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SVAZEK 11 (1966) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

AN APPLICATION OF POPOV'S METHOD IN THE THEORY 
OF ELECTRICAL NETWORKS 

VACLAV D O L E Z A L 

(Received December 22, 1964.) 

0, We; shall investigate the stability of an equilibrium state of such electrical 
systems which may be considered as a connection of a passive linear n-port containing 
constant lumped elements, with a nonlinear purely resistive n-port. For this purpose 
we shall first establish certain relations between the properties of the admittance 
(impedance) matrix of a linear passive n-port and the behavior of its free transients. 
On applying the extended Popov's criteria (see [1]), there result certain assertions 
on the dependence of regimes accross common terminals on the initial state of the 
linear system. These results yield the desired conditions for stability of an equilibrium 
of the entire connection. 

1. Let us begin with some basic definitions. 

If G is an oriented graph with branches hu ..., hr which contains at least one loop, 
and L, R, S are constant symmetric positive semidefinite r x r matrices such that 
each element Lik, Rik, Sik is assigned to a pair (hi9 hk), i, k = 1, ..., r of branches, 
then the quadruple N, = (G, L, R, 3) will be called a passive network on a current 
basis, or simply J-network. 

Let X be an r x m matrix, whose columns constitute a complete set of linearly 
independent real solutions of the equation d'x = 0, where a is the branch-node 
incidence matrix of G (see [2]); if X\L+ R + S) X is a positive definite matrix, 
Nj will be called J-regular. 

Let Nj be J-regular; if E(t) is a real r-vector function locally integrable on <0, oo) 
(or, more generally, a distribution vanishing on ( — oo, 0)), and J0, q0 are real constant 
r-vectors such that the component E^t), Joi, q0i of E(t), J0, q0, respectively, is as
signed to the branch hi9 i = 1, ..., r, then the r-vector J(t) given by 

(1.1) J(t) = X(X'Z(D) X)~l X(E(i) + LJ050 - Sq0H0), 

where H0 = 1 for t = 0, H0 = 0 for t < 0, S0 = H0 and 

(1.2) Z(D) = I D + R + SD~l , 

will be called the solution of N, on a current basis corresponding to E(t), J0, q0. 
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Note 1. Due to the assumption on the definiteness of KX(L+ R + 5) X, the matrix 
(X* Z(p) X)"1, which has rational functions of pas its elements, always exists (see [2]); 
moreover, as there is an isomorphism between the system of all Heaviside operators 
and the system of all rational functions of p, the operator matrix (KXZ(D) X)~l 

also exists. Consequently, in the sequel we shall not distingnisch in notation between 
operator matrices and the corresponding matrices having rational functions as their 
elements. 

Analogously, if G is an oriented graph with branches hi9 ..., hr which contains 
at least one loop, and C, A, M are constant symmetric positive semidefinite r x r 
matrices whose elements are assigned to pairs of branches, then the quadruple NF = 
= (<3, C, A, M) will be called a passive network on a voltage basis, or briefly a V-
network. 

Let d be an r x / matrix whose columns constitute a complete set of linearly 
independent columns of the branch-node incidence matrix a; if d\C + A + M) d 
is positive definite, then Nv will be called V-regular. 

Let NF be V-regular; if l(t) is a real r-vector function locally integrable on <0, oo), 
and V0, F0 re real constant r-vectors whose elements are assigned to branches of G, 
then the r-vector V(t) given by 

(1.3) 

where 

(1.4) 

v(t) = ä(ä< Ÿ(D) ãyl З (t) + Cv0ő0 - мғ0н0), 

Y(D) = ČD + Ã + MD'1 , 

will be called the solution of Nv on a voltage basis corresponding to I(t)9 V0, F0. 
The physical meaning of the concepts related to a J-network certainly needs 

no comment (also see [2]); as for the meaning of those related to a V-network, 
see the Appendix 1. 

Next, let us introduce the concept of a linear passive n-port. 
Let G be an oriented graph in which n distinct pairs of nodes (uf, w,), / = 1, ..., n 

are distinguished; if either 

a) N = (G, L, R, S) is a J-network, or 

b) N = (G, C, A, M) is a V-network, 

then N will be called a linear passive n-port. The nodes uf, ut will be called the 
initial and the end terminal, respectively, of the i-th port (w*, ut), i = 1, ..., n. 

triven an n-port N, let us construct a network N as follows: Let G be the graph 
obtained by completing G by branches hl9 h2, ..., hn such that wf is the initial, ut the 
end node of hb i = 1,2,..., n. 

In case a), define r x r matrices 

(1.5) Г°:° " R = 
o;o" 
oïR 

o;o i 
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where the zero matrices standing in the upper left corner have type n x n, and put 

N = (G, L, R, S). 

In case b) let 

/i,r\ ~ r o i o I _ r o ; o i - ro ; oT 
(16) C _ L - . i A _ L ^ J M _ L ^ - L 

L 0 ; C J L ° ^ J L ° | M J 
and put N = (G, C, A, M). 

It is obvious that in case a) N indeed is a J-network, and in case b) a V-network. 
Moreover, we shall always assume that the rc-port N is such that, in case a), for 

every branch h{ with 1 ^ i _ n, there is a loop of G containing ht and no other hk 

with 1 :_ k ^ n, k =t= i; and in case b) that all nodes uf,ui are distinct for i, k = 
-= 1, ..., n. 

The n-port N will be called J-, (V-) regular, if N is J-, (V-) regular. 
Next, introduce the notation 

-> ' - [& '•[•;]• - K ] ' -G l -
M '-[-^'-[v]-'-K-]-'-[A]-
where J, E, V, I are n-vectors, J*, J0, q0, V*, V0, F0 (r — w)-vectors. 

Let the n-port N be J-regular; then the pair (J0, q0) will be called the initial state 
of N; and any pair (J, E), where J, E are given by (1.7) with J, E, J0, q0 satisfying 
(1.1), will be called a regime on N corresponding to the initial state (J0, q0). Further
more, a matrix A(p) fulfilling the equation J = A(D)E for any regime (J, E) corres
ponding to the initial state (0, 0) will be called the admittance matrix of N. 

From (1A) it is apparent that for a J-regular n-port the admittance matrix 
always exists. 

Analogously, let the ri-port N be V-regular; then the pair (V0, E0) will be called 
the initial state of N; and any pair (V, I), where V, I are given by (1.8) with V, I, V0, F0 

satisfying (V3), will be called a regime on N corresponding to (V0, F0). Furthermore, 
a matrix Z(p) fulfilling the equation V = Z(D)I for any regime (V, I) corresponding 
to the zero initial state will be called the impedance matrix of N. 

Evidently, any V-regular n-port possesses an impedance matrix. 
The physical meaning of the concepts already defined is straightforward. Obviously; 

if NTs J-regular, then (J, E) may be interpreted as a pair of currents and voltages 
acting simultaneously on individual ports of N, provided the initial currents and 
charges "inside" N are represented by vectors J0, q0, respectively. (See Fig. la.) 

Similarly, if N is V-regular, then (V, 1) describes voltages and currents appearing 
simultaneously on the ports of N, provided the initial voltages across the involved 
capacities and initial magnetic fluxes in coils are given by V0, E0, respectively. (See 
Fig. lb.) 
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Fig. la 

Ь 

voltage 
sources 

The concepts of the admittance and impedance matrix then have the usual meaning. 
Note also that in case of a J-regular n-port, J is uniquely determined by E (with 
fixed (J0, q0)); the converse, however, need not be true. A similar statement is true 
for V-regular rc-ports. 

Let the system 2>fl of matrices have the same meaning as in [2], or [3] p. 29; let ${n 

he a subsystem of ££„ such that if A(p) e sJl„, then 
1. A(p) has no poles on the imaginary axis nor at infinity, 
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2. A(oo) = 0. 

Then we have the following assertion: 

Lemma 1.1. Let N be a J-regular n-port such that its admittance matrix A(p) 
belongs to 5Rrt. Then, for any regime (J, E) on N corresponding to the initial state 
(J0, q0), we have 

(1.9) J(t) = a (t - T) E(T) di + i0(t), 
J o 

where a = A(D) S0 and i0(t) is independent of E(t). Moreover, there are positive 
constants K, Ku K2, X independent of E, J0, q0 such that 

(1.10) HOIMKOII £Kexp(-ti), 

(1-11) | | 'o(0|. l'o(OII = (^illIol + K 2 l «o l )cxp( -AO 

for every t g: 0. 
Furthermore, if N is a J-network, then the positive definiteness of matrices 

X'LX, X^RX implies that N is J-regular and A(p) e $\n. 

N o t e 2. It is obvious that A(p) e 9ln need not imply that the matrices XsLXy 

X'RX are definite. On the other hand, making use of results obtained in [2], we have 
the following corollary: If N is a J-network containing no mutual couplings and 
if every loop of G contains both an inductance and a resistance, then XSLX, XyRX 
are definite. 

Proof of Lemma 1.1. Recalling the assumption on loops of G passing through 
a branch ht with 1 ^ / ^ « and the fact that for X we can take any matrix whose 
columns correspond to a complete set of linearly independent loops of G, it is readily 
seen that, with a proper numeration of loops, we may set 

*-[£&]• 
where I is an n x n unit matrix. Denoting 

(1.13) A*J.A£\A^ = {x^{p)xyi 

(A* exists due to the J-regularity of N), where A1]L is an n x n matrix, we have 
A* G Sm . (See [2], p. 455.) Furthermore, by (1A2), 

(1.14) A = XA*Xy = 

r Att ; A*tlx\ + A*l2r2 i 
IXIA*\ + X2AT2\Y1A*CX\VXI^ 
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Obviously A e ® r, and consequently A*x G ®M. 

Next, making use of (IA) and (1.7), we have for any regime (J, F), 

Й-KШ LJn 

0 ' 

Sq0 

Ho 

so that by (1.14), 

(1.15) J = _4*-(D) E + (_4n(D) X; + A*2(D) X2) (LJ0<50 - Sq0H0) . 

Thus, according to the definition, A*t is the admittance matrix A(p) of N. 

From the assumption A(p) = A*x(p) e <$in it follows that 

Ati = E^jk(P ~ *j)~k, k ^ 1 , Re a, < 0 , 
jfc 

and consequently, 

(1.16) fl(0 = A*,(D) <50 = X Pj(0 H0(t) exp a/ , 
1=i 

where Pj(t) are matrix polynomials in t. Hence, constants K, X > 0 exist such that 

(1.10) holds. 

On the other hand, as A* e ®m, we have by the expansion theorem (see [3], p. 31), 

(1.17) 

p u M t a " ! [H[?\H[fl ' p [ /,<*> ', H[k

21 [ B n • B 1 2 ' 

U-_f-__J p L « . _ ) r ; « a . ) J *=iP 2 + OIZIHWTHWJ
 + L-nVf-,Va".' 

[ H(k) | W < - ) "I 

— - 1 — i — i - - are positive semidefi-
H[kr \ »?_ J 

[ B I D ~| 
--—-!----- has no poles in the closed right 

#12 J #22 J 

halfplane (including oo), belongs to ®m and --i:iV._Aj__iA_J_ i s positive semi-
LB ; 2 (oo) \ B22(co) J 

definite. 

However, since A*x e SR_, we have from (1.17) that necessarily H^ = 0, k = 

= 1, 2, ..., 5, oo and Bxl(oo) = 0. From this it follows that also H^ = 0, k = 1, 2, ... 

..., 5, oo, and Bi2(oo) = 0, since otherwise positive semidefinitness would be violated. 

Hence the matrix A*2(p) has no poles in the closed right half-plane and A*2(oo) = 0. 

Next, from the identity A*(X"ZX) = I we have by (1.12), (1.2) and (1.5) that 

A* A* 

A*" A* _ ^ 1 2 ^ 2 ; 

L:xl 
o x\ z'\i'xl\'x'2\ L o f / "j 
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and consequently, on performing the multiplication, 

(1.18) A*UX\ZX{ + A*l2X\ZXl = I , A*tX\ZX2 + A*2X\ZX2 = 0 , 

where Z = Lp + R + Sp"1. 

Multiplying (1.18) by p and then putting p — 0, we get 

(i . i9) A*i(o) X;SX1 + A*2(o) X2SXi = o , 

A*i(o) X;SX2 + A*2(o) X2SX2 = o . 

Postmultiplying the first equality (1.19) by A*t(0), premultiplying the second by 
A*2(0) and summing, we get 

( A ^ O ) X\ + A*2(0) X\) S(X1At1(0) + X2A*2(0)) = 0 . 

Since S is positive semidefinite, this yields, 

(1.20) (^ti(O) X; + A*2(0) X\) S = 0 . 

Returning to (1.15), we have (see Appendix 2) 

J = \ a(t - T) E(X) dT + i0 

Jo 

with i0 = ii + i2, where 

(i .2i) i- = (A?i(D) X; + A*2(D) X\) LJ0S0 , 

io = - ( ^ ( D ) X; + A*2(D) X2) SqoHo • 

Putting (A*i(D) X; + A*i(D) X2) O"0 ~ 4 ^ follows easily from the properties 
of A*j, A*2 that there is a K > 0 such that \\d(i)\\ = Kexp(-At), t = 0. Hence 
j| ii| <; Ki| Jo || exp( — fo). Next, we have 

• - í> dт . Sg0 

Consequently, i2(oo) exists and by Tauber's theorem we have (see Appendix 3) 

/2(co) = -(A*y(0) X) + A*i2(0) X\) Sq0 . 

Thus by (1.20), (2(oo) = 0, and consequently there is a K2 > 0 such that | | / 2 | :S 
f£ K2\\q0\\exp(-lt), t^O. 
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Hence the first inequality (1.11) is established. The second follows immediately 
from the fact that both il and i2 have the form 

YQj(t) Ho exp (ocjt) , 
j 

where Qj(t) are polynomials and Rea;- < 0, The last statement of Lemma 1.1 is 
a direct consequence of Th. 2A — 5 and Th. 2.1 — 6 in [3]. The assertion dual 
to Lemma 1.1 reads as follows: 

Lemma 1.2. Let N be a V-regular n-port such that its impedance matrix Z(p) 
belongs to ${n. Then, for any regime (V, I) on N corresponding to the initial state 
(V0, F0), we have 

(1.22) V(t)= f z ( t -T) I (T)dT + V0(t), 

where z = Z(D) S0 and v0(t) is independent of I(t). 

Moreover, there are positive constants K, Kls K2, X independent of I, V0, F0 such 

that 

(1.23) |z(r)l, lz'(f)|| ^ K e x p ( - A t ) , 

(1.24) ||v0(t)||, ||v0(t)|| ^ (K!||Vo|| + K2||Fo||)exp(-/t) 

for every t ^ 0. 
Furthermore, if N is a V-network, then the positive definiteness of matrices 

dKCd, dxAd implies that N is V-regular and Z(p) e 91tt. 

Proof . Recalling the assumption that all the terminals uf, uk, i, k = 1, 2, ,.., n 
are distinct, it can be easily verified that, with a suitable numeration of columns 
of the matrix a, we may set 

d = 
0 " 

d2_ 

where I is the n x n unit matrix. Starting from (1.3) and following exactly the same 
pattern as in Lemma \.\, we conclude the proof. 

Lemma 1.3. Let N be a J-regular n-port and let its admittance matrix A(p) 
satisfy the condition 

(1.25) A(p) = p'1y + B(p), 

where y 4= 0 and B(p) e 9?„. Then, for any regime (J, E) on N corresponding to the 
initial state (J0, q0), we have 

(1.26) J(t) = !(y + b(t- T)) E(X) dT + i0(t), 

where b(t) = B(D) d0 and i0(t) is independent of E(t). 
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Moreover, i0(co) exists and there are positive constants K, Ku ..., K4, X such that 

(1.27) ||fe(t)||, \\b'(t)\\ SKcxp(-Xt), f £ 0 , 

(1.28) \\i0(t) - i0(oo)||, | i o (0 | | ^ (K.P4 + K2\\q0\\) cxp(-Xt), t^O, 

(1.29) ||i0(oo)|| £K3\J01 +K4q0\\. 

Proof. Defining X again by (1.12), let A*, A be given by (1.13) and (1.14), respective
ly. Since A*x = A(p) = p~xy + B(p), we conclude as before that A*2 can be expand
ed as A*2 = P_17i2 + Bi 2(p), where B12 has no poles in the closed right halfplane 
and B12(oo) = 0. 

Next, by (1.15) we have 

(1.30) J = (yD-1 + B(D» E + (yX\D-1 + y^X^D'1) (LJ0S0 - Sq0H0) + 

+ (B(D) X\ + Bi2(D) X\) (LJ030 - Sq0H0) . 

Hence (1.26) holds and we have i0 = il + i2 + i3 + i4 with 

(1.31) ii = (yX\ + y12X2) LJ0H0 , i2 = -(yX\ + y12T2) Sq0 . H0t, 

i3 = (b(t) X\ + bl2(t) X2) LJ0 , i4 = ~(b(t) X\ + bi2(t) X\) * H0 . Sq0 , 

where bl2(t) = Bi2(D) S0 and the symbol * denotes the convolution product. 
According to the properties of B, Bi2 there is a K > 0 and X > 0 such that ||b(0||> 

l&'OOII' Il&i2(0l = Kzxp(-Xt), t ^ 0; consequently ||i3|| ^ K5||J0j| exp (-At), 
/4(oo) exists and by Tauber's theorem, 

(1.32) i4(oo) = -(B(0) X\ + Bl2(Q) X2) Sq0 . 

Thus 

(1.33) ||i4(oo)|| ^ K6\\q0\\ . 

Also, 

||i4 - i4(oo)|| S K71|go|| exp (-Xt), 

and 

(1-34) INI ^ K8\\J0\\ . 

On the other hand, multiplying the identities (1.18) by p2 and then putting p = 0. 
we get 

(1.35) yX\SXi + yl2X2SX, = 0 , yX\SX2 + yi2X2SX2 = 0 . 

From this we obtain, as before, 

(1.36) (yx\ + y12r2)s = o. 
Hence i2 = 0. 
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Thus we have i0(oo) = ix + i4(oo), so that in view of (1.34) and (1.33) the in

equality (1.29) is true. Moreover, i0 — /0(oo) = i3 + i4 — i4(oo), so that ||/0 — 

— /o( 0 0)| | = (^sfl^oll + ^ I k o l ) e x P (~^)> l a e remaining inequality (1.28) follows 

from the particular form of i0. Hence, Lemma 1.3 is proved. 

In a completely analogous manner a similar statement for V-regular n-ports with 

impedance matrix Z(p) = p~xy + C(p) may be proven. As its wording is the same 

as that in Lemma 1.3, the explicit formulation is omitted. 

N o t e 3. It can be easily verified that every rc-port obtained from a J-regular 

ii-port with admittance matrix B(p) e ^\n by shunting its ports with positive inductan

ces /,-, possesses the admittance matrix p~l diag (/j~\ ..., I'1) + B(p). Similarly, 

if an n-port has the impedance matrix B(p) and if in each of its ports a capacity 

cf > 0 is inserted in series, then the resulting ti-port has the impedance matrix 

p-1diag(cr1,...,c;1) + B(p). 

Lemma 1.4. Let h > 0 and let A(p) e 91„; then there is a q > 0 such that 

(1.37) Rerj sm + icoq) A(ico) + - l\n = 0 

for every real co and complex n-vector rj. 

Proof. From A(p) e 5R„ we have 

(1.38) A(p) = YAJk(p - *j)~k, k = 1 , Re a, < 0 . 
jk 

It is obvious that there are constants xjk > 0 such that 

(1.39) \co(ico — dj)~k\ = xjk for every real co . 

Thus, we have 

(1.40) |Re "if/co A(ico) rj\ = \rjxico A(ico) rj\ = XIM| 2 \\AJk\\ xjk = ^ l h | | 2 • 
jk 

On the other hand, Re \\h . ^ 7 n = \\h . \\rj\\2. Thus, choosing 0 < q < h~lK~l, 

we have by (V40) 

|Re rj'icoq A(ico) rj\ <^ ^ _ 1 | | ^ | | 2 , 

and consequently 

Re ц íicoq A(ico) + - I Ј n = 0 

for every real co and n. Since also A(p) e &n9 we have Re ^ x A(ico) rj = 0 for every co 

real and r\. This proves (1.37) as required. 

2. Let us now turn our attention to systems formed by a parallel connection of 

a linear passive rc-port with a nonlinear rc-port. 
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Any system N with n terminal-pairs (uf, ut), i = 1, ..., n, on which the concepts 
of current J\ and voltage F, are defined will be called a (general) n-port, if there 
is given a set R of pairs (J, E) with J' = [J1? ..., Jn], Ex = [E1? ..., E„]. A pair 
(J, E)e R will also be called a regime on N 

Let N1? N2 be two n-ports with sets of regimes Rl5 R2 respectively; a system charac
terized by a set S of common regimes (J, E), i.e. (J, E) e S if and only if there are 
pairs (Jl,E1)eRl,(J2, E2)eR2 

such that J = J, = — J2, 
E — E1 = E2, will be called 
a parallel connection of Nx 

and N2. 
The physical meaning of 

the concepts defined is straight
forward and needs no com
ment; cf. Fig. 2. 

It is also clear that the J-re-
gular and V-reguiar n-ports 
introduced in the previous 
section are particular cases of 
a general n-port. 

Let f(x) be an n-vector fun
ction of the ti-vector argument 
x defined on the entire n-di-

mensional space; the rc-port N will be called resistive if for each (J, E) e R we have 
E = f(J), and conductive if J = f(F). 

Moreover, introduce the following notation: 
Let 91* be the set of all real continuous n-vector functions f(x) of the n-vector x 

which fulfil the condition 

Nf 

l1 l1 
Jl ü, J2 

"2 Nf 

\E1 

"2 Nf 

i2 i2 

Ji u2 J2 

"2 Nf 
\Eг 

"2 
Nf 

l n ln 

Ji un J2 

"2 
Nf 

\ť 

"2 Nf 

k 
Fig. 2. 

(2Л) f(x) x > 0 for x Ф 0 . 

Let 0 < h{ < h2 and let 9tn(hu h2) be the set of all tz-vector functions f(x) which 
have the following properties: 

a) For every f e $ln(h u h2) there is a real scalar function U(x) possessing continuous 
first partial derivates everywhere and such that f(x) = grad U(x), i.e. for the i-th 
component ft(x) of f(x) we have 

(2.2) m дU(x) 

ÕX; 
i = 1, ., n . 

b) 

for every x. 

Sf(x)x, \\f(x)\\ žh2\\x\\ 
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N o t e 4. It can be easily verified that if /(x) is continuous and such that f(x) = 
= (Pi(x^), htx? ^ (Pi(xt) xt S h2x\ for every x,- and i = 1, ..., n, t h e n / e $ln(h1, h2). 

N o t e 5. If a resistive .n-port N with E = /(J) is such t h a t / belongs either to 9c* 
or to yi„(hl9 h2), then EV ^ 0 for any regime (J, E). Hence N cannot be a source 
of energy. An analogous statement is true for a conductive n-port with / e s J t* 
(or eVln(huh2)). 

Now, we have the following assertion: 

Theorem 2.1. Let N1 be a J-regular n-port whose admittance matrix A(p) belongs 
to ${n; furthermore, let N2 be a resistive n-port such that E2 = / (J 2 ) and f e 
e^ln(h1, h2). Then there exist a continuous function <P(£) vanishing at £ = 0 and 
positive constants Kl5 K2 such that, for any common regime (J, E) on the parallel 
connection of Nx and N2, we have 

(2-3) \\J(t)\\ S ^(K.poW + K2\\q0\\) 

for every t ^ 0, and J(t) -» 0 as t -» oo, where (J0, q0) is the initial state of N1. 

From the assertion already stated we have the following conclusion: 
Corollary. The equilibrium state of the parallel connection of Nt and N2, i.e. the 

common regime (0, 0), is stable and asymptotically stable with respect to the initial 
state O/Ni- Moreover, the region of stability is the entire space. 

Actually, it is clear that (0, 0) is a regime on Ny corresponding to the initial state 
(0, 0); on the other hand, from (2.2) b) we have /(0) = 0, so that (0, 0) is a regime 
on N2, and consequently, by definition, (0, 0) is a common regime on the connection 
of N! and N2. Hence, by Th. 2.1, for every s > 0 there is a 3 > 0 such that for the 
common regime (J, E) corresponding to the initial state (J0, q0) we have ||J(*)[| < e: 

whenever |J 0 | | < 3 and ||q0|| < 3. 
In addition, we have J(t) -» 0 as t -> oo. 

N o t e 6. As by definition of a common regime (J, E) we have E = E2 = / (J 2 ) , 
it is clear that Th. 2.1 may be augmented as follows: There is a continuous function 
&(£) vanishing at <j = 0 such that 

(2-4) ||£(0|| g ^ i | | I o | | +K2\\q0\\), t ^ 0 , 

and E(t) -> 0 as t —.• oo. 
For the proof of Th. 2.1 we shall make use of the following Theorem 3.1 given 

in [1]: 

Let k(t) be a real n x n matrix satisfying the inequalities ||fc(f)||> ||fc'(OII = ^ -
. exp( — Xt), t ^ 0, with X > 0, w(t) a real n-vector satisfying ||w(t)||, ||w'(t)|| ^ 
g Wexp(-Xt), t ^ 0 with a fixed X > 0. Moreover, let f e ^ln(ht, h2), h > h\h^ 
and let 

(2.5) fc(cD) = f ^ k(t) 6t. 
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If there is a q > 0 such that 

(2.6) Re *T{(1 + icoq) K<*>) + h~lj} n = ° 

for every real co and every n, then there is a continuous function <P(£) vanishing 
at £ = 0 and such that for the solution x(t) of 

(2.7) x(t) = w(t) - [k(t - T ) / (X(T) ) dT 

we have \x(i)\ <; <P(W) for t ^ 0, and x(t) -• 0 as t -> oo. 

P roof of Th. 2.L By Lemma 1.1 we have, for a regime (J l5 Ex) on Nt correspond
ing to the initial state (J0, q0), 

(2.8) Jx(t) = [a(t - T) E,(T) dT + io(0 , 

and at the same time, (1.10), (1.11) hold. 

On the other hand, for N2 we have E2 = /(J2)- Thus, by definition of a common 

regime (J, E), J = Jx = — J2, E = Ex = E2,
 s o that by (2.8), 

(2.9) J2(t) = - ;0(f) - PflO - T ) / ( J 2 ( T ) ) dT , 

i.e. equation (2.7). 
Furthermore, using the notation of the auxiliary assertion, it is evident that 

" C O 

k(co) = Qi(at a(t)dt = A(ico) 
J o 

(see also App. 2); hence, as A(p) e R̂„, it follows from Lemma 1.4 that there is a 
q > 0 such that (2.6) is satisfied for a chosen h > h\h\~x. Consequently, there is 
a function <$>(£) with the properties stated in the auxiliary assertion and such that 
||J2(0|| S $(W)fort ^ 0, where the meaning of Wis given by || i0(r)|| S Wexp(-Xt). 
But by (1.11) we may set W — KX\JQ\ + K2||q0||. Since \J(i)\ = ||«Io(0|| anc^ 
J2(t) -> 0 as t -> oo, (2.3) and J(t) -> 0 follow immediately. Hence, Th. 2.1 is proved. 

Making use of Lemma 1.2 and of the fact that in the case of a V-regular /?-port Nx 

we may set Ex = V, J\ = I for a regime (V, I) on Nl5 and repeating the previous 
proof, we obtain the following assertion, which is dual to Th. 2.L 

Theorem 2.2. Let N- be a V-regular n-port whose impedance matrix Z(p) belongs 
to 9?„; further, let N2 be a conductive n-port such that J2 = f(E2) andfe ^ln(h{, h2). 
Then there exist a continuous function $(£) vanishing at £ = 0 and positive constant 
Kj, K2 such that, for any common regime (J, E) on the parallel connection of Nx 
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and N2, we have 

1 £(0|| g^! | |Vo| | + K21 Foil) 

fOr every t ^ 0, and E(t) —• 0 as t —> co, where (V0, F0) is the initial state of Ni. 
Observe that, under the assumptions of Th. 2.2, the Corollary following Th. 2.1 

and a note analogous to Note 6 hold. 
Next we have the following assertion: 

Theorem 2.3. Let N{ be a J-regular n-port whose admittance matrix A(p) satisfies 
the condition A(p) = p~ly + B(p), where B(p) e ^„ and y is positive definite; 
further, let N2 be a resistive n-port such that E2 = f(J2) and fe$l*. Then there 
exists a continuous function *F(£, rj) vanishing for £ = rj = 0 and such that, for 
a common regime (J, E) on the parallel connection of N\ and N2, we have 

(2.io) i|j(t)ii ^ n iwi , IMI) 
for every t ^ 0, and J(t) —> 0 as t -> co, where (J0, q0) is the initial state of Ni. 

The proof of Th. 2.3 is based on the following assertion which follows immediately 
fromTh. 1.4 in [ l ] : 

Let k(t) be a real n x n matrix fulfilling the inequalities ||fc(f)||* l '̂COll = 
:g Cexp( — It), t ^ 0, C, 1 > 0, w(t) a real n-vector fulfilling the inequalities 
||w(t)||, ||w'(t)|| ^ Wexp( — It), y a symmetric positive definite n x n matrix and c 
a real constant vector with \\c\\ :g K. Moreover, let f e 91* and let k(co) be defined 
by (2.5). If 

(2.11) RtJjxk((o)n = 0 

for every real co and every rj, then there is a continuous function <P(a, ft) vanishing 
at a = ft = 0 such that, for the solution x(t) of 

(2.12) x(t) = С + w(t) (y + k(t-x))f(x(т))dr, 

we have \\x(t)\\ S ^(W, K) for every t ^ 0, and x(t) ~> 0 as t -» oo. 

P r o o f of Th. 2.3. By Lemma 1.3 we have, for a regime (J t, Et) on Nt correspond
ing to the initial state (J0, q0), 

(2.13) Jx(t) = f ( y + b(t - T)) £ - (T ) dT + i0(t) , 

and, at the same time, (L27), (1.28) and (1.29) hold. On the other hand, for a regime 
(J2, E2) on /V2, we have E2 = f(J2). By definition of a common regime on the parallel 
connection of N{ and N2, J = Ji = — J2, E = Ex = E2; consequently, by (2A3)r 

(2.14) J2(f) = (i0(oo) - i0(t)) - io(oo) - !'(y + fc(t - t))j(J2(T)) dr , 

which is an equation of the type (2A2). 
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Moreover, as b = B(D) S0, we have 

/»00 

B(icO) = exp (icot) b(t) dt ; 

but B(p)e Qn so that (2A1) is satisfied with k(o)) = B(ico). Thus, by the auxiliary 
assertion there is a continuous function *P(a, /?) vanishing at the origin such that, 
with regard to (1.28), (1.29), 

||J2(t)|| ^ V(Kt\\J0\\ + K2||g0||, K3||J0|| + K4||qo||) • 

At the same time, J2(t) -> 0 as t -> oo. Finally, setting <F(u, v) = ^(K^u + K2v, 
K3u + K4v) and recalling the equality ||J(t)|| = ||J2(f)||, (2.10) follows immediately. 
Hence, Th. 2.3 is proved. 

Making use of the dual assertion of Lemma 1.3 and of the auxiliary theorem, 
we obtain the following counterpart to Th. 2.3: 

Theorem 2.4. Let Nx be a V~regular n-port whose impedance matrix Z(p) satisfies 
the condition Z(p) = p~ly + C(p), where C(p) e $ln and y is positive definite; 
further, let N2 be a conductive n-port such that J2 = f(E2) and f e 9t*. Then there 
exists a continuous function *P(£, n) vanishing at £, = n = 0 such that, for 
a common regime (J, E) on the parallel connection of Nt and N2, we have 

(2-15) \\E(t)\\ZV(\\Vo\\,\\Fo\\) 

for every t _* 0, and E(t) —> 0 as t -» oo, where (V0, F0) is the initial state of Nl. 
Note also that under the assumptions of either Th. 2.3 or Th. 2.4, the Corollary 

following Th. 2.1 and Note 6 hold. 

No te 7. The criteria of stability obtained in theorems 2.1 to 2.4 are advantageous 
particularly due to the fact that in practical cases it is not necessary to set up the 
system of nonlinear equations describing the behavior of the electrical system in 
question, but only to establish the admittance (impedance) matrix of the linear part, 
which may be performed by well-known methods directly from the structure of the 
circuit, and then check whether the admittance (impedance) matrix obtained be
longs to $ln or has the form considered in theorems 2.3 and 2.4. 

N o t e 8. The criteria developed above may also be used for checking the stability 
of nonzero constant equilibria. Indeed, consider for example the situation dealt 
with in Th. 2.1, and assume in addition that N1 contains some inner constant voltage 
sources such that a nonzero constant common regime (J*, £*) exists for an initial 
state (J0, q0) of Nx. Then instead of (2.9) we have 

.*( .)- Гa(/-t)/(Ј*)dt aì2(t — т) e dт . 
o 

18î 



where the vector e represents the inner voltage sources. (Also see (1.15).) Since, for 
any common regime (J, E) corresponding to an initial state (J0, q0) and to the same 
vector e, the equation 

J2(t) = -h(t) - \ a(t - T)f(J2(r))dT - al2(t - T) e dr 
j o j o 

holds, we have for x(t) = J2(t) — J*, 

x(t) = -]0(t) - \a(t - T) g(x(z)) dT , 

where g(x) = f(x + J*) - /(J*)- Thus the previous results are applicable to this 
case provided the vector function g has the required properties. 

Concluding this paper let us present some applications of the results given above. 

E x a m p l e 1. Consider the oscillator with a tunnel diode schematically plotted 
in Fig. 3, and investigate the circuit behavior for t ^ 0, provided the battery is 
switched off at t = 0. Assuming for the first approximation that the tunnel diode 
behaves as a parallel connection of a constant capacity K with a nonlinear resistance 
(see Fig. 4a) whose characteristic is plotted in Fig. 4b, we may consider the circuit 
as a parallel connection of a linear passive dipole (1-port) with a nonlinear one. 

(See Fig. 5.) The initial state of the 
linear dipole is given by the voltages 
V0, V0 across the capacity C and K, 
respectively, and by the flux F0 of 
the coil. 

U 

Ғig. 3. 

o џ 

к 

lhгE 

J-ţtä, 

Ғig. 4a. Fig. 4b. 
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From Fig. 4b it is clear that for J = f(E) we havefe 9li(h l 5 h2); moreover, for 

the impedance Z(p) of the linear dipole we obtain 

(2.16) 

where 

(2.17) Ax{p) = 

so that 

(2.18) Z(P) = 

2'1(р) = Кр + А,(р), 

1 + КгСр  

Ку + (1 + К.Ср)(Д2 + Ьр)' 

К. + ( 1 +К1Ср){К2 + Ьр) 

1 + Л.(С + /С) р + (1 + КгСр) (К 2 + Ьр) Кр 

ł c 
и0 

4 Ј2 
-f—*=—o =*-

л 

Fig. 5. 

Since Kp is pure imaginary on the imaginary axis and Re A1(icO) > 0 for every 

real co as can be easily verified from (2.17), we have Z~l(ico) =j= 0; hence Z(p) has 

no poles on the imaginary axis, and in addition, by (2A8), Z(co) = 0. Since also 

Z(p) e ® l 5 we have Z(p) e M l t Thus by Th. 2.2, there is a continuous function 5>(x) 

with $(0) = 0 and constants K1? K2 > 0 such that the voltage E(t) accross the 

tunnel diode fulfils the inequality |E(t)| <; 0(Rx(Vo + VQ)* + K2|F0|)> t =" 0> and 

simultaneously, E(t) —> 0 as t —> co. Hence, after switching off the battery at t = 0 

the circuit always returns to the "dead" state independently of the state at t = 0. 

E x a m p l e 2. Consider a demodulator circuit with a silicon diode plotted in Fig. 6. 

Our task is to establish the behavior of the circuit if the exterior excitation e disap

pears. 

Following the ideas developed above, consider the circuit in question as a parallel 

connection of a linear passive dipole with a nonlinear one. (See Fig. 7a.) The silicon 

diode behaves as a conductive dipole, whose characteristic is shown in Fig. 7b. 

Thus J = f(E) with fe SR1(ri1, h2). On the other hand, for the impedance oit the 

linear dipole we have 

(2.19) z(p) = (zг' + z 2 -
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with 

(2.20) Z ! = K 1 + *' , Z 2 = ^ + t±J± 
1 + R2C3P C2P 1 + É?QP + ŁCiP 2 

Fig. 6. 

Fig. 7a. Fig. 7b. 

From the expression for Zj" 1 it is readily seen that R e Z ^ i c o ) > 0 for every ax 
As Z2

l(P)e(B1, we have Re Z 2
 1(ico) ^ 0, and consequently, Z[l + Z2* ^ 0 

on the imaginary axis. Hence by (2.19), Z(P) has no poles on the imaginary axis. 
Moreover, directly from Fig. 7a it is obvious that Z(oo) = 0. As Z(p) e S 1 } we have 
Z(p)e3i1. 

Thus, using Theorem 2.2, there is a continuous function 5>(x) vanishing at x = 0 
and constants Kl5 K2 > 0 such that \E(t)\ g. $(Ki | |V 0 | | + ^ H ^ o l ) for every t ^ 0, 
where V0 is a 3-vector of initial voltages on the capacitors C l 9 C 2, C 3, and F0 the 
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initial flux of the coil. Moreover, E(t) -> 0 as t -> oo. From this it also follows that 
each current in the circuit tends to zero as t -> oo. 

A p p e n d i x 1. 

Let us present the physical background of eq. (1.3). Consider a "branch" hk 

consisting of a parallel connection of capacity Ck9 conductance Ak9 inductance l/Mfc 

and current source Ik (see Fig. 8). Then for the voltage Vk across hk we have Vk = 
= C ; 1 ^ " " + Vk0H09 where Vki 

L 1 . 

vk0110> vvn^iv/ rk0 

denotes the initial value of Vh due 
to the initial condenser charge. 
Furthermore, i2 = AkVk and Vk = 
M, . Thus ix = Ck(Vk 

i3 = MkVk-
{1) + M,F,0< 

Vk0S0) 
and i3 = M ^ " ^ + MkFk0H09 

where Ffe0 is the initial magnetic 
flux of the coil. Consequently, for 
the total branch current Ik we have 

Ik = (ChD + Ak + MkD-l)Vk-

~ CkVk0S0 + MkFk0H0 - Ik . 

Next, if a network is formed of 
branches hk9 k = 1, ..., r, already 
discussed whoses tructure is given by an oriented graph G with branch-node inciden
ce matrix a, then by the second Kirchhoff law we have 

Ғig. 8. 

(A.1) a{(CD + A + M D " 1 ) V- CV0<$o + MFoHo - I] = 0 , 

where C, A, M are r x r matrices with elements Ck9 Ak9 Mk9 respectively, and V, L 
V0, F0 are r-vectors formed of the corresponding elements Vk9 Ik9 Vk09 Fk09 respectively. 

On the other hand, by the first Kirchhoff law we have 

(А-2) X'V= 0 , 

where X has the usual meaning. Since a'A = 0, i.e. Xsa = 0, the columns of d 
(a complete set of linearly independent columns of a) constitute a complete set 
of solutions of Xx£ = 0. Thus, from (A.2), there is a vector w such that V = dvv. 
Moreover, since (AT) is equivalent with ds{...} = 0, we get 

dx Y(D) dw = dK{I + CV0O*o ~ MFoHo} 
with Y(D) = CD + A + MD" 1 . From this (1.3) follows immediately, provided 
det dx Y(p) d^Q. 

A p p e n d i x 2. 

In the text we have used the formula A(D) E = (A(D) S0) * E without comment; 
to this end, one has the following assertion: 
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a) Let f g be distributions vanishing on (—00, 0), r(p) a rational function; then 

(A.3) r(D)(f*g) = (r(D)f)*g. 

In particular, 

(A A) r(D)f=(r(D)d0)*f. 

b) If in addition f possesses a Laplace transform ^(f), then r(D)f also does, and 

(A.5) y{r(D)f) = r(p) <£(f) . 

Proof. Since r(D) is a Heaviside operator, it can always be expanded as (see [3], 
p. 175) 

(A.6) r(D) = Q(D) + £A i t(D + a ;)- f c , k 2: 1 , 
i,k 

where Q(p) is a polynomial Since (f * g)n = / " * g for any integer n (cf. [3], p. 60), 
it is sufficient to prove (A.3) for r(D) = (D + a ) " 1 . Thus, putting x = ((D + a)'1 f)* 
* g, we have 

(D + a) x = xf + ax = ((D + a)~l / ) ' * # + a((D + a)"1 f)*g = 

= (D(D + a)'lf + a(D + a)"1 f) * g =f*g. 

Hence, x = (D + a)"1 (f * g) as required. 
Formula (A.4) follows immediately from (A.3) by using the fact that S0 * f = / 

(cf. [3], p. 60). 
The assertion b) is given in Th. 5.5 — 2 in [3], p. 176. 

A p p e n d i x 3. 

In the proofs of Lemma 1.1 and 1.3 we have used the following version of Tauber's 
theorem: 

Let r(p) be a rational function with no poles in the closed right half-plane 
(oo included); then r(D)H0 = / is a regular distribution and / (GO) = r(0). 

Proof. Let r(p) = r0 + f(p) with r(oo) = 0. Then 

/ = r0H0 + r(D) H0 = r0H0 + D"](r(D) S0) = r0H0 + D~1Q, 

where Q = r(D) S0 is obviously regular and of exponential type. By (A.5) we also have 
<e(o) = r(p). Thus, for t ^ 0, 

f(t) = r0 + J Q(T) dT , 

and consequently, 

/(oo) = r0 + 

which finishes the proof. 
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Výtah 

APLIKACE POPOVOVY METODY V TEORIÍ ELEKTRICKÝCH SÍTÍ 

VÁCLAV D O L E Ž A L 

V článku je dokázáno několik vět o stabilitě klidového stavu nelineárních elektric
kých sítí, které jsou vytvořeny spojením lineárního 2n-pólu s konstantními soustře
děnými prvky a nelineárního 2tz-pólu, který má odporový charakter. 

Nejprve jsou vyšetřeny jisté souvislosti mezi admitační (impedanční) maticí 
lineárního 2n-pólu a vlastnostmi přechodových režimů na svorkách. Na tyto výsledky 
jsou pak aplikovány Popovovy metody, rozšíření na vektorové neHnearity [ l ] , čímž 
jsou získány podmínky absolutní stability režimu na společných svorkách spojení 
společně s odhady pro normu režimu v závislosti na počátečním stavu lineární části. 

Odvozená kritéria jsou prakticky výhodná z toho důvodu, že je lze v konkrétních 
případech vyhodnotit přímo ze struktury a hodnot prvků sítě, takže není nutno 
sestavovat nelineární soustavu rovnic, popisující dynamiku sítě. 

Použití odvozených výsledků je ilustrováno na příkladě oscilátoru s tunelovou 
diodou a demodulátoru s křemíkovou diodou. 

Р е з ю м е 

ПРИМЕНЕНИЕ МЕТОДА ПОПОВА 

В ТЕОРИИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ 

В А Ц Л А В Д О Л Е Ж А Л (VАС^АV О О Е Е 2 А Е ) 

В статье доказано несколько теорем об устойчивости состояния покоя нели

нейных электрических цепей, образованных соединением линейного 2/7-полюс-

ника с постоянными сосредоточенными элементами и нелинейного 2л-полюс~ 

ника омического характера. 

Сначала исследуются некоторые связи между адмитансной (импедансной) 

матрицей линейного 2/7-полюсника и свойствами переходных режимов на за-
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жимах. К этим результатам применяются затем методы Попова, распростра

ненные на векторные нелинейности [1], и таким образом выводятся условия 

абсолютной устойчивости режима на общих зажимах соединения вместе с оцен

ками для нормы режима в зависимости от начального состояния линейной 

части. 

Полученные критерии выгодны на практике потому, что их можно в конкрет

ных случаях вычислить непосредственно по структуре и значениям элементов 

цепи, так что нет надобности составлять нелинейную систему уравнений, опи

сывающую динамику цепи. 

Применение выведенных результатов иллюстрируется на примере осциля-

тора с тоннельным диодом и демодулятора с кремниевым диодом. 

АшНог'з аМге$5: 1п§. Уас1аи ВокЫ С. 8с , Ма^етайску йзхау С8АV, 2Ипа 25, РгаЬа 1. 
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