
Aplikace matematiky

Vratislav Kafka
General theory of isothermic elastic-plastic deformation of polycrystals.
[Preliminary communication]

Aplikace matematiky, Vol. 12 (1967), No. 3, 219–223

Persistent URL: http://dml.cz/dmlcz/103092

Terms of use:
© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103092
http://dml.cz


SVAZEK 12 (1967) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

P Ř E D B Ě Ž N Á S D Ě L E N Í 

GENERAL THEORY OF ISOTHERMIC ELASTIC-PLASTIC 
DEFORMATION OF POLYCRYSTALS 
[PRELIMINARY COMMUNICATION] 

VRATISLAV KAFKA 

(Received December 6, 1966.) 

The presented theory supposes the micro-stresses to be of essential importance 
for the variations of mechanical properties of polycrystals, caused by plastic de
formation. 

If a statistically homogeneous and isotropic material is considered, the following 
mathematical model seems to be proper: 

The material is supposed to consist of N basic materials, which ail are of Reuss' type, 
without strain-hardening, with Mises' criterion of yielding, with all parameters 
different. Further it is supposed, that the basic materials are dispersed in micro-
volumes and on the contact-surfaces of the micro-volumes no displacements 
occur. It holds 

(1) dЄijn = Џn dsijn -

(2) de„ = Qn áan 

in the elastic state and 

(3) 
áeijn = sijn áXn + џn ásijn, 

(4) ásn = on áan, 

(5) <?.<? — ? k 2 

°ijn°ijn -~',vл 

in the plastic state of the n-th basic material. 

In the analysis that follows the above quantities with /.-indices are considered 

as the arithmetical averages in the micro-volumes of the n-th material. 

Then we can write 

N 

(6) E S-Vijn = °ij » 
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л 
( 7 ) Z ^ijn = Һj , 

ř i - 1 

(8) £ K = 1 • 
n = l 

The elastic potential of the average stresses is 

(9) W = £ S„(fe„a„2 + ^„s i ;„50.„) . 
n= 1 

This is of course not the whole potential energy in a macroscopic unit volume, 
as the arithmetic average is in general not identical with the quadratic one and then, 
from the Schwarz's inequality it follows, that the whole potential energy must 
be greater than (9). 

The micro-volumes of the n-th material resist the average deformation eijn and 
the difference between this proper deformation and the macroscopic deformation. 

It is supposed, that the whole potential energy may be expressed approximately 
in the following way 

(io) P=w+v=w+iY Ui(>,,<2 + y„s'ijns'ijn), 
n= i 

where 

( 1 1 ) d < = d £ - ^ , dS;,, = d J ^ = ^ 
Qn Vn 

in the elastic state. 
Similarly if in the n-th material the plastic state is reached, the increment of the 

respective plastic work refered to macroscopic unit volume is 

(12) dDn = Bn(2k2
n + Zs'ijHs'ijH) dXn . 

At the elastic limit the quantity s'iJn may be calculated according to the equation 
(11). Further increments of s'ijn are 

(13) ds'ijn - - (deijn - s'ijn dXn - detJ) . 
t*n 

The increment of the whole microscopic work is then 

d(W+ V+D). 

The increment of the macroscopic work is 

m = du delV . 
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All further necessary equations for the derivation of the stress-strain relations 
and their variations can be obtained from the generalized principle of the virtual 
work 

(14) ð(W + V + D - П) = 0 

As an example let us consider N = 2 and a pure shear loading saP. We shall sup
pose, that in the original state all the micro-stresses are zero with the only exception 
of sPyn = s^yn. (The deviatoric micro-stress-components seem to correspond to the 
oriented micro-stresses, observed in X-ray investigations.) According to (6) it must 
hold 

(15) 
3, 

fiyl 

and from the above considerations it follows 

(16) s& - s'ß
0

y2 = -
, 0 

97č 

According to (6) it is valid in general 

(17) Sij2 — ~ (Sij " &\Sij\) > 

(18) (õ - 9,0,) 

and in this way the variables are the macroscopis components and the components 
with the index 1. 

In the elastic state we obtain from the equations (only two are independent) 

(19) 
д(W + V - П) _ д(W+ V-П) _ õ(W+ V - П) 

°Py\ õš, 
0 

aß 

the following results 

џ2 (20) saßl = 

(21) 

&\Џz + $гЏ\ 
1 + 

$2V\(lh - t*2) 

H_fi2 + ^(9ífií + $2fU2)($iH2 + ^2Ml)J 

fi_fi2 + ŠÍPÍVI + $2lh)fh 

\ix\i2 + Zf$_\lx + $2fh)($\fh + $2th) 
yaß •> 

S0y\ = S ßy\ • 

The equivalent expressions (20) show, that the value of sapx lies between analogous 

values of sapi calculated from the supposition sijn = s^ and the supposition eijn = ei} 

which gives safil = /<2/(*V2 + ^MiK/ j . 
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It can be easily shown that the equat ion (20) is general, holding for arbitrary 

loading in elastic state and for arbitrary deviatoric component , when safil = 0. 

When not, then (20) holds for (s a / ? 1 — s a / 5 1). 

Analogously it can be derived 

(22) ((T, - (7?) = 
#iO 2 + $гQi 

1 + 
&гQi(Qì - Qг) 

Q1Q2 + Š($iQi + 52e2)(3i í?2 + ^zQi) 

Qt + Z($iQi + 3 2 e 2 ) 

QiQг + Š($iQi + &2Qг)(SiQ2 + S 2 вi 
O2(7. 

Let us consider now, that in the material 1 and only in the material i the plastic 

limit has been reached. Then it holds 

(23) 

(24) 

Saßl + S
ßyi — ^l > 

He - - ?*Ě± d<? 

F r o m the above considerations and from the following equations (from which 
only two are independent) 

(25) 
ô(W + V+D- П) _ д(W + V+D-П) д(W + V + D - П) 

dsafn 

it can be calculated 

ÕÅ^ ôšxß 

= 0 

(26) <Ц, = 

(27) åsafl 

f^__í + _Pl__\ + #2r*2)] Sofii 
dS. 

^[(^l^í + 92fl2) kl - ll2(saíns'afil + 5 Byl^ y l ) ] 

= A-2p*l + g(glgl + V 2 ) ] K^l/jj + ď2/£2)^yl ~ ^ y l j ^ y l 

[ ^ 2 + £ ( V l + #2^ ) ( V 2 + S2M1)] . 

• [ ( V l + <V2) fc? - ^(SafiXfil + fyylfyyl)] 

dš. 

(28) 

M + 

d a ŕ = dєa / J = ЭІ/Z, ăsаßi + V « / u dXt + &2џ2 dsаß2 = 

91 Í І 2 [/Í , + ЏiЏ, + B2џ2)] . 

{[Џi + _ _ I _ І + 32jЦ2)] sxßì + &Ì{Џ\ - Џ2)s«ßi} Ş__ 

where 

(29) 

&г[Џ\Џг + £ ( V i + V 2 H V 2 + V i ) ] • 
. [(&_Џi + $2Џг) k\ - џ2(saßísaßí + sßyísßyí)] 

(1 + 0Џ\Џг(^iЏ\ + V 2 ) 

dša« , 

."1^2 + £ ( V i + V 2 ) ( ^ i M 2 + <Vi> 

is the macroscopic value of /i. 
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The preliminary calculations and comparison with experimental results have shown 
a very good possibility of description of the elastic-plastic behaviour of polycrystals 
by this mathematical model already when considering N = 2. 

NOMENCLATURE 

' IJTV> ^ljn> ^ . J ř P 

v ijf uij> utj> U 

G = \G 

stress- and strain-tensor components and respective deviatoric 
components in the n-th material, 
respective macroscopic values, 

£ = i£f i , 
E modulus of elasticity, 
v Poisson's ratio, 
ij,k indices that can equal 1,2,3 and by repetition the summation 

is to be understood, 
a, /?, y indices that can equal 1, 2, 3, by repetition no summation is to be 

understood and a 4= fi =t= / =1= a, 
n index that can equal 1, 2, ..., N and by repetition no summation 

is to be understood, 
fi = (1 + v)/F, 
Q = (1 - 2v)/F, 
dXn parameter of the plastic deformation in the n-th material, 
kn plastic limit of the n-th material if loaded by pure shear, 
#n volume fraction of the n-th material, 
£ parameter depending on the structure of the material. 

Author's address: Ing. Vratislav Kafka C S c , Ustav teoreticke a aplikovane mechaniky CSAV, 
Vysehradska 49, Praha 2. 
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