

It is easy to see that for sufficiently small h

Vi, b = 5}; f C Ti [R( T( + ) — R(A T())] d2.

From the identity for resolvents
R(Z, A) — R(4, B) = R(4, A) (4 — B)R(%, B),

which holds for arbitrary A, Be[Z] if A¢ o(A) U o(B), we obtain, first, that
R(2, T(y + h)) - R(4, T(y)) if h - 0, and second,

Vi h) = zim f RG. TG+ ) % [T(; + ) — T()] R(, T() d2

so that

Bi(y) = Jlim V(y, h) = E}QJ R(% T() T'(y) R(2, T(y)) d4.

Hence lemma 2 is proved.

Lemma 3. The function = y(y) is differentiable in I.

The proof of this lemma is very simple. It suffices to determine the limit
.1
lim = [y(y + h) — ¥(y)].
n-0h
This can be carried out similarly as in the proof of lemma 2 by using lemma 2 and

differentiability of T = T(y) and B, = B(y).

From lemma 3 there follows differentiability of 1y = po(y), since evidently

¥(y) (B,(7) x©) 1o()

Thus theorem 1 is proved completely.

Easily one can prove the following
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Lemma 4. Let T' = T'(y) be a continuous operator-function in I'. Then the deriv-
ative py = po(y) is continuous in I

Theorem 2. Let the cone & < % be norm monotone. Let the assumptions (a) — (c)
of theorem 1 be fulfilled. Let there exist a positive number ¢, independent of x,
and a nonnegative number ¢ = c(x) such that

4.7 T)x -y <e(xX)ug if 77410, 0=Z5(x) <g <1
for all x e A with ”x” = 1. Further let there exist a number A = 1 such that
(4.8) T(7- ) x> Ax©

for a suitable vector X' e A", ||x'?|| = 1. Then there exists precisely one critical
parameter yy € I' of the operator-function T = T(y).

Proof. The existence of a critical parameter is guaranteed by theorems B and 1.
According to theorem B there are x, = Xo(y_.,), [Xo|| = 1 and py = po(y-,) =
= A = 1 such that uox, = T(y-,) X,. From (4.7) it follows that r(T(y)) < 1 for y
sufficiently near y, . Hence ,uo(y) < 1 for these y. The assertion of theorem 2 is then
a consequence of the continuity and monotonicity of the function g, = py(p)-

Remark. Evidently, condition (4.7) is fulfilled if
(4.9) 0 < 1.

holds for at least one ye I

5. SPECTRAL RADIUS OF THE SUM OF TWO .%#"-POSITIVE OPERATORS

From the assumptions of the previous section the most complicated condition
to verify is usually that the operator T considered, or some function f(T) = U + V
of it, is an RN-operator, and particularly that there holds the inequality

r(f(T)) > r(V).

In this section we shall consider the case f(1) = 1. Our purpose is to present some
conditions which guarantee that the sum T of two operators U, Vis an RN-operator.
We inquire whether

(5.1) T)> r(V).
An answer is contained in theorem 3.

Theorem 3. Assume that

(i) The A -positive operator Te[#] can be expressed in the form T=U + V,
where U, Ve [Y] are A -positive operators and U is an uy-positive compact operator.
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(i) The relation
(5.2) . r(S(A) > +00 as A->r(V)+0

holds for the spectral radius r(S(2)) of the operator S(A) = (2 — V)™ ' U. Then
the inequality (5.1) holds for the spectral radii r(T), r(V).

Proof. Evidently, the operator-function S = S(1) depends continuously on
A e(r(V), +0), and

(5.3) r(S(A)—>0 as A— +ow.

On the other hand, it is immediate that for every A€ (I( V), + ) S()») is a compact
A -positive operator. # -positiveness follows from . -positiveness of U and V and
from the expression

(= V) U= a7 — A7) = Y AR
k=0

Compactness follows from that of U.
According to theorem B there is an eigenvector y(4)e #". [yv(4)]| = 1, and an
eigenvalue p(2) of the operator S(1) such that

S(2) y(2) = u(2) ¥(2)
and

r(S(2) = r(?) = b|

for v € a(S(4)). The continuity of S = S(4) and the relations (5.2) and (5.3) guarantee
the existence of a 1 > r(V) for which p(2) = 1. Therefore we have S(1) y(1) = y(1)
or Uy(d) + Vy(Z) = X1 y(). The inequality (5.1) is then a consequence of the
relations Ze o(T), 1 > r(V).

6. CONSTRUCTION OF A DOMINANT EIGENVALUE

For the construction of a critical parameter it is necessary to know the graph
of the function gy = po(y) in I' or of some its approximation: i.e. to know f(y)
in a subset I'y < I.

There is a useful method for the construction of the value py(y) the so-called
“source iteration method’. This term comes from reactor theory, where the method
is in favour and where it gives reliable results in practical calculations, see [2], [3],
| 5] The theoretical foundation of convergence of the source iteration method is given
in [3],[10],[11]and in a general settingin [7]. Since the details of this method are
given in papers mentioned above, we shall only describe its principle.

Let {y.}. {z,’,} be sequences of continuous linear forms on # for which there
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exists a form y" € %’ such that

(6.1) [yu(x) — V) A+ |zax) = Y ()] £ eo(x)n™'7?

holds for any x € %, where 6 > 0 and where ¢ and ¢ are independent f x and J.
Put

(6.2) y("“)(” = J* T(V) y(n)(y) » VoyEAX s Yoy F o,
Hen(¥)
(6.3) Honf(7) = 2(T() Ynl7)

y,’,(y (n)(?))

Theorem 4. In addition to the assumptions of theorem 1 let conditions (6.1) and
(6.2) be fulfilled. Then there exists a number ¢ = c(y) such that

[van(7) = e(3) %) 0,

/1(,.)()’) - #O(V) s
where

T(7) xo(7) = 1o(¥) xo(7)»  [%e()] = 1
and po(y) is the dominant eigenvalue of T(y) for each yeTI.

7. CONSTRUCTION OF A CRITICAL PARAMETER

We shall consider the problem of constructing a critical parameter of an operator-
function T = T(y) assuming that the dominant eigenvalue uo(y) is known for any
v e I'. According to section 6 we can use the source iteration method to determine
Ho(7) and the corresponding eigenvector of T(y). To find a critical parameter we may
then apply any approximate method of solution of transcendental equations.
Of the methods frequently used in reactor theory we refer to the so-called “modified
regula falsi’” method. For the convergence of this method it is not necessary to assume
that the operator-function T = T(y) is particularly smooth.

Let Y04 Yos € I' be such that

(7.1) #o(?o;;) <1, #o(%a) >1;
hence Yo, < Yop-
Put
(7.2) Yo = You — —— =00 [y0) — 1],

.uo()’Ob) - ﬂo("}’Oa)
(7'3) Yoa = %‘[Yo.z + )’Ob] .
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If

(I) Yoe = You
then
(I’ «@, 1) Ho(Voa) > 1=y = Y4 V16 = Yob»
(LB 1) to(voa) < 1 < po(Yod) = V1a = Yoes Vis = Yoa »
(Is Vs 1) lLO(YOC) < 1 = Y1a = Y0a> Y1p = “/’0(‘ .
If
(H) Yoc = Yoa
then
(H, o, 1) ﬂo()’oa) >1=7%1,=Y0a> Yib = Yoa>s
(H, B, 1) l‘o(?oa) > 1> #o()’w) = Y1a = Yoa> Y16 = Yoc>»
(IL ?s 1) Ho()’oC) > 1=y ="7ecs 715 = Yoo-
Further
(7.4) Tew = Pea — ——eb o0 Ty, ) = 1],
“O(Vk,b) - Mo()’k,a)
(7.5) Yrd = %[)’k.a + Tin)

and again, if

(I’ k + 1) The = Vi

we may continue,

(I, o, k + 1) llo()’k,d) > 1= Y10 = Via> Yht1p = Vaps

(I, B k+1) to(yka) < 1 < Ho()’k,c) = Vr+1.0 = Vhes Vk+1,p = Vi
(I, 7, k + 1) #o(Yk,c) <1= Y10 = Yhas Vkttob = Vhyos

or if

(IL k + 1) Ve > Vnd >

we may continue,

(H, o, k + 1) I‘o()’k,a) < 1= V1,0 = Yhas Yhstb = Vhds
(H, B,k + 1) I‘o()’k,d) > 1> ﬂo()’k,c) = Vk+1.0a = Yha> Ve+1,p = Vi,
(H, 7,k + 1) Ilo()’k,c) > 1= Yitt,0= Yher Vhetp = Vhp-
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Theorem 5. Under the assumptions of theorems 1 and 2 the modified regula falsi
method defined by (7.2)—(7.5) and formulae (I, a, B,7), (1L, &, f,y) converges

to the critical parameter y, of the operator-function T = T(y), i.e. po(yo) = 1;
moreover

(7.6) 7o = lim y,, = lim y;, .

k— k= o0

Proof. From the monotonicity of sy = p(y) it follows that
(77) Yib = Vie > Vkoa o k = 0’ 1’

From the definition of the process investigated there it follows that

1
(7.8) Vettp — Vettla = ? [Vor; = Y0a]

and hence Y441 — Vi1 0.

Now set I'y, = {Yi.. » Yx.p»- Then according to (7.8) we have

0
0=,
where 9 € I' and
(7.9) 7=limy, = limyy, -
k— o k-

From continuity of the function y, = p14(7) we obtain that

(7.10) ,Uo( ) = llm #o(?k a) = lim .“o(Vk b)

k— o

hence according to (7.4) one has that

1/‘0(?k.a) - 1! = ‘yk ¢~ Via [Ho(/k u) - ,uo()’k b)] = Ho()’k a) - No()’k b) -0

lvk,b Vk.a

as k - +o0; therefore pio(y,.) = 1, 1t5(9) = 1 and thus § = y,.
If there exists a continuous derivative 1, then we can prove the convergence of the

usual regula falsi process, which is more simple than the modified process. Note that
in the preceding proof the existence of the derivative uj was not needed.

Theorem 6. Let the assumptions of the theorems 1 and 2 be fulfilled and let the
operator-function T' = T'(y) be continuous in I'. Then the regula falsi process,
defined by

' Tk — ’Y()a
(7.11) Vel =7 N T
Y k+1 rk T luo(’yk) _ ﬂo('you) [ 0( k) ]
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converges to the critical parameter y, of the operator-function T = T(y) if

(1.12) (o) < ello) =1
Yo — Voa
Proof. Put
_ Y = Yoa
o(y) =y = ———[wo(y) — 1],

to(7) = Ho(Voa)

where y,, # 7o. The function uy = ug(y) is continuous according to lemma 4.
Therefore, according to (7.12), the inequality

(7.13) I(p'(y)] <1

holds in some neighbourhood Q of the point y,. The convergence of the process
(7.11) then follows from (7.13) if 7, € Q. Thus there exists a y € I' such that

§ = lim y,
k— oo
and 7 = ¢(§). This means that
~ ~ 7 — Yoa ~
J=7—— () — 1];
Ho()’) - HO(VOu)
hence
(7.14) po(3) = 1.

Obviously y, = 7 is the required critical parameter.

Remark 1. In (7.11) the values of the derivative py do not occur explicitely. Thus
there is a single difficulty consisting in no information concerning the neighbourhood
Q in which (7.13) holds. The bounds of Q can be approximated by applying a few
steps of the modified regula falsi method.

Remark 2. In practical calculations usually we combine the source iteration
method with the regula falsi method. Several source iterations are carried out with
the value given, and then one step of the regula falsi method performed. If a satis-
factory result is not obtained, then again source iterations are performed with the
corrected value y,. This procedure is particularly suitable when T = T(y) depends

ony weakly [2], [8], [11].
8. APPLICATIONS

Let % = (0, 1)) be the space of continuous functions on <0, 1> with the usual
uniform norm. Let # < % be the cone of non-negative functions. Furthermore
let h = h(s, t) be a continuous function on <0, 1> x <0, 1), and ve#%. Assume
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the existence of nonnegative constants a, o, with

0 <oy < min hs, 1),
5,1€(0,1)

0<a, <os).

Then the operator T = U + V, where

(8.1) Ux = y = y(s) = f (s, 1) x(1) it
Vx =y = y(s) = v(s) x(s)

s A -positive. Moreover, the operator U is compact and u,-positive, where u,(s) = 1
or s <0, 1>.

We shall show that T is strongly u,-positive. Let x € A, x & o. Then there exist
o > 0, # > 0 such that

(8.2) o < J‘Ih(s, 1) x(t)dt < B.

Evidently there is a constant x such that
(8.3) v(s) x(s) < x

(c.g. take x < [v] |x]). Hence
o< th(s, ) x(t)de + v(s) x(s) < B+ x

this can be formally written as
(8.4) aug < Tx < (B + x)ug,

showing that T is also u,-positive.

Strong u,-positivity of T follows from strong u,-positivity of U and from the fact
that every x € % can be expressed in the form x = x, — x,, where x;, x, € X .
Then we have

Tx < Tx, <(B+w)uy, B=pBx), x=rx(x,)

and thus 9Tx < u,, where ¢ = (B 4+ x)™' > 0. Thus we have proved more than
assumption (i) from theorem 3 for T = U + V. The assumption (ii) of theorem 3
is evidently fulfilled, since

[ = VI7 (5) = (2 = o(9) " x(5).

According to theorem 3, T = U + Vis an RN-operator.
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If the operators of the type just described depend continuously on a parameter y,
they can, under some further assumptions, describe the energy-dependence of nuclear
processes in a given medium. It is evident from the preceding sections how it is
possible to obtain the existence of a critical parameter, which guarantees the pos-
sibility of sustaining a neutron chain reaction in a given homogeneous medium, [8].
For non-homogeneous media, the existence proof has not been given yet. On the
basis of our results it is possible to solve the problem of criticality in general non-
homogeneous media. We shall do this in the following section.

The question connected with the critical parameter of the multigroup energy-
approximation of the kinetic theory of nuclear reactors is considered in the [I1,
section 5]. This problem can be also included under the common scheme investigated
in the present paper.

The properties of the so-called basic equations of a nuclear reactor depending
continuously on the energy [5, p. 47] specifically the as yet unsolved problem of
existence of a dominant isolated eigenvalue and further related problems can be
treated by the method described here.

9. CHAIN REACTION WITH FAST NEUTRONS IN A HETEROGENEOUS
SLAB MESH

We shall use the results of the preceding sections to investigate the problem of
sustaining a chain reaction in a heterogeneous slab mesh. We shall consider essentially
the existence problems, since this problem mentioned above was studied by usual
methods of theoretical physics in [2] and [12]. Our results are contained in theorems
7 and 8.

In agreement with [2] and [12], consider the system of integral equations

rE

(9.1) y(E) = | 4,,(E E,B)y"(E)dE" +
J Eo

rE

+ | 4.,(E.E, B)y®(E)dE'",
J Eo

PE
YO(E) = | 4,(E E, B)y(E)dE" +
J Eo
PE .
+ | 4aa(E, E'. By y(E) dE,

J Eo

where 0 < E, < E, < +00, 0 < B and where y = (', *') denotes the density
of neutrons.
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Next, let « = o; + a, where a; > 0, a, > 0 be fixed numbers. The kernels in (9.1)
are defined as

1 1 _
AWE,E,B)=A(E,E)| —— — ———— A,
52D = 455 s~ e )
1 1 -
A5,(E, E', B) = 4,(E, E — Al,
= )= 4 )[ZZ(E') a0, 25(E) ]
A
AH(E,E',B) = A)(E,E') ——MM—,
12 )= 4 )ocz 2(E') 2,(E)
A

A,(E, E',B) = A(E, E' ,
( ) =4 )al 2(E') 2,(E)

where
9:2) A,(E, E') = v,(E') Z{(E") S(E) + Z{(E") T(E, E') +
+ Z‘i(E') 5(E - E') = SI(E, E') + Z‘;(E’) 5(E — E) s
A(E, E') = vy(E') (B S(E) + SH(E) T(E, E') +
+ IY(E)S(E — E') = 9,(E, E') + Z5(E') 8(E — E) .
and
A= qﬁi@ dt,
Jo g(t, E)
A= ' /(. ) dt,
Jog(t, E)
A= RIM dr,
Jo g(t, E)
where

g(t,E) =1 —2exp {v :aZ(E)} cos Ba + exp{— % ch(E)} ;

£t E) = t(l _ exp {_ tlall,(E)}) (1 ~ exp {_ ;aZEZ(E)}> .
. (1 — exp {- iaZ(E)}). cos B,

J(t E) = t(l ~ exp {_ %mlzl(E)D{l - <exp{~ :aZZZ(E)} +

T exp {— : ozZ(E)}) cos Bz + exp {- %(ochz(E) + acZ(E))}:I ,

104



f(tE) = t(l — exp {~ %aZZZ(E)}> [1 - (exp{-— %a,ZI(E)} +
+ exp {— %z(g)}) cos B + exp {_ L @n(e) + ocZ(E))}] .
The quantities
vi=v(E), Zj=Z2{E), Xj=ZI{(E), X =ZI{(E), I;=2I(E),

Z(E) = ZJE) + X(E) + X{(E), X =2X(E), T=T(E E), S=S(E)

introduced in (9.2) are given non-negative functions continuous in {E,, E,> and
8 = §(E) is the Dirac delta-function.

We shall find an interval G, = <0, Bw) such that cos B, a = 0, cos B« > 0 for
B € G,. Evidently B, > 0. Without loss of generality we shall assume that B € G,.

Lemma 5. For Be G, we have
(9.3) A(E, B) < a; X,(E), A(E, B) < a, I,(E).
Proof. Evidently A4 and A4 are increasing functions of B € G, and for thesc B
_ 1 1 1
A(E, B) Jo <1 — exp {— ?ocl EI(E)}> tdt < J‘Ole Z(E)dt = oy Z((E).

Similarly one can prove the second inequality in (9.3). As a consequence of (9.3),
there is

(9.4) 3,(E, E") [z,(lE') T ;(E/) A(E, B)] =26>0,
N 1 =, >5>
)| 5~ iy 1B 2050

where ¢ is a constant independent of E, E’ and B.
The system (9.1) may symbolically be written as

9.5) W =UB)Y + V(B)Y,
where

U(B) = (Uu(B)), V(B) = (V(B)), J k=12,
are matrix-functions defined by

Ew
(9-6) U;(B) o® = f S(E, E') x;(E', B) ®(E") dE’,

Eo
Vi(B) @ = ZYE) 1 u(E, B) 0“(E)
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and
1 1

Xn(Es B) = m - o Ef(E) Z(E, B) s
1 _ M_lh -
BB = T i )
1 1

(E, B), 21 = ———
«, 24(E) Z,(E)
In proving that the system (9.1) has a non trivial solution for the suitable B, it
suffices to show that the assumptions (a)—(d) of theorem 1 are fulfilled.
Let % = 4(<0, 1) x %(<0, 1)) be the space of vector-functions = (Y, y)
continuous on {E,, E_)» with the norm

[¥| = Max [ max [y(E)|, max [y*(E)|]
Ee(Eo0,Ex) Ee(Eo,Ex)

XIZ(E’ B) =

A(E, B).

S —1
ay 2((E) Z,(E)

and let # < % be the cone of vector-functions with non-negative components
in {Ey, E,>. Evidently the cone " is norm monotone. From continuity of v;, 25,
ZJ"-, ij-, X, 9; there follows compactness of U(B); from their positivity there follows
A -positivity of Uj(B) and V;(B) for Be G,.

Lemma 6. The operator-function U = U(B) defined by (9.6) and (9.5) is strongly
uo-positive compact operator-function for uy = (u", u?), where u§’(E) =1
if Ee (Eo, E,>.

Proof. It suffices to prove only u,-positivity of U(B). According to (9.4) we have

’ jEww(j)(E) dE = J‘E” i (E. E) x;(E', B) y*¥(E") dE'

Eo

for e A, = (YO, @), Y9 £ 0.

If we put
A= max (E, E') yu(E, B),
E,E'e(Eo,E)
Eo .
n ZJ ‘/,(;)(E) dE

Ew
then
(9.7) onug < U(B) < Anug .

Thus the operator U(B) is u,-positive. Strong u,-positiveness is a consequence of the
fact that every element y € % can be written as ¥y = Yy — \,, where ¥; € 2. Then

U(B)y < U(B) yr, < An() uq -
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Lemma 7. The operator T(B) = U(B) + V(B), where U(B), V(B) are defined
by (9.6) and (9.5), is strongly u,-positive.

The proof coincides with that of corresponding assertion in section 8, and therefore
will not be repeated.

Lemma 8. The operator T(B) is an RN-operator for Be G,

Proof. We shall verify the assumptions of theorem 3. Assumption (i) is fulfilled
according to lemma 6.

Evidently
r(V(B)) = max t(E, B)
)

Ee(Eo,Eo

where
T(E, B) = %(ET(E) Xu(E» B) + Zg(E) Xzz(E’ B) +

+ {#(Z5(E) 114(E, B) + Z5(E) x22(E, B))* +

+ X5(E) 23(E) x12(E, B) 221(E, B) —

- Zi(E) X1 1(E’ B) EZ(E) Xzz(E> B)}% .
Let A > r(V(B)). Then

R(A, V(B)) = (Al — V(B))™' =

= {(A — ZU(E) x11(E, B)) (2 — Z5(E) x22(E, B)) — Z1(E) 212(E, B) Z5(E) x24(E, B)} x

(U e B D) Y

Z“i(E) XZI(E’ B) s (A - Z;(E) XZZ(Ea B))_l
It is clear that there exists a positive function vz = vg(2), B € G,, such that ‘
(AL = V(B))™ " ug > ve(2) g,

where vy(1) > + o0 as A — r(V(B)) + 0.
Using uy-positivity or rather (9.7), we obtain that

[AI — V(B)] ' U(B) ug > a[ Al — V(B)]™" ug > o vg(4) ug ,
where « depends only on u,, B, but not on A. According to theorem B we have that
(9.8) r(S(A)) > o as A- r(V(B)) + 0.
Thus the assumption (ii) of the theorem 3 is also fulfilled, and therefore
HT(B) > H(V(B)).
This proves that T(B) is an RN-operator.
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Put
Fu(B) o = y(E, B) 0®(E),
Sup® = Zi(E) o™(E)
Eo
Gp® = f (E, E") o®(E") dE' .

Eo
Then
V() 0% = 5, Fu(B) o,
Un(B) 9* = G, Fu(B) 9@,
[Un(B) + Vi(B)] 0® = (Si + Gi) Fu(B) o® .

i

Assume that
(9.9) W(E) 2 a> 0,
where a is a constant independent of E and let
(9.10) 0<B,<B,, B,B,eqG,.

Let us consider the vector-function

G= [ij(Bl) - ij(BZ)] ™.
Obviously the inequalities
A(E, B,) < A(E,B;), 0<B,<B,, B,B,eG,
hold uniformly relatively to E € (E,, E>. On the other hand,
A(E, B,) < A(E, B,), A(E,B,) < A(E, B,), B, <B,.

uniformly relatively to E e {E,, E,»>. Therefore there exists a positive number
p = B(By, B,) such that

XilEs B) — xulE,B)) = B, 1<j,k<2.
Hence

2
kz_:l[Fﬂ(BJ — Fi(By)] ¢® > Bau™®
and thus

2
(o.11) k;{U,-k(Bl) + Vi(B1) — Uu(B,) — V;(B,)} o™ =
2
=k;(sk + G [Fu(B1) — Fi(B,)] 0® > Cuf”, >0, ={(By,B,)
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where the order in each component ¢({E,, E,,») is denoted by the same symbol <
as in %. Relation (9.11) can be written as

(9.12) [T(B,) — T(B,)] ¢ > (uo,

where { = ((Bl, B,, (p) is a positive constant.

The continuity of the operator-function T = T(B) follows from uniform continuity
of the systems {y;(E, B)}, j, k = 1, 2, relative to E € {E,, E,,». The proof of this
assertion is the same as in the case of the homogeneous slab, and is given in [8].

From (9.12) and from the fact that for every uy-positive vector ¢ € ", there
isa 9 = Y(¢) such that u, > ¢ there easily follows the

Lemma 9. The operator-function T = T(B) defined by
T(B) = U(B) + V(B),
where U(B), V(B) are given by (9.6) and (9.5), fulfil the assumption (d) of theorem 1.
Lemma 10. If there exist continuous derivatives (0/0B) xu(E, B), j, k = 1,2,
E e (Ey, E,) then the operator-function T = T(y) is differentiable in T.
The proof is evident.
From lemmae 5—10 and according to theorems 1 and 2 we obtain the main result

of this section.

Theorem 7. The operator T(B) = U(B) + V(B), Be G,, has a dominant positive
eigenvalue po(B); to this eigenvalue there corresponds one single uy-positive eigen-
vector Yo(B)e A, |o(B)| = 1. The value u(B) is a simple pole of the resolvent
R(4, T(B)). The function po = po(B) is decreasing and continuously differentiable
in G,

Ttis clear that the criticality depends of the degree of the heterogeneity, characterized
by a, oy, o,. For fixed «; and «, the condition of criticality can be characterized
by theorem 2.

Theorem 8. Let
(9.13) w{B) = (E, — E;){ max [9(E, E') x;,(E', B) +
E,E'e(Eo,Ec)
+ %5(E, E') z;5(E', B)]} + max >[Z§(E) x1(E', B) +
E,E'e(Eo, Eo
+ Z(E) x2(E, B)], j=1,2,
(9.14) w(B) = Max {w,(B), w,(B)} .
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Let us assume that the inequality

(9.15) o(B) < 1

holds for at least one B € G,, and let there exist a vector vy € A, ] UQH = 1, with

(9.16) T(0) vy > vy -

Then there exists precisely one critical parameter By of the operator-function
T = T(B) i.e. there exists precisely one B, = 0 for which the system (9.1) has a
positive solution in (E,, E ).

Proof. From (9.15) it follows easily that there is at least one B e G, for which
|T(B)|| < 1. According to the remark following theorem 2, assumption (4.7) of
theorem 2 is fulfilled. On the other hand, from (9.16) there follows (4.8) of the same
theorem. As a consequence we obtain the assertion which is to be proved.

Remark. Usually the eigenvector y,(B) corresponding to the dominant eigenvalue
to(B) of the operator T(B) is taken as the vector v, in (9.16) for some B € G,.
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Vytah
O JEDNE ULOZE MATEMATICKE FYSIKY

Ivo MAREK

V realném Banachové prostoru % s kuzelem kladnych prvki 4 je ddna soustava
T= T(y) ug-kladnych linedrnich ohrani¢enych operdtort T(y), spojité zdvislych
na redlném parametru ye I’ = {{__, y4.,». Pfedpoklddd se, Ze pro kazdy operidtor
T(y) existuje po &dstech analytickd funkce f takovd, Ze f(T(y)) = U + V, kde U
je kompaktni, ¥ ohranieny linedrni operdtor a pro spektrdlni poloméry plati ne-
rovnost r(f(T(y))) > r(V). Je dokdzdno, Ze kazdy operdtor T(y) md dominantni
kladnou vlastni hodnotu uo(y) a ta je jednoduchym pélem resolventy operdtoru T(y).
Hlavnim vysledkem prdce je dikaz existence a jednoznacCnosti tak zvaného kritick¢ho
parametru, to jest hodnoty y, € I', pro niZ po(y,) = 1 (véty 1 a 2). K piibliznému
sestrojovdni prvki po(y) a 7o je piedloZena iteraénj metoda a je dokdzdna jeji kon-
vergence (véty 4, 5). Kromé FeSeni zdkladni ulohy tykajici se kritického parametru
obsahuje prdce nekteré vysledky, jeZ maji samostatny vyznam. To se tykd predevsim
véty 3, ve které je uvedena jednoduchd podminka zarucujici pro spektrdlni polomér
#(T) sou¢tu dvou #-kladnych operdtort T = U + V platnost nerovnosti r(T) >
> r(V). V poslednim odstavei jsou teoretické vysledky uZity k dikazu existence
a jednoznaénosti kritického parametru soustavy integrdlnich rovnic popisujicich
fetézovou reakci v deskové mrizi.

Pe3ome
OB O/IHOM 3AJJAYE MATEMATUUYECKOIN ®U3UKU

MNBO MAPEK (Ivo MAREK)

B BeulscTBCHHOM 0aHAXOBOM IPOCTPAHCTBE % C KOHYCOM IOJIOKHTEJIbHbIX
HJIEMCHTOB JIaHO CEMEUCTBO U (-IIOJIOKUTEIIbHBIX JIMHEHHDBIX OTPAHUYEHHbIX OTepa-
Topos T = T(y), HENPEPLIBHO 3aBUCAUMX OT BEUIECTBEHHOTO mapamerpa y €l <
< (—o0, + ). Ipeanonaraercst, uto kaxiaomy T(y) COOTBETCTBYeT MO HaCTAM
anamurnueckast Gynxius f, st kotopoii f(T(y)) = U + V, rae U — Bno.iHe Hempe-
PBIBHBIT OnepaTop, ¥V — OrpaHHYCHHBIH OnepaTtop i JUIS CHEKTPAJbHBIX PafMycos
F(f(T())), r(V) umeer mecro Hepasenctso r(f(T(y))) > (V). doka3aHo, uTo Kaxblif
onepatop T(y) 001aaeT JOMUHAHTHBIM MOJOKHTEILHBIM COOCTBEHHBIM 3HAYECHUEM
Ko(y), ¥ ITO 3HAUEHHE SBASETCA MPOCTHIM MOJIIOCOM PE30JbBEHTBI onepatopa T(y).
OCHOBHBIM PE3YJIbTATOM CTATbH SBJISIETCS JOKA3ATEABCTBO CYLUCCTBOBAHMS U CAMH-
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CTBEHHOCTHM TaK HAa3bIBAEMOTO KPHTMYECKOTO HapamMerpa y,, TO €CTh 3HAYCHUSI,
115t KOTOPOTo po(ye) = 1 (Teopemsr 1 1t 2). Jlist IpuGIIMKEHHOM KOHCTPYKIUK 3HAYC-
HHIt Yo ¥ Uo(yo) MPEMIOKEH MTCPANHOHHBIA METOX I JOKA3aHa €ro CXOJUMOCTb
(teopemsbl 4 u 5). KpomMe ocHOBHOI MpoGuieMbl, KaCAIOIICHCS KPHTHIECKOTO napa-
METpa, B CTAThe NMPUBEIEHBI HEKOTOPBIE NPEIIOKEHHS, NMEIOLIUE CAMOCTOSTEIbHOE
3Havenue. Crofa NpuHaUICKUT TeopeMa 3, B KOTOPOif JIaeTcsi MpOCTOe YCIOBUE,
obecrieynBarotee st cnekrpaibioro paauyca #(T) cyMMb JABYX 4 -IOJOKUTEb-
HpIX onepatopoB T = U + V cupasennusocts Hepaserctsa r(T) > #(V). B mocren-
Hell TfiaBe TEOPETUYECKUE PEe3yJIbTaThl MPUMEHEHBI [Tl JOKa3aTebCTBA CyLIECTBO-
BAHHMSI U E€JUHCTBEHHOCTH KPUTHYECKOTO MnapameTpa JJIsi CUCTEMbl MHTETpaJbHBIX
YPaBHEHU, ONUCHIBAIOIMX HEITHYIO PEaKIito B CJIOUCTON peILeTKE.

Author’s address: C.Sc. Ivo Marek, Matematicky ustav Karlovy university, Praha - Karlin,
Sokolovskg 83.
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