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AN APPLICATION OF POPOV’S METHOD IN THE THEORY
OF ELECTRICAL NETWORKS

VACLAV DOLEZAL

(Received December 22, 1964.)

0. We, shall investigate the stability of an equilibrium state of such electrical
systems which may be considered as a connection of a passive linear n-port containing
constant lumped elements, with a nonlinear purely resistive n-port. For this purpose
we shall first establish certain relations between the properties of the admittance
(impedance) matrix of a linear passive n-port and the behavior of its free transients.
On applying the extended Popov’s criteria (see [1]), there result certain assertions
on the dependence of regimes accross common terminals on the initial state of the
linear system. These results yield the desired conditions for stability of an equilibrium
of the entire connection.

1. Let us begin with some basic definitions.

If G is an oriented graph with branches h, ..., h, which contains at least one loop,
and L, R, S are constant symmetric positive semidefinite r x r matrices such that
each element L. R,. S, is assigned to a pair (h;, h), i, k = 1, ..., r of branches,
then the quadruple N, = (5, L, R, §) will be called a passive network on a current
basis, or simply J-network.

Let X be an r x m matrix, whose columns constitute a complete set of linearly
independent real solutions of the equation d'x = 0, where @ is the branch-node
incidence matrix of G (see [2]); if X (L+ R + §) X is a positive definite matrix,
N, will be called J-regular.

Let N, be J-regular; if E(t) is a real r-vector function locally integrable on <0, o)
(or, more generally, a distribution vanishing on (— oo, 0)), and J . g are real constant
r-vectors such that the component E(t), Jo;, Go; of E(1), Jo, do- respectively, is as-
signed to the branch h;, i = 1, ..., r, then the r-vector ](t) given by

(1.1) J(1)
where Hy = 1 fort 2 0, H, = 0fort <0, 6, = H, and
(1.2) Z(D)=LD+ R+ 8D,

will be called the solution of N, on a current basis corresponding to E(t), Jo. do.

Il

X(X°Z(D) X)~' X(E(t) + Liodo — SGoH,)
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Note 1. Due to the assumption on the definiteness of X'(L + R + §) X, the matrix
(X" Z(p) X)~', which has rational functions of p as its elements, always exists (see [2]);
moreover, as there is an isomorphism between the system of all Heaviside operators
and the system of all rational functions of p, the operator matrix (X' Z(D) X)™"
also exists. Consequently, in the sequel we shall not distingnisch in notation between
operator matrices and the corresponding matrices having rational functions as their
elements.

Analogously, if G is an oriented graph with branches h,, ..., h, which contains
at least one loop, and C, 4, M are constant symmetric positive semidefinite r x r
matrices whose elements are assigned to pairs of branches, then the quadruple N, =
= (G. C, 4, M) will be called a passive network on a voltage basis, or briefly a V-
network.

Let d be an r x | matrix whose columns constitute a complete set of linearly
independent columns of the branch-node incidence matrix &; if d'(C + 4 + M)d
is positive definite, then N, will be called V-regular.

Let N, be V-regular; if I(t) is a real r-vector function locally integrable on <0, o),
and V,, F, re real constant r-vectors whose elements are assigned to branches of G,
then the r-vector ¥(t) given by

(1.3) 7(t) = d(d Y(D) d)~' d\(I(t) + CV,6, — MF,H,),
where
(1.4) Y(D)=CD + A+ MD™",

will be called the solution of N, on a voltage basis corresponding to I(z), V,, Fy.

The physical meaning of the concepts related to a J-network certainly needs
no comment (also see [2]); as for the meaning of those related to a V-network,
see the Appendix 1.

Next, let us introduce the concept of a linear passive n-port.

Let G be an oriented graph in which n distinct pairs of nodes (u: u)),i=1,...n
are distinguished; if either

a) N = (G, L, R, S) is a J-network, or
b) N = (G, C, A, M) is a V-network,

then N will be called a linear passive n-port. The nodes u}, u; will be called the
initial and the end terminal, respectively, of the i-th port (uf, u;), i =1, ..., n.

Given an n-port N, let us construct a network N as follows: Let G be the graph
obtained by completing G by branches h;, h,, ..., h, such that u7 is the initial, u; the
end node of h;, i =1,2,...,n.

In case aA), define r x r matrices

- [00 - 0.0 < [0:0
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where the zero matrices standing in the upper left corner have type n x n, and put
N =(G.LR,3).
In case b) let

~ 0'0 - 0:0 - 0:0
(1.6) C=| |, a=| |, m=|-21,
0:C 0:4 0iM

and put N = (G, C, A, 1\7[)

It is obvious that in case a) N indeed is a J-network, and in case b) a V-network.

Moreover, we shall always assume that the n-port N is such that, in case a), for
every branch h; with 1 £ i £ n, there is a loop of G containing h; and no other h,
with | £ k < n, k # i; and in case b) that all nodes uf, u; are distinct for i, k =
=1,..,n

The n-port N will be called J-, (V-) regular, if N is J-, (V-) regular.

Next, introduce the notation

L]
0o = I 1Y
do

o L] efs] o]
o e[ oeL] sL) L)

where J, E, V, I are n-vectors, J*, J,, qq, V¥, V,, Fy (r — n)-vectors.

Let the n-port N be J-regular; then the pair (J,, qo) will be called the initial state
of N; and any pair (J, E), where J, E are given by (1.7) with J, E, J,, §, satisfying
(1.1), will be called a regime on N corresponding to the initial state (J,, ¢o). Further-
more, a matrix A(p) fulfilling the equation J = A(D)E for any regime (J, E) corres-
ponding to the initial state (0, 0) will be called the admittance matrix of N.

From (1.1) it is apparent that for a J-regular n-port the admittance matrix
always exists.

Analogously, let the n-port N be V-regular; then the pair (V,, F,) will be called
the initial state of N; and any pair (V, I), where V, I are given by (1.8) with V1,7V, F,
satisfying (1.3), will be called a regime on N corresponding to (Vo, F,). Furthermore,
a matrix Z(p) fulfilling the equation V = Z(D)I for any regime (V, I) corresponding
to the zero initial state will be called the impedance matrix of N.

Evidently, any V-regular n-port possesses an impedance matrix.

The physical meaning of the concepts already defined is straightforward. Obviously,
if N'is J-regular, then (J, E) may be interpreted as a pair of currents and voltages
acting simultaneously on individual ports of N, provided the initial currents and
charges “inside™ N are represented by vectors J,, ¢, respectively. (See Fig. 1a.)

Similarly, if N is V-regular, then (V, I) describes voltages and currents appearing
simultaneously on the ports of N, provided the initial voltages across the involved
capacities and initial magnetic fluxes in coils are given by V,, F,, respectively. (See
Fig. 1b.)

LSt
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The concepts of the admittance and impedance matrix then have the usual meaning.
Note also that in case of a J-regular n-port, J is uniquely determined by E (with
fixed (Jy, q)); the converse, however, need not be true. A similar statement is true
for V-regular n-ports.

Let the system &, of matrices have the same meaning as in [2], or [3] p. 29; let R,
be a subsystem of S, such that if A(p) e R,, then

1. A(p) has no poles on the imaginary axis nor at infinity,
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2. A(w) = 0.

Then we have the following assertion:

Lemma 1.1. Let N be a J-regular n-port such that its admittance matrix A(p)
belongs to R,. Then, for any regime (J, E) on N corresponding to the initial state
(Jo- qo), We have

(1.9) J() = j "a(t = ) E(©)dr + inlt),

0

where a = A(D)d, and iy(t) is independent of E(t). Moreover, there are positive
constants K, Ky, K,, A independent of E, J,, q, such that

(1.10) Ja(]. [« = Kexp (=)
(111 o)l L0 = (K0l + Kalaol) exp (~i0)

for every t = 0.

Furthermore, if N is a J-network, then the positive definiteness of matrices
X'LX, X*RX implies that N is J-regular and A(p) e R,.

Note 2. It is obvious that A(p) e R, need not imply that the matrices X'LX,
X'RX are definite. On the other hand, making use of results obtained in [2]. we have
the following corollary: If N is a J-network containing no mutual couplings and

if every loop of G contains both an inductance and a resistance, then X'LX, X'RX
are definite.

Proof of Lemma 1.1. Recalling the assumption on loops of G passing through
a branch h; with 1 < i < n and the fact that for X we can take any matrix whose
columns correspond to a complete set of linearly independent loops of G, it is readily
seen that, with a proper numeration of loops, we may set

> ]
(1.12) [ ISR
X1 X,

where I is an n X n unit matrix. Denoting

(1.13) A* = [.f?l.LATZ] _ ()?‘Z(p) £

T gk
Ayz 1 Az

(A* exists due to the J-regularity of N), where AT, is an n x n matrix, we have
A* € S, (See [2]. p. 455.) Furthermore, by (1.12),

(1.14) A= X4a*X =
_ [ AT A AR, ]
X AT, + X,4T, 1 X AT XY + X ATX, + XoADX) + X,45,X)
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Obviously 4 € &,, and consequently 4¥, ¢ S,
Next, making use of (1.1) and (1.7), we have for any regime (J, E),

oG ][5 [ m)
so that by (1.14),
(1.15)  J = AT(D) E + (A(D) X} + A},(D) X3) (LJody — SqoH,) -

Thus, according to the definition, A}, is the admittance matrix A(p) of N.
From the assumption A(p) = Af(p) € R, it follows that

A, .—:Z';Ajk(p-—otj)_k, kz1, Rea; <0,
J

and consequently,

(1.16) a(t) = AY,(D) 3, = ZI P(t) Ho(t) exp ajt ,

where Pj(t) are matrix polynomials in ¢. Hence, constants K, A > 0 exist such that
(1.10) holds.

On the other hand, as A* € &,,, we have by the expansion theorem (see [3], p. 31),

(1.17)

[_/_‘T.I._L,,T},:I = [H(lcf) EH(I?] I i p I: HY H(lkz):] . [ By, | BIZ]
= = L g | o2 LU
ATy A3, HY" HYS) =107+ of [ HY : HY) 12} Baa

(k) ! (k)
where 0 £ 0, < W, < ... < w,, the matrices [——-‘«L—L—-‘—zu] are positive semidefi-

: [ By . _
nite for k = 1,2, ..., s, o0, the matrix [»—11—-: ————— ] has no poles in the closed right
v 'R
121 D22

halfplane (including o), belongs to &,, and |: -------- o423 70 ] is positive semi-
\12(00) ' Byy(0)
definite.

However, since A}, € R,, we have from (1.17) that necessarily HY = 0, k =
=1,2,...,5 oand By,(o0) = 0. From this it follows thatalso H{) = 0,k = 1,2, ...
... S, 00,and Blz(oo) = 0, since otherwise positive semidefinitness would be violated.
Hence the matrix 47,(p) has no poles in the closed right half-plane and A},(c0) = 0.

Next, from the identity A*(X'ZX) = I we have by (1.12), (1.2) and (1.5) that

AL AL xyq[oioq[ .07 [1 0
Ay A%, 0 Xy Loz |l X x, 01 |
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and consequently, on performing the multiplication,
(1.18) BXIZX, 4+ ATLXZX, =1, AT X\ZX, + A%, X,ZX, =0,
where Z = Lp + R + Sp™'.
Multiplying (1.18) by p and then putting p = 0, we get
(1.19) AT1(0) X1SX, + AT,(0) X35X, =0,
AT1(0) X1SX, + AT,(0) X3SX, =0.

Postmultiplying the first equality (1.19) by A7,(0), premultiplying the second by
AT5(0) and summing, we get

(471(0) X + A7,(0) X3) S(X,AT4(0) + X,475(0)) = 0.
Since S is positive semidefinite, this yields,
(1.20) (A%,(0) X} + A%,(0) X3)S = 0.
Returning to (1.15), we have (see Appendix 2)

J =Jta(t — 1) E(t) dt + i,

4]
with iqg = i; + i,, where
(]'21) i = (ATI(D) X‘x + ATZ(D) X}) LJod ,
ip = —(AT,(D) X\ + A}5(D) X3) SqoH, .

Putting (A7,(D) X} + Af,(D) X}) 8o = 4, it follows easily from the properties
of AY,, A, that there is a K > 0 such that ||a(r)| < Kexp(—4f), t = 0. Hence
il £ Ky|[Jol exp (—At). Next, we have

t

i, = —Jd(r)dr.Sqo.
0

\

Consequently, i,(o0) exists and by Tauber’s theorem we have (see Appendix 3)
iy(0) = —(47,(0) X3 + A75(0) X3) Sqo -

Thus by (1.20), iy(c0) = 0, and consequently there is a K, > 0 such that [i,]| <
< K, qoll exp (—41), t 2 0.
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Hence the first inequality (1.11) is established. The second follows immediately
from the fact that both i; and i, have the form

ZQJ(I) H, exp (05,-1) >

where Q(t) are polynomials and Re a; < 0. The last statement of Lemma 1.1 is
a direct consequence of Th. 2.1 — 5 and Th. 2.1 — 6 in [3]. The assertion dual
to Lemma 1.1 reads as follows:

Lemma 1.2. Let N be a V-regular n-port such that its impedance matrix Z(p)
belongs to R,. Then, for any regime (V, I) on N corresponding to the initial state
(Vo, Fo), we have

(1.22) Vi) = J "t = O 1(x) dt + vli),

where z = Z(D) 3, and v(t) is independent of 1(t).
Moreover, there are positive constants K, K, K,, A independent of I, V,, F, such
that

(1.23 =) ()] < R exp (=)

(1.24) Joo]- sl < (Ru[Val + RallFol) exp (- 20
for everyt = 0.

Furthermore, if N is a V-network, then the positive definiteness of matrices
d'Cd, ' Ad implies that N is V-regular and Z(p) € R,

Proof. Recalling the assumption that all the terminals u?, u,, i, k = 1,2,...,n
are distinct, it can be easily verified that, with a suitable numeration of columns

of the matrix 4, we may set
d= IO ,
dy d,

where [ is the n x n unit matrix. Starting from (1.3) and following exactly the same
pattern as in Lemma 1.1, we conclude the proof.

Lemma 1.3. Let N be a J-regular n-port and let its admittance matrix A(p)
satisfy the condition

(1.25) A(p) ="'y + B(p),

where y + 0 and B(p) € R,. Then, for any regime (J, E) on N corresponding to the
initial state (Jo, qo), we have

(1.26) J(0) = j'(y b(t = ) E(z) dt + io(1)
where b(t) = B(D) 8, and iy(t) is independent of E(t).
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Moreover, ig(o0) exists and there are positive constants K, K, ..., K,, A such that

(1.27) [6)]. [6'()]| < Kexp(—4t), t=0,
(128)  Jio()) o). L] < (Kl + Kalao) exp (<20). 12 0,
(1.29) lio(e0)]| = Ks[|Jo]| + Kafdo] -

Proof. Defining X again by (1.12), let A*, A be given by (1.13)and (1.14), respective-
ly. Since AY; = A(p) = p™'y + B(p), we conclude as before that A7, can be expand-
ed as AT, = p~ 'y, + By,(p), where By, has no poles in the closed right halfplane
and By,(o0) = 0.

Next, by (1.15) we have
(1-30) J = (VD_I + B(D)) E + (VX\thl + szX\zD_l) (LJ050 — SqoH,) +

+ (B(D) X + By,(D) X3) (LJody — SqoH,) -

Hence (1.26) holds and we have iy = iy + i, + iy + i, with

It

(L.31) iy = (yX1 + 712X3) LIoH, , i
iy = (b(t) X} + by,(t) X3) Ly, iy

—(yX} + 712X3) Sqo - Hot ,
—(b(t) X\ + by,(t) X3) * Hy . Sqq -

where by,(t) = B;,(D) &, and the symbol * denotes the convolution product.

According to the properties of B, By, thereisa K > 0and A > 0 such that ||b(t)],
16’0, [b12(1)] < Kexp(—4t), t 2 0; consequently |is]| < Ks|Jo exp (—21),
iy(o0) exists and by Tauber’s theorem,

(1.32) ig(0) = —(B(0) X} + B;,(0) X3) Sq, -
Thus
(1.33) lia(o0)]| < Keao] -
Also,
lia = ia(o0)] = Ks|gol exp (—4r),
and
(1.34) lis]| < Ks] Jol -

On the other hand, multiplying the identities (1.18) by p? and then putting p = 0.
we get

(1.35) yX1SX; + y1,X58X, =0, 99X SX, + y,,X55X, =0.
From this we obtain, as before,
(1.36) (yX} + 712X3)S=0.

Hence i, = 0.
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Thus we have ip(0) = iy + iy(0), so that in view of (1.34) and (1.33) the in-
equality (1.29) is true. Moreover, iy — ig(0) = iy + iy — iy(0), so that |i, —
— ig(0)| = (Ks|Jol + K|lgol) exp (—At): the remaining inequality (1.28) follows
from the particular form of i,. Hence, Lemma 1.3 is proved.

In a completely analogous manner a similar statement for V-regular n-ports with
impedance matrix Z(p) = p~'y + C(p) may be proven. As its wording is the same
as that in Lemma 1.3, the explicit formulation is omitted.

Note 3. It can be easily verified that every n-port obtained from a J-regular
n-port with admittance matrix B(p) € R, by shunting its ports with positive inductan-
ces I;, possesses the admittance matrix p~'diag(I7"', ..., I, ') + B(p). Similarly,
if an n-port has the impedance matrix B(p) and if in each of its ports a capacity
¢; > 0 is inserted in series, then the resulting n-port has the impedance matrix
p~!diag(cr ', ..o e, ") + B(p).

Lemma 1.4. Let h > 0 and let A(p) € R,; then there is a g > O such that
_ 1
(1.37) Re n‘{(l + iwg) A(iw) + P I}rl >0

for every real w and complex n-vector n.
Proof. From A(p) € R, we have
(1.38) Alp) =Y Aup — )™ ., k=1, Rea; <O.
Jjk
It is obvious that there are constants x;, > 0 such that
(1.39) lw(iow — o))" < x;, for every real w .
Thus, we have
(140)  [Re 7'ic Aiw) n] < [0 Alio) ] = ¥ |nl? [l = K]
Jk

On the other hand, Re 1/h.%'In = 1/h . || Thus, choosing 0 < g < h™'K™",
we have by (1.40)
[Re 77" iwg A(iw) n| < h““n[]z )

and consequently
— 1
Re 71’ (iwq Aliw) + i;l) nz0

for every real w and n. Since also 4(p) € S,, we have Re n* A(iw)n = 0 for every w
real and #. This proves (1.37) as required.

2. Let us now turn our attention to systems formed by a parallel connection of
a linear passive n-port with a nonlinear n-port.
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Any system N with n terminal-pairs (u?‘, uy), i = 1,..., n, on which the concepts
of current J; and voltage E; are defined will be called a (general) n-port, if there
is given a set R of pairs (J, E) with J' =[J,...,J,], E' = [Ey, ..., E,]. A pair
(J, E) € R will also be called a regime on N.

Let N, N, be two n-ports with sets of regimes R, R, respectively; a system charac-
terized by a set S of common regimes (J, E), i.e. (J, E) € S if and only if there are
pairs(J,E|)eR,,(J,, E;)eR,

such that =J; = —J, J11 Y J21
E=E, = E,, will be called TE’
a parallel connection of N, .
and N,. 2 uy
The physical meaning of Jj U J
the concepts defined is straight- } £2
forward and needs no com- N, .- N,
ment; cf. Fig. 2. U
It is also clear that the J-re-
ular and V-regular n-ports n n
;gmroduced in %he pre\r/)ious 7 gn %
section are particular cases of T E"
a general n-port. L",: !

Let f(x) be an n-vector fun-
ction of the n-vector argument Fig. 2.
x defined on the entire n-di-
mensional space; the n-port N will be called resistive if for each (J, E) € R we have
E = f(J), and conductive if J = f(E).

Moreover, introduce the following notation:

Let 9N be the set of all real continuous n-vector functions f(x) of the n-vector x
which fulfil the condition

(2.1) f'(x)x>0 for x=+0.

Let 0 < h, < h, and let N,(h,, h,) be the set of all n-vector functions f(x) which
have the following properties:

a) Forevery f € N,(h,, h,) there is a real scalar function U(x) possessing continuous
first partial derivates everywhere and such that f(x) = grad U(x), i.e. for the i-th
component fi(x) of f(x) we have

(2.2) filx) = agjﬁi, i=1,...,n.
b) x> = () x, [f@)] = hsllx]

for every x.
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Note 4. It can be easily verified that if f(x) is continuous and such that fi(x) =
= @i(x;), hyx? £ @i(x;) x; < hyx} forevery x;and i = 1, ..., n, then f e R,(hy, hy).

Note 5. If a resistive n-port N with E = f(J) is such that f belongs either to 9
or to N,(hy, hy), then E'J = 0 for any regime (J, E). Hence N cannot be a source
of energy. An analogous statement is true for a conductive n-port with fe R*
(or € N, (hy, hy)).

Now, we have the following assertion:

Theorem 2.1. Let N be a J-regular n-port whose admittance matrix A(p) belongs
to R,; furthermore, let N, be a resistive n-port such that E, = f(J,) and fe
€ N, (hy, hy). Then there exist a continuous function ®(&) vanishing at & = 0 and
positive constants Ky, K, such that, for any common regime (J, E) on the parallel
connection of Ny and N,, we have

(2:3) O] = @Kol + Kalgol)

for everyt 2 0, and J(t) > O as t — oo, where (Jo, qo) is the initial state of N.

From the assertion already stated we have the following conclusion:

Corollary. The equilibrium state of the parallel connection of Ny and N,, i.e. the
common regime (0, 0), is stable and asymptotically stable with respect to the initial
state of N,. Moreover, the region of stability is the entire space.

Actually, it is clear that (0, 0) is a regime on N, corresponding to the initial state.
(0, 0); on the other hand, from (2.2) b) we have f(0) = 0, so that (0, 0) is a regime
on N,, and consequently, by definition, (0, 0) is a common regime on the connection
of Ny and N,. Hence, by Th. 2.1, for every ¢ > 0 there is a 0 > 0 such that for the
common regime (J, E) corresponding to the initial state (J,, go) we have [|J(1)| < &
whenever HJOH < ¢ and ”qOH < 4.

In addition, we have J(t) - 0 as t > co.

Note 6. As by definition of a common regime (J, E) we have E = E, = f(J,),
it is clear that Th. 2.1 may be augmented as follows: There is a continuous function
@(&) vanishing at & = 0 such that

(2.4) [E@] = @(K,|Jo]l + Kaflgo]

), 120,

and E(t) > 0 as t - .

For the proof of Th. 2.1 we shall make use of the following Theorem 3.1 given
in [1]:

Let k(t) be a real n x n matrix satisfying the inequalities ||k(t)||, [|K'(t)] < C .
.exp (—=At), t 20, with 2> 0, w(t) a real n-vector satisfying |w(t)|, |w' ()| <
< Wexp (—4t), t 2 0 with a fixed & > 0. Moreover, let f € W,(hy, hy), h > h3hy!
and let

(2.5) k(w) = re"“" k(t) dt .
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If there is a ¢ > 0 such that
(2.6) Re 7 {(1 + iwg) k(w) + h"'I}n 2 0

Sor every real w and every n, then there is a continuous function ®(&) vanishing
at & = 0 and such that for the solution x(t) of

2.7 x(t) = wlt) - J Kt = ) f(x(2)) de

0
we have ||x(1)| < ®(W) for t = 0, and x(t) > 0 as t — oo.

Proofof Th. 2.1. By Lemma 1.1 we have, for a regime (J,, E;) on N, correspond-
ing to the initial state (J,, qo),

t
(28) () = J alt — ) Ey(2) dt + ig(d),
0
and at the same time, (1.10), (1.11) hold.
On the other hand, for N, we have E, = f(J,). Thus, by definition of a common

regime (J, E), J = J, = —J,, E = E; = E,, so that by (2.8),
(29) 1) = —i(t) — J alt — 1) f(Jy(2)) dr
0

i.e. equation (2.7).
Furthermore, using the notation of the auxiliary assertion, it is evident that

k(w) = '[:ei”' a(r) dr = A(iw)

(see also App. 2); hence, as A(p) € R,, it follows from Lemma 1.4 that there is a
g > 0 such that (2.6) is satisfied for a chosen h > h3h;'. Consequently, there is
a function @(&) with the properties stated in the auxiliary assertion and such that
[72(1)] < ®(W)fort = 0, where the meaning of Wis given by [[io(t)]| < Wexp (7).
But by (1.11) we may set W= K,|[Jo|| + Ka|lqo|. Since [[J(1)] = |Jo(1)] and
Jo(t) > Oast — oo, (2.3) and J(t) — 0 follow immediately. Hence, Th. 2.1 is proved.

Making use of Lemma 1.2 and of the fact that in the case of a V-regular n-port N,
we may set E; =V, J, = I for a regime (V,I) on N,, and repeating the previous
proof, we obtain the following assertion, which is dual to Th. 2.1.

Theorem 2.2. Let Ny be a V-regular n-port whose impedance matrix Z(p) belongs
to R,; further, let N, be a conductive n-port such that J, = f(E,) and f € R,(hy, h,).
Then there exist a continuous function 55(5) vanishing at £ = 0 and positive constant
K., R, such that, for any common regime (J, E) on the parallel connection of N,
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and N,, we have
IEO] = &(K. Vol + K| Fol)

for every t = 0, and E(t) - 0 as t — oo, where (V,, Fy) is the initial state of Ny.
Observe that, under the assumptions of Th. 2.2, the Corollary following Th. 2.1
and a note analogous to Note 6 hold.
Next we have the following assertion:

Theorem 2.3. Let N, be a J-regular n-port whose admittance matrix A(p) satisfies
the condition A(p) = p~'y + B(p), where B(p)e R, and vy is positive definite;
further, let N, be a resistive n-port such that E, = f(J,) and fe N¥. Then there
exists a continuous function ¥(¢, n) vanishing for & = n = 0 and such that, for
a common regime (J, E) on the parallel connection of Ny and N,, we have

(2.10) 7Ol = #(lv

for everyt = 0, and J(t) » 0 ast — oo, where (Jo, q,) is the initial state of N,.

The proof of Th. 2.3 is based on the following assertion which follows immediately
from Th. 1.4 in [1]:

Let k(t) be a real n x n matrix fulfilling the inequalities |[k(1)|, |k'(r)] <
< Cexp(=4t), t 20, C, L >0, w(t) a real n-vector fulfilling the inequalities
[w()], [w'(1)] £ Wexp (—4t), y a symmetric positive definite n x n matrix and ¢
a real constant vector with |c| < K. Moreover, let fe W} and let k(w) be defined
by (2.5). If
(2.11) Re n' k(w)n =0

for every real w and every n, then there is a continuous function ¥(a, B) vanishing
at o = B = 0 such that, for the solution x(t) of

(2.12) x(t)=C+w(t)—f(y+lct—r) f(x(z)) dz,

0
we have ” t)]] Vl/ K)forevelyr>0 and x(t) > 0 as t — oo.

Proof of Th. 2.3. By Lemma 1.3 we have, for a regime (J,, E;) on N, correspond-
ing to the initial state (Jo, qo),

(2.13) Ji(1) = Jt(y + b(t — 1)) Eq(t) dt + io(1),

and, at the same time, (1.27), (1.28) and (1.29) hold. On the other hand, for a regime
(J3, E;) on N,, we have E, = f(J,). By definition of a common regime on the parallel
connection of Ny and N,, J = J; = —J,, E = E, = E,; consequently, by (2.13),

(214)  J5(0) = (io(o0) — ioft)) — io(o0) — j "+ bt — ) f(J5(0)) de.

0
which is an equation of the type (2'12).
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Moreover, as b = B(D) d¢, we have

B(iw) = j exp (iot) (1) dt :
0
but B(p) € S, so that (2.11) is satisfied with k(w) = B(iw). Thus, by the auxiliary

assertion there is a continuous function ‘IN’(rx, /3) vanishing at the origin such that,
with regard to (1.28), (1.29),

19200 = P(K o]l + Kallgols Ks]Jol + Kallaoll) -

At the same time, J,(f) - 0 as t - co. Finally, setting ¥(u, v) = ¥(K,u + K,v,
Kiu + K,v) and recalling the equality ||J()] = ||7,(7)]. (2.10) follows immediately.
Hence, Th. 2.3 is proved.

Making use of the dual assertion of Lemma 1.3 and of the auxiliary theorem,
we obtain the following counterpart to Th. 2.3:

Theorem 2.4. Let N, be a V-regular n-port whose impedance matrix Z(p) satisfies
the condition Z(p) = p~'y + C(p), where C(p)e R, and y is positive definite;
further, let N, be a conductive n-port such that J, = f(E,) and f € R}. Then there
exists a continuous function ¥Y(&, ;1) vanishing at & = n =0 such that, for
a common regime (J, E) on the parallel connection of N, and N,, we have

(2.15) lE@] = #([Vol. [ Fol)

foreveryt = 0, and E(t) — 0ast — oo, where (V,, FO) is the initial state of N,.
Note also that under the assumptions of either Th. 2.3 or Th. 2.4, the Corollary
following Th. 2.1 and Note 6 hold.

Note 7. The criteria of stability obtained in theorems 2.1 to 2.4 are advantageous
particularly due to the fact that in practical cases it is not necessary to set up the
system of nonlinear equations describing the behavior of the electrical system in
question, but only to establish the admittance (impedancei) matrix of the linear part,
which may be performed by well-known methods directly from the structure of the
circuit, and then check whether the admittance (impedance) matrix obtained be-
longs to R, or has the form considered in theorems 2.3 and 2.4.

Note 8. The criteria developed above may also be used for checking the stability
of nonzero constant equilibria. Indeed, consider for example the situation dealt
with in Th. 2.1, and assume in addition that N, contains some inner constant voltage
sources such that a nonzero constant common regime (J*, E*) exists for an initial
state (J§, g5) of N,. Then instead of (2.9) we have

T

JE = —id1) — jta(t — 1) f(J3) dr — f ap(t — t)edr,

0 0
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where the vector e represents the inner voltage sources. (Also see (1.15).) Since, for
any common regime (J, E) corresponding to an initial state (J,, q,) and to the same
vector e, the equation

Jy(t) = —iol1) — j;a(t — 1) f(Jy(r)) dr — Jtalz(t - 1)edr

0

holds, we have for x(1) = J,(t) — J3,
x(1) = ~Tolt) - f alt - 1) g(x(2)) dr ,
0

where g(x) = f(x + J%) — f(J3). Thus the previous results are applicable to this
case provided the vector function g has the required properties.

Concluding this paper let us present some applications of the results given above.

Example 1. Consider the oscillator with a tunnel diode schematically plotted
in Fig. 3, and investigite the circuit behavior for 1 = 0, provided the battery is
switched off at t = 0. Assuming for the first approximation that the tunnel diode
behaves as a parallel connection of a constant capacity K with a nonlinear resistance
(see Fig. 4a) whose characteristic is plotted in Fig. 4b, we may consider the circuit
as a parallel connection of a linear passive dipole (1-port) with a nonlinear one.

(See Fig. 5.) The initial state of the
linear dipole is given by the voltages
Vo, V, across the capacity C and K,
R, respectively, and by the flux F, of

the coil.
L
T e
/
/
/ J=f(E)
/
~ME
—— TR E
E = |g | = /
™D %A //
J /
/
Fig. 4a. Fig. 4b.
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From Fig. 4b it is clear that for J = f(E) we have fe R,(hy, h,); moreover, for
the impedance Z(p) of the linear dipole we obtain

(2.16) Z '(p) = Kp + A((p),
where
@) A - TR ,
R, + (1 + R,Cp) (R, + Lp)
so that
(2.18) 2p) = R, + (1 + R,Cp) (R, + Lp)

1+ R(C+K)p+ (1 +R,Cp)(R, + Lp)Kp~

L Rz J1 JZ
. /m \
cl_ R -
v .]. R, A K |E

N,

h

Fig. 5.

Since Kp is pure imaginary on the imaginary axis and Re Al(iw') > 0 for every
real w as can be easily verified from (2.17), we have Z™'(iw) + 0; hence Z(p) has
no poles on the imaginary axis, and in addition, by (2.18), Z(c0) = 0. Since also
Z(p) € S,, we have Z(p) € R,. Thus by Th. 2.2, there is a continuous function ¢(x)
with @(0) = 0 and constants K,, K, > 0 such that the voltage E(f) accross the
tunnel diode fulfils the inequality |E(r)] < ®(K,(V, + 7p)* + K,|Fo|), t = 0, and
simultaneously, E(f) — 0 as t —» oo. Hence, after switching off the battery at t = 0
the circuit always returns to the “dead” state independently of the state at 1 = 0.

Example 2. Consider a demodulator circuit with a silicon diode plotted in Fig. 6.
Our task is to establish the behavior of the circuit if the exterior excitation e disap-
pears.

Following the ideas developed above, consider the circuit in question as a parallel
connection of a linear passive dipole with a nonlinear one. (See Fig. 7a.) The silicon
diode behaves as a conductive dipole, whose characteristic is shown in Fig. 7b.
Thus J = f(E) with fe R,(h,. h,). On the other hand, for the impedance of the
linear dipole we have

(2.19) Z(p) = (2" + Z,")7!
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1 o+ L
(2200 Z, =R+ —Re | z,- L4 ¢TEP
I + R,Csp C,p 1 +Cp+ LCyp
Co R,
L
e ¢
¢

Fig. 6.

J //
hE
J,J Io //
//
R, / Jd= f{E)

T ME

E %D ,,,,, =10 Z

, /
Cy R, //
1 /
: ° /
Fig. 7a. Fig. 7b.

From the expression for Z;! it is readily scen that Re Z; '(iw) > 0 for every w.
As Z;'(p)e S,;, we have ReZ;'(iw) =0, and consequently, Z;' + Z; '+ 0
on the imaginary axis. Hence by (2.19), Z(p) has no poles on the imaginary axis.
Moreover, directly from Fig. 7a it is obvious that Z(oo) = 0. As Z(p) € S,, we have
Z(p) e R,.

Thus, using Theorem 2.2, there is a continuous function ¢(x) vanishing at x = 0
and constants K,, K, > 0 such that |E(t)] £ &(K,|[V,|| + K,|Fo) foreveryt = 0,
where V, is a 3-vector of initial voltages on the capacitors C,;, C,, C;, and F, the
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initial flux of the coil. Moreover, E(t) — 0 as t — oo. From this it also follows that
each current in the circuit tends to zero as t — oo.

Appendix 1.

Let us present the physical background of eq. (1.3). Consider a ‘“‘branch” h,
consisting of a parallel connection of capacity Cy, conductance A,, inductance 1/M,
and current source I, (see Fig. 8). Then for the voltage V; across h, we have V, =
= C; (i) + VioHo, where Vg
denotes the initial value of ¥, due G
to the initial condenser charge.
Furthermore, i, = 4V, and V; =
M ti5. Thus i = C(Vy — Viedo)
and i, = MV,"D + MFoH,,
where F,, is the initial magnetic
flux of the coil. Consequently, for
the total branch current I, we have

=)

I, =(CD + Ay + M\D™Y) V, —
— C Voo + MyFioHy — I, .

Next, if a network is formed of Fig. 8.
branches hy, k =1,...,r, already
discussed whoses tructure is given by an oriented graph G with branch-node inciden-
ce matrix g, then by the second Kirchhoff law we have

(A.1) a'{(CD + A+ MD™') V — CVydy + MFyHy — 1} =0,

where C, 4, M are r x r matrices with elements C,, 4,, M,, respectively, and V, I.
Vo, Fo are r-vectors formed of the corresponding elements V,, I, Vo, Fyo, respectively.
On the other hand, by the first Kirchhoff law we have

(A.2) X'V=0,

where X has the usual meaning. Since a'A = 0, i.e. X'a = 0, the columns of d
(a complete set of linearly independent columns of a) constitute a complete set
of solutions of X'¢ = 0. Thus, from (A.2), there is a vector w such that V = dw.
Moreover, since (A‘l) is equivalent with d'{...} = 0, we get

. 4" Y(D) dw = d'{I + CVody — MFoH,}
with Y(D) = CD + A + MD™'. From this (1.3) follows immediately, provided
det d' Y(p)d % 0.

Appendix 2.

In the text we have used the formula A(D) E = (A(D) o) * E without comment;
to this end, one has the following assertion:
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a) Let f, g be distributions vanishing on (— o0, 0), r(p) a rational function; then

(A3) r(D)(f+g) = (r(D)f) *g.
In particular,
(A.4) HD)f = (r(D) do) = f .
b) If in addition f possesses a Laplace transform £(f), then r(D) f also does, and
(A.5) L(r(D) f) = r(p) 2(f) .

Proof. Since r(D) is a Heaviside operator, it can always be expanded as (see [3],
p. 175)

(A.6) (D) = QD) + Y Aw(D + o)™, k=1,

where Q(p) is a polynomial. Since (f * g)" = f" g for any integer n (cf. [3], p. 60),
itis sufficient to prove (A.3) for (D) = (D + a)™'. Thus, puttingx = ((D + a)~! f)*
* g, we have

(D+a)x=x"+ax=(D+a)" fyxg+a((D+a)" " fxqg=
=(DMD +a) " f+aD+a) ' flrg=Ffxg.
Hence, x = (D + a)™! (f = g) as required.
Formula (A.4) follows immediately from (A.3) by using the fact that 5, * f = f
(cf. [3], p. 60).
The assertion b) is given in Th. 5.5 — 2'in [3], p. 176.

Appendix 3.

In the proofs of Lemma 1.1 and 1.3 we have used the following version of Tauber’s
theorem:

Let r(p) be a rational function with no poles in the closed right half-plane
(oo included); then H(D) H, = f is a regular distribution and f(o0) = r(0).

Proof. Let r(p) = ro + F(p) with #(c0) = 0. Then
f=roHy + H(D)Hy = roHy + D™Y(H(D) 6o) = roHo + D™ 'g,

where ¢ = F(D) 8, is obviously regular and of exponential type. By (A.5) we also have
Z(0) = Hp). Thus, for t = 0.
50 = o+ [ ete) oo
and consequently, ’
f(o0) = ro + th(r) dt = ry + H0)
which finishes the proof. '
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Vytah

APLIKACE POPOVOVY METODY V TEORII ELEKTRICKYCH SITI

VAcLAv DOLEZAL

V ¢lanku je dokdzdno nékolik vét o stabilité klidového stavu nelinedrnich elektric-
kych siti, které jsou vytvofeny spojenim linedrniho 2n-pdlu s konstantnimi soustie-
dénymi prvky a nelinearniho 2n-p6lu, ktery ma odporovy charakter.

Nejprve jsou vysetfeny jisté souvislosti mezi admitacni (impedanéni) matici
linedrniho 2n-polu a vlastnostmi prechodovych reZima na svorkdch. Na tyto vysledky
jsou pak aplikovdny Popovovy metody, rozsifeni na vektorové nelinearity [1], ¢imz
jsou ziskdny podminky absolutni stability reZimu na spole¢nych svorkdch spojeni
spole¢n€ s odhady pro normu reZimu v zdvislosti na po¢dtecnim stavu linedrni ¢4sti.

Odvozend kritéria jsou prakticky vyhodnd z toho divodu, Ze je 1ze v konkrétnich
pfipadech vyhodnotit pfimo ze struktury a hodnot prvku sité, takZe neni nutno
sestavovat nelinedrni soustavu rovnic, popisujici dynamiku sité.

Pouziti odvozenych vysledkil je ilustrovdno na piikladé oscildtoru s tunelovou
diodou a demoduldtoru s kfemikovou diodou.

Pe3rome

[MTPUMEHEHWE METOJA T1OTMOBA
B TEOPUU DJIEKTPMYECKUX LEMEN

BALIJIAB JIOJIEXAJT (VACLAV DOLEZAL)

B ¢raTbe 10Ka3aHO HECKOJILKO TeopeM 00 YCTOHYMBOCTH COCTOSIHUSL MOKOSL HeJlH-
HCHHbBIX WIEKTPUYECKUX Lieneld, 00pa30BaHHbBIX COCAMHEHUEM JIMHEHHOTO 21-TOJIHOC-
HHUKA C MOCTOSAHHBIMU COCPELOTOYECHHBIMU 3JIEMEHTAMU W HEJTMHEHHOro 2n-mosroc-
HUKA OMUYECKOro Xapakrepa.

CHayana MCCIC/YIOTCS HEKOTOpble CBSI3H MEXK/Y aJAMHTAHCHOH (MMIleAaHCHOIT)
MATPHULCH JIMHEHHOTO 2N-NOJIFOCHUKA U CBOHCTBAMM NMEPEXOJHBIX PEXMMOB HA 3a-
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xumax. K aTuM pesysibTaTaM npuMeHsIOTCS 3aTeM MeToabl Ilonoea, pacrnpocTpa-
HEHHBIC Ha BEKTOPHBIC HesuHeiHOCTH [1], U Takum 0Gpa3oM BBIBOISTCS YCJIOBMS
a0COIOTHON YCTOMYMBOCTH PeXUMA HA OOUIMX 32)KUMaAX COETUHEHUS BMECTE C OIICH-
KaMu JUISE HOPMbI PEXWMA B 3aBUCUMOCTM OT HAYAJIGHOTO COCTOSHUS JIMHEHHOU
YACTH.

[MoJtyueHHBIE KPUTEPUM BBLIFOAHBI HA TIPAKTUKE MOTOMY, 4TO WX MOXHO B KOHKDET-
HBIX CJIyYasiX BBIYHUCIMTH HETIOCPEJACTBEHHO MO CTPYKTYpPE M 3HAYCHUSM 3JEMEHTOB
LIENH, TaK YTO HET HaJOOHOCTU COCTABIIATh HEJMHEHHYIO CUCTEMY YPaBHEHUIA, OMK-
CBIBAIOILYIO IUHAMUKY IEMH.

[MprMeHeHe BBIBEAECHHBIX PE3YJbTATOB WIIJIFOCTPUPYETCS HA IIPUMEPE OCLMIIS-
TOpa C TOHHEJIBHBIM JHOJOM U JAEMOIY/IATOPA C KPEMHHEBBIM THOMAOM.

Author's address: Ing. Viclav Dolezal C. Sc., Matematicky ustav CSAV, Zitna 25, Praha 1.

188



		webmaster@dml.cz
	2020-07-01T23:19:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




