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INTRODUCTION

For the purposes of Monte Carlo methods it is sometimes required to generate
a stationary Gaussian stochastic process. However, there are no physically realizable
means for generating such a process in a strict mathematical sense. Any physical
method can only yield processes that more or less approximate a Gaussian process.

One of these methods consists in a filtration of a sequence of random pulses by
a linear filter [2]. The sequence is formed by pulses of identical shape and width
and random polarity. The pulses are supposed to be stochastically independent with
both polarities equally probable. Such a sequence can be realized with considerable
accuracy [1]. A linear time-invariant filter can likewise be realized, e.g. by analogue
techniques. It is obvious that the probability distribution of the output signal at any
finite time instant will be discrete. Nevertheless, it has been proved ([4]) that, as the
time since the input sequence was applied tends to infinity and the pulse width tends
to zero, the output signal approaches a stationary Gaussian process. Hence, the
output signal can well approximate the desired process.

For practical purposes, however, it is necessary to know the error of this approxima-
tion. In this paper an estimate is presented for the maximum difference of one-dimen-
sional distribution function of the output process and the normal distribution. Other
estimates were derived in [5] but they were inexact as they were obtained by neglecting
higher terms of infinite series. '

GENERAL FORMULA

Let I denote the set of all integers, let [x] denote the integral part of the real
number x,

[x] =max{nel:n < x}.

The time variable will be denoted by t. We shall assume that the time scale is
normed so that the pulse width is one.
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The input process u (1), t € (— 00, + o0) is given by

1) uy(t) = sz[r]f(t - [t]) s

where {&,}4er is a sequence of independent random variables with values + 1, identi-
cally distributed with

2 Pr((=+1)=Pr(=—-1)=1

and f(¢), 0 < t < 1is the shape of pulses. For simplicity we shall assume that

©) J xf(t)dt =1.

The process u,(t), t € (— oo, +00) on the output of a linear time-invariant filter
is given by the integral transformation

4 uy(t) = Jﬂ u,(r) wt — t)dr,

—

where the impulse-response function w is supposed to satisfy the condition of physical
realizability

(5a) w(t) =0 for t<0,

and stability

(5b) Jmlw(t)| dt < +o0.

0

We shall investigate the distribution of the output process u, at the time ¢t = 0.
Assuming that the input sequence was applied at t = —N, where N > 0, Nel,
we obtain for the random variable 7y = u,(0) the expression

(6) Ny =f b fx = [ w(—1)dr = n{; &, ff(r) w(n — t)drt.

Let us denote {, = &_, ¢ f(r) w(n — 1) dr, nel. Here {, is the response of a single
pulse applied at t = —n. From eq. (6) it follows that the random variable 5 is a sum
of independent uniformly bounded random variables {,,

N
(7) N = Zlcn .
This is a consequence of linearity of the filter.
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Let G be the Gaussian distribution function

1 X
G(x) = —— e 12 dy
9= ).

let Fy be the distribution function of the random variable ny/o(ny) where o(11y)
denotes the standart deviation. Applying the Berry - Esseen normal approximation
theorem ([3], p. 288) to eq. (7) we obtain
N
Y E|LP
(®) sup  [Fy(x) — G| £ e "=,
xe(—a,+ o) g ('11\)

where the symbol E denotes the mathematical expectation. The Berry-Esseen
constant ¢ < 1,322 (cf. [6]). Because of eq. (2),

3
3=

E |,

j ;f('r) wn — 7)de

and since the summands {, are independent random variables

o) = (S0 = (L G =

) <2 q ;f (®) win =) d)>’ _

Substituing into eq. (8) we obtain the general formula

3 f :f(f) w(n — 1) de

(nil <£f (t) w(n — 1) df)z)% )

Let » = lim 5y and let F denote the distribution function of 7. This corresponds

N—-ow
to the case where the input signal was applied at minus infinity. The relation (9)
becomes

3

) sup )[FN(x) - G(x)l <c¢

xe(—o,+ 0

> | | 1@ Wl — o) de|

(10) sup  |F(x) = G(x)| < ¢ 2=t 1o

I o0

Because of ineq. (5b), both series on the right-hand side of ineq. (10) converge.
Hence, for N sufficiently large, we may use ineq. (10) instead of ineq. (9).
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SPECIAL CASES

We shall consider two special cases of the impuise-response function w. For sim-
plicity we shall confine ourselves to rectangular pulses, f(f) = 1 for 0 < ¢ < 1.
A. Let w(t) = Ce™™, t > 0, where o and C are positive real constants. Then

1
Jf(‘[) w(n — 1)dt = CAge™ ™, where
0
! 1
(11) A0=J\e'"d‘c=(e“—1)‘
o o
Denoting the bound in ineq. (10) by K(),

3

3, [ gm0 -9
e )

_ e2%)312
(1) R
— e

(12) K(z) =

%k

we find that in our case

It is easily seen that
lim K(z) = 0.

a0+

We are interested in asymptotic behaviour of K(«) for small o. Expanding the expo-
nential functions into power series and neglecting terms of higher order we obtain

(14) K(@) ~ 094 Ja.

a—0+

B. Let w(t) = Cte ™, t > 0 with « > 0, C > 0. In this case

jlf(r) w(n — 1) dt = Cne™ (AO 1 A1> ,
0

n

where A, denotes the integral (11) and

1
(15) Alzfre“'drzle’—}z(e“—l).
o o o
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Since 0 < 4, < A, we have the following inequalities

1
0<C(4g — A) ne™™ < j S wn — 1)dt £ CAyne™ ™.
0

Hence
o | rt 3 1 + 48_31 + e_ﬁa
f@)wn — t)dr| < C3Ale 3 -
ngl !JO ( ) ( ) 0 (1 — e—3a)4
and
& ! 2 —2a
> f@whn —1)dt) = CH(A4y — A ) e 1+e .
n=1 0 (1 - e—sa)s

Substituing into eq. (12) we obtain

A() 3(1 _ e—Zu)} 1 — e—-2rz 3/2 e —6a
K() < (AO . A1> () e,

Substituing further for A, and 4, we have

Ao _ 1o (e* — 1) e
Ay — Ay 12 (=1 —a)

since o« > 0, and hence

1 . e—2<1)3 1 _ e—Za 3/2 B
16 K(o) < a ¢ L+ 4e 3 + e %),
( ) ( ) (] _ 6—31)4 (1 + e—Za) ( )
It follows lim K(x) = O as in the case A but now
a=0+
(17) K(2) =~ 2 3(17/2 =15
a-0+\3 2 '

If we compare the expressions (14) and (17) we conclude that, for « small, the Berry-
Esseen bound is much smaller for the impulse-response function in case B than in
case A. As corresponding transfer functions differ only by the multiplicity of the pole
we conjecture that the multiplicity of poles improves the approximation of normal
distribution in general.
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2

Vytah
CHYBA PRI GENEROVAN[ NORMALNIHO ROZLOZENI
BrRUNO SUBERT

V ¢lanku je odvozen odhad pro maximum odchylky jednorozmérné distribucni
funkce ndahodného procesu vzniklého filtraci posloupnosti nezdvislych impulsit
ndhodné polarity linedrnim filtrem od normalni distribuéni funkce. Na dvou specidl-
nich pfipadech je studovdn vliv vahové funkce filtru na velikost odchylky.

Pe3iome

OHIUBKA IIPU TEHEPUPOBAHUU 'AYCCOBCKOI'O PACIIPEJEJIEHU A
BPYHO MYBEPT (BRUNO SUBERT)

B crarbe BbIBEJCHA OL[CHKA MAKCUMAJIbHOIO OTKJIOHEHMS OJHOMEPHOW (YHKIMU
pacnpe/eieHusi BEposiTHOCTHOrO Tipolecca, Bo3HUKaromero Gunbrpauueii nocieno-
BATEJILHOCTH HE32BUCUMbIX VIMITYJILCOB CIyYaWHON MOJISIPHOCTH JIMHEHHBIM (yuTb-
TPOM U TaycCOBCKOM (YHKIMHU pacnpefesieHus. B AByX 4acTHBIX ClIyyasix M3ydYaercs
3aBUCHMOCTH OTKJIOHEHMA OT BecoBOi GyHKIuU (GuibTpa.
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