
Aplikace matematiky

Ramon E. Moore
Practical aspects of interval computation

Aplikace matematiky, Vol. 13 (1968), No. 1, 52–92

Persistent URL: http://dml.cz/dmlcz/103139

Terms of use:
© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103139
http://dml.cz

SVAZEK 13 (1968) A P L I K A C E M A T E M ATI KY ČÍSLO 1

PRACTICAL ASPECTS OF INTERVAL COMPUTATION

RAMON E. MOORE

0. Introduction
1. Computers and computation
2. Decimal arithmetic and computing with intervals

2.1 Decimal arithmetic
2.2 Computing with intervals

3. Interval methods for computers
3.1 Introduction
3.2 Algebraic systems
3.3 Quadrature
3.4 Integral equations and two point boundary value problems
3.5 The initial value problem for systems of ordinary differential equations

4. Functional analysis for computers
References

0. INTRODUCTION

"Interval computation" or "interval analysis", [36], is concerned with the design
and study of algorithms for the computer which produce, automatically, guaranteed
upper and lower bounds to exact solutions of various types of mathematical problems.
The aim is to exploit the high speed and accuracy of the computer by programming
it to carry out all the necessary detailed analysis for each specific problem.

I wish to thank all those whose contributions are mentioned in the text following
and in addition I am grateful for the programming assistance of Mr. M. Mc CLELLAN
and Mr. D. GOOD. I am grateful for and honored by the invitation of Mr. I. BABUSKA
and the Czechoslovak Academy of Sciences to present this paper to the Liblice
conference.

My remarks may range from self-evident generalities to boring details but I hope
that in between there may be something of interest to help stimulate further efforts.
Much remains to be done.

52

1. COMPUTERS AND COMPUTATION

The electronic stored program digital computing machine — the "computer",
for short — has made extensive, rapid numerical computation available to vast
numbers of scientists and engineers and has revolutionized the applications of
mathematics.

An electromechanical desk calculating machine requires about ten seconds to
multiply a pair of ten decimal digit numbers. The computer can do this millions
of times as fast at less than a thousand times the cost.

For computations of sufficient length, the computer is vastly less expensive and
time consuming than the desk calculator. If you are only going to do one multipli
cation, or a few, then use the desk calculator, a slide rule, or pencil and paper. If you
are going to calculate the orbit of Mars, then use the computer. Recently [23],
a computer reproduced in a few minutes calculations on the orbit of Mars upon
which the astronomer KEPLER spent four years.

The analytical preparation and programming of computations to be carried out
by the computer can, unfortunately, be difficult, time-consuming, and costly. The
early recognition of this fact motivated the development of a vast array of aids to the
preparation of computations for the computer based on the use of the computer itself.

The earliest computers had only fixed point arithmetic wired-in and programs
were coded in a "binary" representation of machine language. A considerable
amount of time had to be spent "scaling" fixed decimal point computations before
they could be programmed. And programming in machine language required a
considerable amount of binary arithmetic by the programmer in order to assign
addresses to the quantities in the program. An odd, perhaps unfortunate, side effect
of this was the introduction of lessons in binary arithmetic at various elementary
levels in the public schools.

Computer manufacturers very soon introduced built-in floating point arithmetic
operations thereby eliminating the need for scaling preparation. Once computers
appeared with large enough "memories" (high speed storage capacity of several
thousand words), programmers invented various "languages" with notation much
closer to "ordinary" mathematical notation and easier to use than machine language
such as FORTRAN and ALGOL in all their versions, and many others as well
and wrote compiler programs to translate statements written in these languages
into machine code1); thereby greatly reducing the human time and effort needed
to program a computation. The preparation of the computer program for Kepler's
determination of the orbit of Mars was made with the help of FORTRAN in about
three weeks.

1) The compiled machine code is, somewhat unfortunately, often a less efficient program
than could be written by hand in machine language. A program written in FORTRAN might
take twice as long to run on the computer as the hand written machine language program, but
only a tenth of the time to writte and check out.

53

Ail sorts of programs, "routines", and "subroutines" have been written and rewrit
ten and distributed for use in the approximate numerical, solution of various types
of problems.

Programs enabling the computer to perform algebraic manipulations and symbolic
differentiation have begun to appear and should eventually have a strong impact
on computational practices [39], [12]. Such programs seem to require fairly large
memory capacity, perhaps 30 000 words or more, to be really effective.

One source of difficulty in connection with the publication, distribution and use
of programs written for a specific type of computer or even in a specific program
ming language has been the proliferation and rapid obsolescence of "better and
better" computers, programming languages, and operating systems. This situation
has given rise to intense efforts to standardize programming languages. International
groups have been formed to agree upon a universal programming language. As
a result, we now have, in addition to all the other programming languages, several
"universal" programming languages.

In practical applications of mathematics much of the analytical work that is done
on a problem consists of performing transformations using previously obtained
information in order to simplify further deductions about the properties of solutions —
in particular, to make numerical computations go as "smoothly" as possible. "Pre
conditioning" transformations or a variety of other analytical devices can be program
med to be carried out by the computer before, during, or after a numerical solution.

As an aid to the analytical preparation of computations, programs for the ap
proximate solution of various types of problems can be written which enable the
computer itself to analyze and control the accuracy of the computation. A natural
approach to the construction of such programs can be based upon computations
with intervals, [36].

2. DECIMAL ARITHMETIC AND COMPUTING WITH INTERVALS

2.1. Decimal arithmetic. In most practical applications of mathematics, approxi
mate results will suffice. Requirements of accuracy in numerical calculations vary,
of course, but exact results are rarely needed.

Exact results will usually be impossible to compute anyhow, since most calculations
begin with inexact data (i.e. with quantities known only to a certain degree of accuracy
or with finite decimal approximation to real initial data).

Exact arithmetic calculation with rational numbers, even beginning with small
integers, can lead to results with arbitrarily large integer numerators and denomi
nators; and so can become prohibitively time consuming — even on electronic digital
computers. Programs have been written [12] for exact arithmetic with arbitrarily2)

) Within the memory capacity of the computer.

54

large integers. For multiplication, the time increases as the square of the number

of digits and each multiplication approximately doubles the number of digits.

F ôr all these reasons, practical calculations are nearly always carried out only

approximately using the more convenient decimal (or binary) fractions. Only part

of the decimal digits in intermediate and final results are retained.

An assumption commonly made concerning the accuracy of such approximate

calculations is that the number of correct decimal digits ("significant figures")

in the result of a single arithmetic operation is the same as the smaller of the numbers

of correct digits in the two operands (except in subtraction where it may be less on

account of cancellation of leading digits).

This rule of thumb gives, of course, only a rough guide to an estimation of the

accuracy of final results of a calculation.3)

Examples of calculations occur in practice in which the number of correct decimal

digits decreases rapidly or increases rapidly once an initial error has been made

no matter how many decimal digits (beyond a certain minimum) are carried

in subsequent steps.

Consider the following two illustrative computations (chosen from the excellent

book of BABUSKA, PRAGER, and VITASEK, [6]) in which e is the base of natural

logarithms, e = 2-71828 18284 5 9 . . .

(-) 7„ = (1/e) I x"e" dx .

From mathematical tables (or by long division) we find that

\\e = 0-36787 944117. . .

Thus
I0 = 1 - (i/ e) = -63212 05588...

Table 1

d= 2 d= 3 d= 10

Io •63 •632 •63212 05588

II •37 •368 •36787 94412

h •26 •264 •26424 11176

Iз •22 •208 •20727 66472

h •12 •168 •17089 34112

h •40 •16 •14553 29440

h -1-4 •04 •12680 23360

h 10-8 •72 •11238 36480

) For a survey of some refinements of this rule, see [33].

55

Compute In from the recurrence formula (derived using "integration by parts")
I„ = 1 - nln_1 for n = 1, 2, 3, 4, 5, 6, 7.

Starting with I0 correct to d decimal digits and doing the subsequent arithmetic
exactly we obtain the results given in Table 1.

The first 11 correct digits of I7 are actually I7 - -11238 35040 6 . . .
In order to obtain I7 correct to 10 decimal digits it turns out to be necessary

to start with 14 correct digits in I0.
If we wish to continue the calculation of In for n = 8, 9, 10, ..., 14 then it turns

out to be necessary to start with 16 correct decimal digits in I0 in order to obtain
Ii4 = -0627... to even 3 correct digits!

Thus it is in the nature of this example that a rapid loss of accuracy occurs due
to growth of error in initial data.

On the other hand, consider the following example:

(2)
Compute

I7 - -11238 35040 6.

1 - L
for n = 7, 6, 5, 4, 3, 2, 1 .

Starting with I7 correct to d decimal digits and carrying only d decimal digits
in subsequent calculations we obtain results which are also accurate to d places.
Furthermore, starting with I7 correct to only d digits and carrying 10 decimal digits
in subsequent calculations we obtain the results given in Table 2.

In this example the calculations beginning with I7 correct to only two decimal
digits produce a result for I0, for instance, which is correct to better than five digits.

Table 2

d= 2 d= 3 d = 10

Һ •11 •112 •11238 35040

Һ •12714 28571 •12685 71428 •12680 23565

Һ •14547 61904 •14552 38095 •14553 29405

Һ •17090 47619 •17089 52381 •17089 34118

IЗ •20727 38095 •20727 61903 •20727 66470

Һ •26424 20635 •26424 12699 •26424 11176

Һ •36787 89682 •36787 93650 •36787 94411

Һ •63212 10318 •63212 06350 •63212 05588

2.2. Computing with intervals. One means of keeping track of how many digits
are correct during a calculation is to do the calculation with "interval numbers", [36].

The set (interval) of all real numbers x such that 1 = x = 2 is denoted by [1, 2] .

56

Similarly, for any pair of real numbers a, b such that a _ b, [a, b] represents the
interval of numbers between a and b, including end points.

We can think of the quantity [a, b] as another kind of number — an interval
number, made up of two real numbers — just as we regard the ratio of two integers
mjn as another kind of number — a rational number, made up of two integers.

In order to set up a useful way of doing arithmetic with interval numbers we can
use the following simple facts about inequalities.

Suppose a, b, r and x are real numbers and that p is a positive real number and n
is a negative real number. The following statements are then true.

1. p > 0
2. n < 0
3. if r 4= 0, then either r > 0 or r < 0
4. if a = x = b, then a + r<x + r<b + r
5. if a ^ x rg b, then pa < px = pb
6. if a :_ x < b, then rcb ^ nx ^ ?ia

From these simple properties of inequalities the following additional properties
can be derived:

7. if a ^ x <, b and c = y S d, then a + c ^ x + y < b + d
8. if a ^ x = b, then — b = — x ^ —a
9. if 0 < a ^ x ^ b, then l/b = l/x = l/a

10. if a = x = b and c < y ^ d, then
min (ac, ad, be, bd) rg xy ^ max (ac, arf, be, bo7)

Based on these results we define arithmetic operations for interval numbers as
follows:

addition [a, b] + [c, a1] = [a + c, b + d\
negative —[a, b] = [— b, —a]
subtraction [a, b] — [c, a*] = [a, b] + (— [c, a7])
multiplication [a, b] [c, a7] = [min (ac, ad, be, bd), max (ac, ad, be, bd)\
reciprocal l/[a, b] = [l /b , l /a] (if a > 0)
division [a, b]/[c, d\ = [a, b] (l/[c, d\)

We can mix arithmetic with interval numbers and real numbers by treating [a, a]
and a as the same thing.

If we perform a calculation with interval numbers using the arithmetic operations
just defined for such numbers, we will obtain interval numbers as results. These will
contain the exact real number results of the same sequence of arithmetic operations
for any set of choices of real numbers from the intervals involved. If we start with
intervals containing the initial data and compute the end points of the intervals
using approximate decimal arithmetic, and if we take care to "round" in such a way
that the resulting approximate intervals contain the correct interval results then we will
have computed intervals which contain the exact real result.

57

In short, if we calculate with interval numbers we can keep track of how many

digits are correct.

To illustrate, we repeat now some of the calculations of the examples already

discussed — but this time using interval arithmetic.

Consider again the computational problem beginning with I0 = 1 — (1/c), or

I0 = -63212 05588... to compute In = 1 nln
for n = 1, 2, ..., 7.

Starting with intervals of width one in the Jth decimal place and containing the

exact value of I0 and doing the subsequent interval arithmetic to 10 decimal places

we obtain the results given in Table 3. To illustrate how these results were obtained

we will first carry out explicitly the interval calculation ofIl9 I2, I3 for d = 2.

With d = 2, we put

I0 = [-63, -64] ;

then

and so

/, = 1 - / 0 = 1 + [--64, - - 6 3] ,

h = [-36, -37] .

Similarly,

I2 = 1 - 27, = 1 - 2[-36, -37] = 1 - [-72, -74] = 1 + [--74, --72] ;

then

Next,

I2 = [-26, -28]

I3 = l - 3I2 = 1 - 3[-26, -28] = 1 - [-78, -84] = 1 + [--84, --78] = [-16, -22],

The rest of the results for d = 2, 3, 10 are given in Table 3.

Table 3

d= 2 d= 3 d= 10

Һ [•63, -64] [•632, -633] [-63212 05588, -63212 05589]

Һ [•36, -37] [•367, -368] [-36787 94411, -36787 94412]

Һ [•26, -28] [•264, -266] [-26424 11176, -26424 11178]

Һ [•16, -22] [•202, -208] [•20727 66466, -20727 66472]

Һ [-12, -36] [-168, -192] [-17089 34112, -17089 34136]

Һ [- '8, -4] [04, -16] [14553 29320, -14553 29440]

Һ [-1-4, 5-8] [04, -76] [-12680 23360, -12680 24080]

Һ [-39-6, 10-8] [-4-32, -72] [-11238 31440, -11238 36480]

58

Each interval number entry in Table 3 contains the exact value of In because of the
properties of inequalities discussed earlier, especially properties 7., 8., 9., and 10.
Each entry of Table 3 also contains the corresponding entry of Table 1. It is in this
way that the calculations which produced Table 3 kept track of the number of correct
digits in the calculations which produced Table 1.

We turn now to the second example, connected with Table 2,

I7 - -11238 35040 6 . . .

IH-i=^-—^ for 7 1 - 7 , 6 , 5 , 4 , 3 , 2 , 1 .
n

We will carry out explicitly the interval calculation corresponding to the first column
of results in Table 2.

The exact value ofI7 is contained in the interval [-11, -12]; so we putI7 = [-11, -12]
and calculate (using 10 decimal digit arithmetic with appropriate rounding for
computation of end points of intervals).

I6 - (l - [1 1 , -12])/7 - [-88, -89]/7 = [-12571 42857, -12714 28572]
I5 - (J _ I6)/6 _ [-87285 71428, -87428 57143]/6 = [-14547 61904, -14571 42858]
I4 - (i _ I5j/5 = [-17085 71428, -17090 47620]
I3 = [-20727 38095, -20728 57143]
I2 = [-26423 80285, -26424 20635]
I! = [-36787 89682, -36788 09858]
Io = [-63211 90142, -63212 10318]

Again, these intervals contain both the exact results and the results of Table 2.
Notice that in this example the calculated intervals decreased in width from -01

for I7 to -000002 for I0 and indicated a gain in accuracy as the computation proceeded
whereas the intervals calculated for the previous example, (see Table 3), grew in
width and indicated a loss of accuracy as that computation proceeded.

Calculations with intervals can easily be programmed for the computer [36], [40],
[22], [8], [12].

In fact, using the CDC 1604 computer at the University of Wisconsin, the fol
lowing table of intervals containing In was computed using rounded interval arith
metic4) for the first example discussed above, namely

Z0 = 1 - \\e\ In = 1 - nln^1 , n = 1, 2 , . . . , 14.

The results are given in the form aEe = a . 10e.

4) In our program, [40] we did not bother to account for the error in converting the final
machine results from binary to decimal before printing. This can be corrected by pessimistically
adding one to the eleventh decimal digit of all the upper bounds given here and subtracting one
from the eleventh digit of the lower bounds.

59

n Lower bound Upper bound

0 6-32120 558806E-01 6-32120 558911E-01
1 3-67879 44Ю72E-01 3-67879 441177E-01
2 2-64241 П7629E-01 2-64241 H7850E-01
3 2-07276 646432E-01 2-07276 647090E-01
4 1-70893 411615E-01 1-70893 414249E-01
5 1-45532 928736E-01 1-45532 941908E-01
6 1-26802 348529E-01 1-26802 427575E-01
7 1-12383 006953E-01 1-12383 560275E-01
8 1-00931 517777E-01 1-00935 944353E-01
9 9-15765 007958E-02 9-16163 399816E-02

10 8-38366 001844E-02 8-42349 920422E-02
11 7-34150 875360E-02 7-77973 979712E-02
12 6-64312 243462E-02 1-19018 949565E-01
13 -5-47246 344376E-01 1-36394 083497E-01
14 -9-09517 168975E-01 8-66144 882143E-00

The second example discussed above was also programmed and (cf. table 2.5 in [6])
was recomputed using interval arithmetic beginning with

I; = [°> 1/0' + 1)] f o r ì = 9> î 9 > 2 9> 39> 59

and computing
h-i = (1 -h)ln, n=j,j- I, . . . , 2 , 1 .

We will reproduce some of the results here for j = 9, 59.

/ = 9
n-f 1 Lower bound Upper bound

10 0 1 00000 000000E-01
9 9-99999 999953E-02 1-11111 ШЮ9E-01
8 1-11111 1Ш07E-01 1-12500 O00O0OE-01
7 1-26785 714278E-01 1-26984 126985E-01
6 1-45502 645496E-01 1-45535 714287E-01
5 1-70892 857134E-01 1-70899 470901E-01
4 2-07275 132264E-01 2-07276 785711E-01
3 2-64241 071412E-01 2-64241 622575E-01
2 3-67879 188701E-01 3-67879 464285E-01
1 6-32120 535697E-01 6-32120 811287E-01

/ = 59

n+ 1 Lower bound Upper bouпd

60 0 1-66666 666669E-02
59 1-66666 666657E-02 1-69491 525325E-02
58 1-69491 525416E-02 1-69540 229885E-02
57 1-72464 206483E-02 1-72465 060963E-02
56 1-75491 695336E-02 1-75491 7Ю601E-02
55 1-78627 423436E-02 1-78627 423727E-02
54 1-81877 269922E-02 1-81877 269942E-02

60

J= 59

n+ 1 Lower bound Upper bound

53 1-85247 598667E-02 1-85247 598682E-02
52 1-88745 238484E-02 1-88745 238492E-02
51 1-92377 544340F02 1-92377 544349E-02
50 1-96152 449Ю2E-02 1-96152 449114E-02
40 2-44044 317823E-02 2-44044 317835E-02
30 3-22906 775342F02 3-22906 775359E-02
20 4-77227 557939E-02 4-77227 557974E-02
10 9-16122 929845E-02 9-16122 929915E-02
9 1-00931 967440E-01 1 00931 967446E-01
8 1-12383 504066E-01 1-12383 504069E-01
7 1-26802 356556E-01 1-26802 356562E-01
6 1-45532 940567E-01 1-45532 940576E-01
5 1-70893 411877E-01 1-70893 411888E-01
4 207276 647020E-01 2-07276 647026E-01
3 2-64241 П7646E-01 2-64241 П7658E-01
2 3-67879 441165E-01 3-67879 441171E-01
1 6-32120 558806E-01 6-32120 558829E-01

The following computations, also chosen from [6], were also run on the computer

using properly rounded interval arithmetic.

Put Zi = 1; compute

yn = zn\n , zn + 1 = nyn, n = 1, 2,. . . , 10000 .

The computer obtained the result

yioooo x 104 e [-99999 9621534, 1-00000 024744] .

Putting yx = 1,

y« + i = ynvn > vn = w/(n + 1), n = 1, 2, ..., 10000

the computer obtained

yioooo x 104 e [-99999 9622745, 1-00000 018076] .

3. INTERVAL METHODS FOR COMPUTERS

3.1. Introduction. The evaluation of any rational expression, using interval arith

metic, for given intervals of values of the real arguments can be carried out by the

computer to obtain upper and lower bounds on the range of values of the real rational

function defined by the expression.

Furthermore, it has been shown [36] that arbitrarily sharp upper and lower

bounds on the range of values of a real rational function can be obtained by subdiv

iding each of the intervals of values of arguments, evaluating the rational expression

using interval arithmetic over each subdivision and forming the finite union, (and,

of course, carrying enough digits in the computation).

61

An "extended" ("erweiterte") interval arithmetic based on arbitrary unions
of intervals has recently been developed [2], [3], [4] .

KRUCKEBERG [31] considers "inner" and "outer" intervals and develops an arith
metic for both kinds of intervals on the extended real line. W. KAHAN (personal
communication) has suggested a generalization of interval arithmetic to "interior"
and "exterior" intervals.

A very frequently made suggestion is that of developing a probabilistic version
of interval arithmetic. The argument goes like this: in a large number of practical
applications of mathematics, guaranteed bounds on errors in numerical solutions
of equations have no real meaning, since the mathematical equations themselves
are only approximate descriptions of the real physical process involved. Therefore
(continues the argument) it would make better sense to estimate intervals which
"contain" values of exact solutions with high probability.

An interesting attempt along these lines is the current work of A. CHAI,
a doctoral candidate at the University of Wisconsin, based on computing with
approximating normal distributions represented by the number pairs: (mean,
variance). Numerical experiments on the computer have yielded encouraging results.
A very great difficulty encountered in such work, however, is that of establishing
a precise interpretation of the numerical results, once an algorithm has been chosen;
that is, in what sense precisely is an exact result contained with a certain probability
in a computed "probabilistic interval" and what value should be assigned to that
probability. See also [24], [29], [41].

I would like to cite an occurence that took place in a research laboratory some
years ago. A physicist who was puzzled by some numerical results he had obtained
from the computer came to me one day. He told me he didn't believe the results
and that he suspected "round-off error" as the source of the trouble. The computation
was quite involved and it would have been difficult and time consuming (but not
impossible, of course) to analyse the round-off error accumulation by pencil and
paper methods. Instead, we put the same computation on the computer a second
time but using rounded interval arithmetic. The bounds on round-off error computed
in this way did not exceed one in the sixth decimal digit of any result and round-off
error was ruled out as the source of the trouble. It turned out later that the mathem
atical description of the physical process had been inadequate.

The degree of sharpness of bounds obtained using rounded interval arithmetic
on the computer depends upon, among other things, the number of occurrences
of a given variable, [36]. In computations involving a large number of occurrences
of each of many independent variables and involving lots of subtractions, the
intervals may grow very wide and give very pessimistic bounds. Direct evaluation
of a rational expression in interval numbers will give the same result as if the interval
numbers each represented the range of values of a distinct real variable. Thus cancel
lation of error by subtraction for example, is lost. An example of such a computation
is the inversion of large matrices by use of Gaussian elimination. For such comput-

62

ations the interval bounds on accumulated round-off error seem from experiments
to be about as pessimistic as the a priori bounds of VON NEUMANN and GOLDSTINE [24]
who summarized their results as follows: "Matrices of order 15, 50, 150 can usually
be inverted with a (relative) precision of 8, 10, 12 decimal digits less respectively
than the number of digits carried throughout". Actual errors are often much smaller
because of cancellations. HANSEN [26] has combined interval arithmetic with
Neumann series expansion about an approximate inverse for much sharper guar
anteed bounds in numerical matrix inversion. The propagation of initial error is also
taken into account in this method.

The sharpness of round-off error bounds obtained using interval arithmetic will
depend upon the specific form of a rational expression, (i.e. the particular factoriz
ation and order of operations used in its evaluation). The actual error also depends
on the specific form used, [36]. Interval arithmetic can be useful as a tool in the
search for a particular way of evaluating a rational function on a computer which
minimizes the error.

An important property of interval arithmetic is inclusion monotonicity. If
F(Xl9 Xl9..., Xn) is a rational expression in the interval variables Xl9 X2,..., Xn

then X\ c= Xi9 i = 1, 2 , . . . , n implies F(X[9 X2, ..., Xn) c F(X1? Xl9..., Xn).
In particular, if F(X) is a rational expression in X and if F(Xo) c : ^o> which can

be tested by a computer, then it follows that the sequence of intervals defined by

X(0) = X0, X(*+1) = F(X(fc)), k = 0 , 1 , 2 , . . .

is a nested sequence Z (0) ==> K(1) => X(2) => .. . and hence converges to some interval
X* with X* c= X(k) for all k.

Of course inclusion monotonicity supposes exact (i.e., infinite precision decimal)
arithmetic in the computation of end points of intervals. On the computer, using
fixed (or limited) precision arithmetic properly rounded for the computation of end
points of intervals it may happen that

Xd) = F(X(o)^

is properly contained in X(0) but that for some k, x(k+1) <£ X(fc). We can program
the iteration procedure to evaluate

Z(*+D = X
(k)nF(Xw)

and to stop when X(k+1) = X(fc); then the computer will have obtained the smallest
interval it can find for the fixed precision used in the rounded interval arithmetic
evaluation of F.

Furthermore, if F(X) n X is empty, then X clearly contains no fixed points of F;
i.e. there is no x e X such that F(x) = x.

A computer program for finding intervals guaranteed to contain a zero (or no
zeros of a real rational function has been written [14] using the above mentioned
properties and an interval version of Newton's method, [36].

63

3.2 Algebraic systems. An interval version of Newton's method for solving

systems of algebraic equations with guaranteed error bounding has been described

[36]. Improvements have recently been made by Hansen [27], [28]. We now describe

briefly the original version and the improvements. Suppose the system of algebraic

equations is, in vector form, f(x) = 0, with components fi(xx,x2,...,xn) = 0,

i = 1, 2, ..., n, and that x0 = (xxo, x20, ..., xn0). If cp(s) is a continuously differenti-

able path from x 0 to x, with cp(0) = x0, <p(i) = x, and gt(s) = ft((p(s)) then by the

mean value theorem

gi(l)=fi(x) = 0=fi(xo) + g'i(sl)

for some s, e [0, 1]. Now

e w - i ^(cp(sd)<pj(s>)
J-.1 dxj

and if the path is chosen as the "diagonal" line segment connecting x0 and x, namely

cp(s) = (l — s) x0 + sx then cpj(s^) = Xj — xj0. Therefore, if Xh i = 1,2, ..., n

are intervals which contain both the corresponding solution components xt and the

components of the approximate solution xi0 we can conclude that <P;([0, 1]) c Xt,

i = 1, 2,..., n, and the solution Xx, X2, ...,Xn of the linear algebraic system with

interval coefficients

(3.2-1) f(x0) + t 7T (xi> x2, • •., Xn) (xj - xJ0) = 0, i = 1,2,. . , n
7 = 1 dxj

will also contain the solution point x. If Vis a matrix of intervals which each contain

all the values of the corresponding elements of the inverse of any real matrix with

coefficients in the intervals (dfjdxj) then x e X a x0 — Vf(x0).

Hansen [28] observes that the evaluation of the Jacobian matrix dfjdxj over the

entire H-dimensional rectangle (interval vector) Xx, X2, ..., Xn is unnecessary and

that sharper results (faster convergence, narrower resulting interval bounds) can

be obtained by using a path going along edges of an rc-dimensional rectangle from x0

to x in n steps applying the mean value theorem in one coordinate direction at a time.

In this way many of the arguments of the matrix elements dfijdxj are real numbers

instead of intervals. Furthermore, instead of computing the interval matrix Vcontain-

ing the inverses of the Jacobian matrices with elements ranging over intervals, the

linear system (3.2-1) can be solved directly for X, [27] again improving both speed

and accuracy (sharpness of bounding intervals).

We will illustrate these remarks with a simple example.

For the algebraic system

(3.2-2) fi(xi, x2) = x\ - x\ + 1 = 0 , f2(xx, x2) = xxx2 - 1 = 0 ,

we have the Jacobian matrix

'dft\ /2Xl -2x2

кõx

64

Suppose that x10 , xx eXx and x20 , x2 e X2 and call f 1 0 = *io "~ x2o + L> f2o =

= *io*2o - h then the two forms of the mean value theorem discussed lead to the
linear systems.

(3.2-3) f 1 0 + 2Xx(xx - x10) - 2K2(x2 - x20) = 0

f2o + X2(ix - x10) + Xx(x2 - x20) = 0

(for the "diagonal" path)

(3.2-4) f 1 0 + 2Xx(xx - x10) - 2K2(x2 - x20) = 0

f20 + ^2 (^1 - *lo) + *1(>(*2 - X2o) = 0

(using the edges of (Xu X2))

Now take x10 = -9, x2 0 = M , Xx = [0, -9] X2 = [M , 2] then fxo = -6, f 2 0 =
= —-01 and (3.2-3) has the form

•6 + [0, 1-8] (xx - -9) - [2-2, 4] (x2 - 1-1) = 0

- •01 + [M , 2] (xx - -9) + [0, -9] (x2 - M) = 0

That is to say we want to find intervals Xx, X2 such that x t eXx and x2 eX2 for
all solutions x l 9 x2 of systems

a(xx - -9) - b(x2 - M) = - - 6

c(xx - -9) + J(x2 - M) = -01

for which a e [0, 1-8], b e [2-2, 4], c e [M , 2], d e [0, -9]. Using an interval version
of Gaussian elimination and "pivoting" on c we find that

x2 - M = (-6c + -01a)/(bc + ad)

xx - -9 = (-01 - d(x2 - VI))Ic

be + ad e ([2-2, 4] [1-1, 2] + [0, 1-8] [0, -9]) = [2-42,9-62]

•6c + -01a G (- 6 [M , 2] + -01 [0, 1-8]) = \>66y 1-218]

x2 - 11 6 [-66, l-218]/[2-42, 9-62] = [-068..., -50 . . .]

x2 e [1-168.. . , 1-60...] ,

xx - -9 e (-01 - [0,-9] [-068,-51])/[M, 2]

x 1 e [- 4 9 F . . , - 9 0 9 . . .] .

65

and

and

so

and

Similarly

and so

Therefore (3.2-3) leads to the conclusion that a solution of (3.2-2) which is in the

rectangle

(x . , . x 2) 6 ([0 , . 9 L [H , 2])

is also in the smaller rectangle

(x 1 ,x 2)6([-49V -91] , [1168, 1-61]).

Now repeating the calculations using (3.2-4) instead of (3.2-3), (which just amounts
in this example to replacing the statement d e [0, -9] by d = -9) we obtain the
slightly improved result

(xu x2) e ([-491, -875], [1-168, 1-61]).

For other (and especially higher dimensional) examples the improvement can
be more marked.

The computations in this example amount to one iteration of the interval version
of Newton's method. The whole process can be iterated and will converge rapidly
to a bounding rectangle of arbitrarily small width, limited only by the number of
digits carried in the interval arithmetic operations.

Applications of the interval version of Newton's method for algebraic systems
have been made to: the determination by the computer of arbitrarily small rectangles
in the complex plane guaranteed to contain complex roots of polynomials, and
machine computed upper and lower bounds on eigenvalues and eigenvectors of
matrices, [28]. Interval versions of Wielandt's ''inverse iteration" and methods
of Wilkinson are also discussed by HANSEN [28].

3.3. Quadrature. Interval quadrature methods have been developed based on Tay
lor series with remainder [36]. Specifically, if F(r), r = 0, 1, 2, .. . , k are rational
interval extensions of the real rational function / = f (0) and its first fc derivatives
and if I = f [o h] f(x)dx and

n fc-l F(r)(\
(3.3-i) /„, = £ y ^ L - ^ ^ . - x , . ^ 1

i = i r = o [r + 1)!

(k + ť ! г = i

with a = x 0 <
 xi < ••• < xn — b then for all n, k ** 1 we have I el„tk and the

width of the interval Ink satisfies

w(ln,k) ^ Lk max (XJ - * i - i) * + J .

i=l,2,...,»

A sharper result pointed out by E. Hansen (private communication) is

n fc-l rs / _i \ / \ r + l

("•2) I e/.•„ - I 1 ^ *•* (S i i l) (i-JLt!)
+ (S T T) ! (

i C T t l J " ' F < " ^ — - •
66

(3.3-3)

An interval version of Gaussian quadrature formulas with remainder has been
developed also [34].

An interval "cubature" method for multidimensional iterated integrals based
on Taylor series or Gaussian quadrature should not present any insurmountable
problems in programming since computer programs for generating partial derivatives
of any order are available, [39].

The computer generated subroutines for derivatives can be executed in interval
arithmetic, so that the computer can produce intervals containing such terms in the
formulas we have been discussing as dfijdxj (Xl9 X2,..., Xn) and F(2fc)([xi_1, xf]),
[36], [38], [39].

An alternative to the direct evaluation of remainder terms in higher derivative
form using computation with intervals is the use of Cauchy's inequality. Recall
that iff is analytic in the open disc \z — z0\ < D, then

f(r)(z0) ^ m a x l f (z 0 + O^)l for 6 e [0, 2TE]

r! ~~ Qr

for any 0 < Q < D.
By treating real and imaginary parts separately, complex functions can be bounded

in rectangles in the complex plane using interval computation [8], [28].
An optimization problem arises in connection with formulas such as (3.3-2).

For a fixed choice of {xt}, depending only on n, both the computation time for
evaluating I*2fc and the width of the interval I*2fe depend on the two approximation
parameters n and k. The question is for a given width of J*2fc what choice of n and k
minimizes computation time? A discussion of this question for formula (3.3-1)
is given in [36]. We will take up similar questions in connection with methods for
differential equations later in this paper. The question of the "best" choice of {xf}
will not be considered in this paper, except for the following remark. A popular
opinion, based on experimental evidence in practical computation is that an efficient
scheme for variable step size in numerical integration (quadrature as well as numerical
solution of ordinary differential equations) is one in which some estimate of the local
truncation error is kept approximately constant; for formula (3.3-2), this would
mean choosing {xt} such that

\ (2k + 1)!

is roughly independent of i. For this, w(F(2fc)([x^ l5 xf])) could be estimated by
|F (2 fe+1)(x l_1)| (xi — x ^ i) . Given x0, xx we could then put

p(2k + 2)/ \ l/(2fe + 2)

Xi = X;_! + --------
F< 2 * + 1) (* i - i)

We will now illustrate some of the methods and considerations just mentioned by

detailed examination of a specific example.

67

We will study the application of (3.3-2) to the integral

(3.3-4) I = f (l /x)dx = l n b .

We put f(x) = 1/x, then xf = 1 and by Leibniz' formula (which is used by the
computer programs for generating derivative subroutines, [36]) we have

Wr) = í(r)^fr-J) = o, г_l.

Solving for f(r)/r! we obtain (as the computer does), making use of the additional
information x (1) = 1, x (r) = 0, r __ 2, the result

<-) ^ - - (£W«-»« • - • • •
The programs referred to seek recursion relations (such as (3.3-5)) defining higher

derivatives in terms of lower order ones. The interval extensions off(r), r = 0, 1, 2, . . .
are then simply defined by interpreting the operations in (3.3-5) and f(x) = l/x
as interval arithmetic operations. Thus, for F(2fc)([x;__, xtJ) in (3.3-2) we have in this
example, from (3.3-5),

- - [l / x f , l / x ^ ^ ^ f e i i i i l) _ (_ !) - [1 / X ; , l / x , . .] - * " .

Note that this means, in particular,

f(2k)(Z\

(3.3-7) _ _ I - 6 (- l) - - [i / „ £ , l / x i . _] - * + - for any . e [*.__, „ J .
2k!

Let us now compare this part of our numerical illustration with an alternative
approach using Cauchy's inequality.

For this, we put f(z) = l/z and representing complex numbers by real pairs we
have for z = (x, y) and 0 e [0, 2TC] that z + Qe

ie = (w, ir is contained in a rectangle
in the complex plane defined by (u, v) G z + ([-O , OJ, [-O , O]) = (x + [-_ , O],
y + [-Q, ,])• In order to bound f(2fc)(<_ /2k! for any <_ e [xf__, x j using Cauchy's
inequality (3.3-3) we need to bound max | / (z + ^ | for 6 e [0, 2TE] and for z in the
segment [x . ^ x j . Then z + geie = (u,'i,) will lie in ([x,_ l 5 x,], 0) + ([-O , O],
[-_ , _]) = ([*_-_ - e, *i + e], [- & -]) and

f(z + Oe") = l/(z + Qe») = l/(w + fe) __ f „ _ _ _ i _ ________\
V ; \u2 + v2 u2 + vV

68

will lie in

[X f - t - O, X,- + O] [-Q>Q]
[X;_x - O, Xř + O]2 + [0, Q2~] ' [X^i - Q, XІ + OQ2 + [0, £2]

Xj-1 - g *i + g

Jx f + Q)2 + 2 ' (X,-І - <?)2. Ц ^ І - I
\2 '

(* i - l - í?)2

for any 0 < Q < Xj_x. Therefore

l/ (w(fll^((s, + g)2 + e2)1/2
(3.3-8)

2/c! " (^ - i - ď

for any £ e [xf_1? x j and any 0 < O < x ^ ^

We could program the minimization of the right hand side of (3.3-8) with respect
to admissible choices of Q for particular numerical values of Xi_x and xt and k.

Doing this we would obtain Q = 6xi_l for some 0 < 0 < 1 and (3.3-8) would
become

(3.3-9)
(2fc)IíЛ H2ҺҲ

2/c!
<

(^ + Ø x ^ + Ø2*2-,)1'2

(1 - 0 2 д2/c v2fc+2

The bound given by (3.3-9) will not be as sharp as that given by (3.3-7).
Using (3.3-6) we obtain from (3.3-2) for the width of J*)2fc' (ignoring round-off,

for the moment)

w(Л*2*) = I 2/c + 1 І = I

X ; — X ;
2fc+l

2/c+l 2/c+:
X i- i XІ

ï = 4 £ p
X ; ~ X ;

2X;

2fc + 2

According to a previous remark on schemes for variable step size we set

X ; X ; _ 1 _

= h . 2xt_!

Then xt = x ^ + 2ftxi_1 = (1 + 2ft) x ^ and x£- = (1 + 2ft)1 x0. For our problem

Ґ
= (l/x)dx

so we put x 0 = l ,x n = band obtain (1 + 2ft)n = b or ft = -2-(b1/w — 1) and x f = bl/n.
With this choice we have

(3.3-10) w'xI*,2k) < 4n
bl/n _ j\2fc + 2

We will now consider briefly the problem of minimizing for s > 0 the computation

time required to evaluate (3.3-2) among choices of n and k for which

4n{±(b1/n - \))2k + 1 S c

69

The next remark to be made is this. A common practice in predicting computing
time is to count arithmetic operations in a formula to be evaluated. This is not too
bad a procedure, but it should always be realized that actual numerical evaluation
of a formula by a computer involves many other operations as well: storing partial
results, modifying addresses of instructions, etc. In a "typical" situation the compu
tation time may be proportional to the number of arithmetic operations but the total
time might be five times the time for executing the arithmetic operations alone.

At this point we will suppose that all arithmetic operations are to be carried out
by the computer in rounded interval arithmetic so that round-off error will be ac
counted for in the final result.

From (3.3-5), (3.3-6) and (3.3-2) we determine that the evaluation of I*2fc requires
n(2k - 1) divisions to get F(2r)(i(x; + xt-x)) for r = 0, 1, 2, ..., k - 1, i =
= 1, 2, ..., n\ another n(2k + 1) divisions to get F(2fc)([xi_1, x,]), i = 1, 2, ..., n;
plus an additional n(2k + 2) multiplications and additions (using the "nested"
form of evaluating the polynomial) and nk divisions to complete the evaluation
of I*2fc- Thus, the computation time can be assumed to be proportional, for this
example, to nk.

In order to see which choices of n, k minimize nk subject to

/M l " __ l\2fc + 2
(3.3-11) 4 n (- -) g f i >

for some small value of a, say e = 10" 1 0 ard for various values of b, we notice first
that we certainly must have b1/n < 3, otherwise no choice of k will work.

A systematic way of searching for n and k might be to start with the smallest
n ^ In b/ln 3, find the smallest k satisfying (3.3-11) then add one to n and find the
smallest k again, proceeding in this way until the product nk has passed through
a minimum value.

As BABUSKA and SOBOLEV [5] have pointed out one should really take into account,
in such deliberations, the time required to obtain the optimal choice of parameters.

Even for such a simple example as the one we have been discussing, the determi
nation of the optimal choice of parameters can be disturbingly complicated.

A reasonably good choice for most practical purposes is to set the number of terms
carried in the Taylor expansion equal to the number of decimal digits of accuracy
sought, or, say, the number of decimal digits carried in the arithmetic used, [36].

In this example, if the computations are carried out using about 10 decimal digit
rounded interval arithmetic, then 10~10 is certainly as small as is reasonable fore
and we could put 2fc = 10 or k = 5 and solve for the smallest n such that

ru^ln _ l \ 1 2

An[t M < 1Q-10.

By rough slide rule calculation, I predict for example, that for b = 2 this gives
about n = 3 and for b = 100, about n = 25.

70

A rough sketch of the dependence of nk on n, k and b from (3.3-11) with s = 10 1 0

is given in the following tables. The figures given are only approximations.

b= 2 100

n k nk

1 17 17

2 6 12

3 6 18

850 1 850

n k nk

5 45 225

6 19 114

10 10 100

25 5 125

28 000 1 28 000

A useful thing about an interval method such as formula (3.3-2) is that whatever
choice of n and k we (or the computer) make, the computed interval will contain
the exact result for certain and if the interval result is too wide for our purpose we can
get a narrower one by repeating the calculation with more steps (larger n) and by
using higher precision arithmetic (more digits) if necessary.

An application of interval computation by the computer which should not be
overlooked is in the preparation or checking of published tables of numerical values
of functions. I have not undertaken this in any extensive way. However, I have
checked some interval results against tables and have noticed occasional errors
in the last digit or two of a published result.

3.4. Integral equations and two point boundary value problems. In this section
we will use the following type of notation for the interval extension of real rational
functions f(x, y) = x + x\y -> F(X, Y) = X + XJY. From inclusion monotonicity
and the mean value theorem, it follows that

(3.4-1)

where

ľ f(x')dx'єtғ(Xү
Jla,Ъl i = 1

)\íb — a

xp = a + [i-í, q(lzЛ.

If F is an interval function whose real restriction, F([x, *]) = F M i s m i n t e r v a l .
valued, we define v J

(3.4-2) I E(x)dx = n i *•(*<">) (t z ^ \
Jr..»] »-i.-i J\ n y

71

Consider an integral equation of the form

(3.4-3) y(x) = h(x) + g(x, x, y(x')) áx' for a ^ x ^ b .
J [ß,bì

Define a sequence of interval-valued functions

Y0(x) = [c, d]

(3.4-4) Ym+1(x) = Цx) + G(x, x', Ym(x')) áx', m = 1,2, ...
[a,Ь]

If Yi(x) <= [c, d] for all x e [a, b], then for each x e \a, b], we have

(3.4-5) y(x) e Ym+p(x) cz Ym(x) , (m, p = 0, 1,2,...).

Let n be a positive integer; for i = 1, 2, ..., n; m = 0, 1,..., define

Y(n} EE [C, J]

(3.4-6) YW">M = H(X<">) + £ W# G(X<">, Xf, y£>)
1=i

where

(«) _ \(b ~ a)ln> if i * J ' Ww =
[[0, (b - a)/n], if * = j .

If H and G are rational interval functions, with real restrictions h and g, then
a computer program can be written for the evaluation of Ym

n\ using rounded interval
arithmetic.

If Y^l cz [c, d\, (which can be tested by the computer), then

y(x) e Ym(x) cz Ym
n)

for a l l x e X ^ ; m, n = 1,2, ...
At "mesh points" x(n) = X(n) n X(nll9 we have the sharper result, [36],

(3.4-7) y(xT))eYm
n}nYm

n}+1.

If the number of places in the rounded arithmetic used is increased with n and m,
then for rational (x — a)\(b — a) = M/N, we have convergence to real values:

(3.4-8) v(*) = OYJTJ: «,_.,/(»-.,).

The two point boundary value problem

(3.4-9) y" = / (x , y) , y(a) = y0 , j (b) = y± ,

which can be put into the form of the above integral equation, can also be treated
in this way; if/ is rational, then the corresponding g is piecewise rational.

72

Consider the boundary value problem

(3.4-10) / ' = t2 + y2 , y(0) = y(l) = 0 .

It is sometimes useful to note that (3.4-2) gives for the interval-valued function

-tO = [fi(0>f2(t)]> the integral

(3.4-11) F(t) àt = Л(t) dí, .tødí]

We can define (and program) the square of an interval by

f [a2, b2] , a > 0 ,
[a , b] 2 = :] [b 2 , a 2] , b<0,

(|o, max (a2, b2)] , a < 0 < b .

Now write the boundary value problem as an integral equation

(3.4-12)

with

K0 =

к(t, ť) -

K(t,ť)(ť2 + y2(ť))dť

(t - 1) ť , 0 S ť й t,

l(t' - i)t, t' < t < l .

We define a sequence of interval valued functions as follows.

Yo(0 = [-i,o]

(3.4-13) Yk+1(t) = Cx(t, t') (t'2 + Y2(t')) dt'

For this example, we will carry out directly some of the integration instead of using
the discretized form given by (3.4-6).

By interval computation, using the above definitions, we find, remembering that
0 g tt% 1,

(3.4-14) Yt(t) = !\t - 1) t\t'2 + [0, 1]) dt' + f V - 1) t{t'2 + [0, 1]) dt'
Jo J t

= (ř - 1)

+ Ѓ

г í'3 dí\ í (ť3 + ť) dť
Jo Jo

Г ((ť - 1) ř'2 + ť - 1) dí', Г (ť - 1) í'2 dř'l

73

r 7 t2 t3 ť i ř3 ř4n
+ f + t + , +

L Í2 2 3 4 12 3 4 j

" [•
It ť ŕ t ŕ~ — + - + —, + —
12 2 12 12 12

Now it happens that Yx(t) a Y0(t) = [—1, 0] for all t in [0, 1]. From inclusion
monotonicity it follows that for all k = 1, 2,,.., the interval valued functions defined
by (3.4-13) satisfy Yk+1(t) c Yh(t) for all t in [0, 1] and furthermore if Yk(t) =
=- [yk(t), uk(ij\, then ufc(t) — vk(t) converges to zero for all t as k increases and the
solution to the boundary value problem, y(t), satisfies y(t) e Yk(t) for all k and all t
in [0, 1].

Carrying out part of the calculation of Y2(t) we find that the part which is linear
in t is given by

(3.4-15) Ү2(í) =

For Yi(t) we had

i-fi + i9-
12 V 144

i f , + i
12 V 144

t + ..

Yí(t) = 1_

12
J_"
12

t + ..

This means that we have determined the following intervals containing the initial

slope y'0 of the solution:

from Yt(t):

from Y2(t):

7 , 1
< Уo <

12 12

1 Д 4 9 \ , 1 (. 1
— 11 + — < ľ ó < 1 + —
12 V 144/ 12 V 144

The width of the interval derived from Yt(t) is \ while that derived from Y2(f)
has the smaller width jg.

If Yh(t) gives Sf^ < y0 < ^(2k)? t n e n a calculation such as that indicated above
yields the following information:

The interval function Yk+1(t) will have the linear part

(3.4-16) У»+.(ť) = (i + (sîП -ү2(i + sľ)2) t +..

74

so that Yk+1(t) yields the following bounds on y'0,

(3.4-17) Sf + 1) < y'0< S2"
 + 1)

where

Sf+ 1) = _ J - (l + (S^)2), S(
2*

+1) = - — (1 + (S f) 2) .

Define wk - S f - S f , then wfc+1 - -£ (S (
2

k) + S f) wk. From Yfc+1(r) c= Yfc(t)„
it follows that

S ? > < * S ? + 1) < S ? + ,) < Sf

so for fc _ 2, S(
2
fc) 4- Sf} is very close to — £ and we have, approximately,

(3.4-18) wk+1 - — wfc.

Thus y4(f) should give upper and lower bounds to y'0 differing by less than 10"5 .
We point out this application of interval methods for two-point boundary problems

since oftentimes it is of practical importance to compute bounds on the initial slope
of the solution.

A more rapidly convergent sequence of interval valued functions containing the
solution to an integral equation or a two point boundary value problem can be obtain
ed using Newton's method and a combination of techniques from interval analysis
and functional analysis. But we will defer a discussion of that until the last section
of this paper,

3.5. The initial value problem in ordinary differential equations. There are
several "standard" types of problems for which a large number of competitive
computational algorithms have been derived and studied (and continue to be derived
and studied).

Included among such types of problems are: systems of linear algebraic equations,,
algebraic (polynomial) equations, and the initial value problem in ordinary dif
ferential equations.

A specific algorithm for problems of a certain type often has some advantage over
other algorithms for a certain subclass of the class of problems of the type in question.

In practice it is usually difficult to tell at a glance whether a specific problem falls
in the subclass for which a given algorithm is "best" in some sense. For one thing,
a precise and simple description of the subclass is rarely available. So the choice
of which of a number of algorithms to use in each specific case is usually considered
to be a matter for the judgment of an expert — a person experienced in the
"art of computation".

75

To quote Babuska, Prager, and Vitasek:

"Given a mathematical problem and an automatic computer, it is required to

select the best numerical method of solution," [6].

If we choose a precise enough and narrow enough definition of "best", then

a selection process can be programmed for the computer as part of the computation

[36]. If this is done, however, the time required to obtain the optimal choice should

also be considered (as pointed out by Babuska and Sobolev [5]).

Sometimes, it doesn't make very much difference which of several comparable

algorithms are used.

There have been a number of comparative numerical studies made in which several

popular methods are tried on the same problem. In such studies, however, there is

always some question about the generality of the conclusions drawn. It has often

been conjectured that given two distinct numerical methods there are problems,

perhaps artificially contrived, for which either method will give better results than

the other. Still, it is of practical significance to compare actual running times on

a computer required to obtain results of the same accuracy on some nontrivial

problems of real interest using various available methods.

An interesting study of this kind was reported recently [21]. The differential

equations used as the test problem were those for the restricted three body problem.

(3.5-1) y\ = , . + 2y'2 - (±zAk±±±) _ life _J +__

n n

rъ rъ

г l r2
with

ri = ((Уг + џf + УÌУ'2 , r2 - ((Уl - í + џf + yiУ"

The methods compared were each used with some flexibility, varying step size and,

when possible, even the order of the method in order to obtain something like an

experimentally determined optimal use of the formula. A variety of initial conditions

were used and a variety of "error tolerances" were used to choose step size. The

computations were carried out using double precision arithmetic (about 22 decimals)

on the Burroughs B-5500 computer. Another set of runs was made using 30 decimal

place arithmetic on the IBM 7094 computer with the Runge-Kutta-Fehlberg method

to obtain more accurate results for comparison. These are "believed" to be accurate

to 24 significant figures. We will quote one of the tables of comparative results [21]

corresponding to the initial conditions:

yi = 1-2 yi = 0

y2 = 0 y'2 = -1-04935750983031990726

H = 0-0121285627653123104912068

76

"This table summarizes results of runs of comparable accuracy (~10~1 2) for the
various methods." The solutions were carried out over an interval slightly larger
than [0, 6] in the independent variable.

Number
Average

number of Processor
Maximum

of function time in units of
10~ 1 2

Order Method
steps evaluations seconds

units of
10~ 1 2

per step

693 21 293 008 7 - 8
Runge-Kutta-

Fehlberg

236 5 173 003 11
Runge-Kutta-

Fehlberg

1912 3-1 296 0-2 12 -13
Adams-Bashforth-

Moulton

1959 3-1 330 001 13-16 Stoermer-Cowell

1893 3-2 133 1 12
Cowell, constant jVth

order difference

1126 31 177 0-8 11
Stetter-Gragg-
Butcher

The figures given in the study for computer processing time do not appear to vary
enormously — from a little over two minutes to five and a half minutes. On this
basis the methods compared could be judged to be, more or less, equally good.

E. FEHLBERG has derived recently some very efficient algorithms, [16], [17], [18],
[19]. One of these, referred to by Fehlberg as the "Runge-Kutta-Transformation"
method, which combines Taylor series expansions and Runge-Kutta type formulas,
is the algorithm referred to in the above table as the "Runge-Kutta-Fehlberg"
method. GALLAHER and PERLIN, [21], conclude from their numerical studies that
in several senses "the Runge-Kutta-Fehlberg method is probably superior" to the
other methods they tried.

Fehlberg [16] has also run some timing studies on the same numerical example
as used in the study quoted in the above table (involving equations (3.5-1) and the
same initial conditions). We quote now some of the results of his study obtained
using double precision arithmetic (about 16 decimals) on the IBM 7090 computer.
Again the methods were programmed with "automatic step size control".

77

Number
of

steps

Processor
time

in seconds

Error
estimates*)

Order Method

17 750
726
520
280
176

592
106
57
79
42

•28 .10" 1 0

•25. 10" 1 0

• П . I O " 1 0

•25. 10" 1 0

•18 .10" 1 0

4
8
8

12
12

Runge-Kutta-Nyström
Tayłor series expanѕions
Runge-Kutta-Transformation
Taylor series expansionѕ
Runge-Kutta-Transformation

*) Change in value of Jacobi integral.

Notice here the rather significant decrease in the computing time from the fourth

order to the 12th order methods.

Suppose we consider a much larger class of methods for this same problem,

including say Newton's method [30], Lie series [25], etc. Suppose we allow all sorts

of transformations of the variables in the problem itself. And suppose we are to

define "best" here in terms of processor time to obtain a solution of at least 12

decimal place accuracy. Clearly, if we carry out enough analysis and hand computa

tion on the problem before we begin the machine computation we could, in principle,

even finish the computation by hand and have the machine simply read in and print

out the answers! Therefore a reasonable criterion for "best" when allowing prepar

atory analytical work must include some measure of the time and labor involved in

that work. On the other hand, if it were possible for the machine to do practically

ail the "analytical" work: setting up transformations, choosing step size and order,

etc., then processor time alone would be a reasonable criterion for "best".

It is my belief that the "art of computation" can eventually, to some extent be

made into a "science of computation" by a formal algorithmic description of various

analytical processes, transformation techniques and selection criteria; putting these

descriptions into the form of computer programs; and letting the computer carry

out the symbolic manipulations and computations leading to the selection of the

"best (or, at least, a good) method of solution" for given a mathematical problem.

Sometimes we want the algorithm chosen to have special properties. This limits

the selection to the available algorithms with those properties.

Suppose, for example, that we want an algorithm for calculating approximate

solutions along with guaranteed error bounds with all the analysis and computation

to be carried out by the computer.

For the initial value problem in ordinary differential equations & family of such

algorithms has been derived and programmed for the computer based on repeated

expansions in Taylor series truncated at the Kth term with the remainder in "mean-

value form" to be bounded by interval computation, [36]. Recurrence formulas

78

for the Taylor coefficients are derived by the computer in the form of subroutines.
This is done once, for a given problem, during "compilation time", requires little
computer time and no work or time on the part of the user. During the "execution"
of the computation for a given problem the time T(K) required by the computer
to obtain values for the first K Taylor coefficients is proportional to K2 for differential
equations which are non-linear after reduction to autonomous systems of first order
equations. The values t0, tl9 t2, ... of the independent variables at which successive
Taylor expansions are to be carried out and the number of terms K0, Kl9 K2,...,
to be carried respectively in each expansion are the parameters in the "family"
of algorithms.

Alternatively we can think of this as a single algorithm if we add some procedure
for choosing t0, tl9 tl9... and K0, Kl9 K2, ...

The time required by the computer to obtain the approximation and error bounds
at each ti + 1 from its expansion of order Kt at tt is roughly proportional to K2, [36].

One criterion for "optimization" of the algorithm is the following: choose the
values of ti9 Ki9 i = 0, 1, 2, ... so that for maximum accuracy obtainable using a fixed
precision machine arithmetic the total computation time is minimum.

It does not seem possible to mechanize this precise choice of ti9 Kt by any procedure
which would involve an amount of computation which could be ignored in compar
ison to that required by the resulting optimal algorithm itself.

An approximation to this choice of ti9 Kt is evidently to set K0 = Kx = .. . = Kt «
« (1-15...) d where d is the number of decimal places carried in the fixed precision
machine arithmetic used; and to choose ti+1 so that, ([36] p. 102), the local truncation
error is kept roughly constant relative to the change in solution values from step
to step.

For the algorithm under discussion this can be programmed for the computer as:

(3.5-2) ti+1 - t i =

if this is less than

(io^|j j V/(K+1)

\\F(K\ym.

\Уt\

otherwise,

\F(0)(y.)\'

t - t = Í^-T°\yt)\\/K

In the expressions given for ti+1 — tt by (3.5-2), the quantity \yt\ is supposed to be
the maximum absolute value of any component of the approximate solution vector y
at tt and F(A)(y;) is the Kth derivative with respect to t of the right hand side of the
autonomous system of differential equations: in vector form, dy/dt = F(y).

Numerical experiments with a number of systems of differential equations were
run on the computer to compare actual running time using the choice of ti9 Kt indi-

79

cated with the time required for other choices of th Kt. In all cases tried the choices
given here gave results of comparable known accuracy (i.e. comparable machine
computed error bounds) in computing times which were close to the minimum times
found.

A suggestion sometimes heard is that in the presence of a nearby singularity the
order Kt should be varied from step to step for more efficient computation. However,
I do not know of any very definite results to that effect.

Over a fairly short range of values of the independent variable quite sharp intervals
(containing exact solution values) are obtained by the computer based on repeated
Taylor series expansions with interval computation of the remainder terms. Interval
widths of a few units in the last place carried in the fixed precision arithmetic used have
been obtained in this way for initial value problems involving a variety of systems
of differential equations including the restricted — three body equations (3.5-1), [36],
This required about 5 seconds per step for the restricted three body problem on the
IBM 7094 computer but no preparatory analysis by hand.

This could be compared with about -1 seconds per step using truncated Taylor
series expansions of the same order at each step but without all the error bounding
interval computations.

There is a price to be paid for automatic guaranteed error bounding by the com
puter. It may still be infinitesimal compared to the cost of guaranteed error bounding
by the analyst, (see section 1 of this paper).

For long range numerical solutions with automatic error bounding by the computer
using this approach there is a source of excessive growth in the widths of the bounding
intervals. It is that the family of solution points [y(t) | y(t) e R(ti)} emanating from
an n-dimensional (for an nth order system) rectangle R(t) fill out a region S(t)
which at some ti+1 must be bounded by another ^-dimensional rectangle R(ti+1)
with sides parallel to the coordinate axes. If the region S(t) is a rigidly rotating
rectangle, for example, then R(ti+1) can grow to arbitrarily large width, [36].

Methods for reducing the effect of this source of growth of error bounds have
been studied, [35], [36]. These include a procedure based on local coordinate
transformations y = y* + C*z using an approximation C*(t) to the "connection
matrix" C(t) of the vector field (given by y' == f(y)) along an approximate solution
y*(t), defined by

(3.5-3) ^ = J(t)C(t), C (0) = J
dt

where I is the identity matrix and J(t) is the Jacobian matrix (Of/O>y) | y*(t).

A computer program incorporating this procedure did not, at first, have the
expected beneficial effect. The bounds grew faster, in fact.

The cause of the trouble was the loss of cancellation of error in interval subtraction
because of the loss of the identity of variables after substitution of interval values.
The cancellations must be done symbolically, [36]. Computer programs and program-

80

ming languages providing this capability in convenient form may be available soon.
Meanwhile, the formulas required for the application of the transformation technique
can be derived by hand for each specific problem and programmed for use by the
computer in connection with an interval solution of that specific problem.

Results obtained in this way were reported [36] for the initial value problem

(3.5-4) f-y2, - ^ - - , . ,
dx ax

yi(0) = 0 , j;2(0) = l-0.

The computations were performed on the CDC 1604 computer using the interval
version of repeated Taylor series expansion with K = 12 (twelve terms in the series
plus remainder in interval form) and using local coordinate transformations based
on approximate solution of (3.5-3). We refer to [36] for details. We quote part of the
results of the computation.

SOLUTION AT X = 30

Yl = 44112000805 ERROR BOUND = 5-6 . 10"1 0

Y2 = --98999249665 ERROR BOUND = 6-2 . 10"1 0

SOLUTION AT X = 6 0

Yl = --27941549819 ERROR BOUND = 2-3 . 10"9

Y2 = -96017028692 ERROR BOUND = 2-4 . 10"9

SOLUTION AT X = 9 0

Yl = -41211848524 ERROR BOUND = 9-3 . 10"9

Y2 = --91113026212 ERROR BOUND = 9-4 . 10"9

The error bounds are still growing, but not as fast as without the use of the trans
formation technique. Using the transformation technique the bounds in this example
grew (from x = 3 0 to x = 9-0) by the factor

9-4. 1Q"9

6-2. 10" 1 0 ~

whereas without the transformation technique the factor of increase was 420.
i n principle, the transformation technique can reduce the factor of increase to

1 + s for any s > 0 in this example. The bounds can also be decreased without the
transformation technique by going to higher precision arithmetic, (and corresponding
ly more terms in the Taylor series).

Which of these approaches is more efficient has not yet been determined.
An alternative approach based on quadratic forms describing ellipsoidal bounding

regions has been suggested by W. Kahan of the University of Toronto, (see p. 335
of the proceedings referred to in [13]).

81

We have chosen another example from [6] to further illustrate the sharpness of
bounds obtainable using the transformation technique.

On p. 101 of [6] is given a table of results obtained using the Runge-Kutta method
to solve approximately the problem

(3.5-5) y' = - v for y(0) = 0-9.

The Runge-Kutta method was modified for the computations to include addition
and subtraction of bounds on the local error (taking round-off error into account)
at each step and the results are reported in the form of a "lower" and an "upper"
solution.

We repeat the example, for comparison, using our interval-transformation method.
In order to obtain a reasonably fair comparison with the results of [6], we will reduce
the number of terms to be carried in our Taylor series expansions to five so that
our local error will be O(h5) like the Runge-Kutta method. Also we carry out our
successive Taylor expansions at the constant step h = 0-1 used in [6].

For the approximate solution y*(t) in (3.5-3) we use the discrete approximation

y* ~ y('lP) given by y% = 9

(3.5-6) y*p = (| o i ^ (- ly) y%t , p = 1, 2 , . . .

For the approximate connection "matrix" C*(t), (which in this simple example
is a scalar function) we use CQ = V0. From (3.5-5), J(t) = —1-0; we put Cp =
= (1 + hJ)C*„u or
(3.5-7) C* = -9C*_!, p = l , 2 , . . .

at "mesh points" tp = \p and define C*(t) for intermediate points by linear inter
polation.

From y' = — y we obtain, for z defined implicitly by y = y* + C*z, the derived
differential equation in tp ^ t < tp + 1

(3.5-8) z' = (C*)"1 (-y* - y*' - C*z - C*'z)

= (73^P^ + (<-<.>0).
Notice the cancellations we have performed in (3.5-8).

If z(tp) e Zp9 then for tp ^ t < tp + -1 we have z(t) e zp + (t - tp) z'([tp, tp + -1])
by the mean value theorem, so

(3.5-9) z(t)ezp + Bp,

where Bp is an interval such that (using (3.5-8))

(3'M0) *°+ â k:(" ^ * + [0'"]^+ *~) ~-+B-
82

By continuity, we also have z(tp + T) e zp + Bp. Thus if we choose z0 such that

yo e yo + c o z o a n (l P u t z
P+i = Z

P + # P then it will follow that for tp ^ t <, fp+1

(3.5-n) XOG y*(f) + C*(0 (ZP + BP) •

We must now choose Bp satisfying (3.5-10). We try Bp in the form

(3.5-12) Bp = azp + Rp ,

and try to satisfy

(3.5-13) - E ° ^ p £ + [o , ^] (zp + azp + * ,) cz a Z p + R, .

If 0 e z0 and 0 e Rp, then 0 e zp + Rp = zp+l by induction for all p and

(3.5-14) 0, — \(zp + azp) e azp provided a ^ — .

Put Kp = [— rp, rp] and choose rp so that

(3.5-15) ^ ^ g c A . l \ [, r y r F]

then (3.5-13) and (3.5-10) will be satisfied. We can satisfy (3.5-15) by choosing

I * I
(3.5-16) rp = 4-7. 10"7 - ^ .

\Cp\

This gives (along with (3.5-14))

(3.5-17) Bp = l z p + [- V l] (V 7 . 1 0 - 7

From (3.5-17) and zp+x = zp+ Bp and (3.5-6) and (3.5-7) and (3.5-11) we have,

finally that

(3.5-18) Cp*+1zp+1 e(-9102)"+1 (1-06 . 1 0 " 4 [- 1 , l] + z0)

and,the exact solution to (3.5-5) at tp+1 satisfies

(3-5-19) y (tp + 1)ey* + 1 + C*zp + 1

with C*p+lzp+l bounded by (3.5-18) and y*+l = (-9048375)p + 1 (-9) from (3.5-6).

For p = 100, this gives r100 = 10-0, y(10-0) e [-000040844, -000040876]. The
exact solution is y(10-0) = -000040860...

By comparison the upper and lower solutions given in [6] determine the following

83

bounds at ?ioo — 100:

y(lO-O) = [-000040314, -000041403] .

The relative error in our y*+t can be bounded using (3.5-18) and (3.5-19) by

\y(tP+i) - y$< (3.5-20)
УP + Í

< (I-006)' + 1 (2-12). 10"

The right hand side of (3.5-20) will be less than 1-0 for p < 1424; i.e. the bounds
will be sharper than one in the leading non-zero digit for t < 142-4. This point is
reached by the method of [6] by t = 19-0.

The desirability of programming a general procedure enabling the computer
to carry out all the derivations and computations involved in applying the transfor
mation technique to specific examples should be obvious from the details of the very
simple example just discussed.

I am convinced it can be done.

In addition to providing a means for the automatic determination of sharp rigorous
error bounds in the initial value problem, such a computer program would be a
valuable aid in the computation of "reachable sets" in control theory problems.

4. FUNCTIONAL ANALYSIS FOR COMPUTERS

It is beyond the scope of this paper to attempt a survey of the unifying concepts
and very general techniques of functional analysis which are enjoying such vigorous
application to computational problems. Important examples of work in this area
can be found in [1], [5], [7], [9], [10], [11], [13], [20], [30], [38].

In this final section we will merely discuss a few of the computational and error
bounding techniques of functional analysis which can, in principle, be carried out
by the computer with the help of interval computations. KRUCKEBERG [32] has reported
some work on partial differential equations using interval computation.

In this section, we will discuss an application of the contraction mapping principle
to the initial value problem and an application of Newton's method to the two point
boundary value problem.

We will use the following form of the contraction mapping principle, given by
RALL [38]:

If F is an operator in a Banach space X which is a contraction mapping of U(x(0), r)
for

(4-1) r ;> J L |x(0) _ ^(0)11 = ro

where 0 ^ 0 < 1 and

(4-2) . \\F(x) - F(y)\\ g B\\x - y\\

84

for all

x , y e U (x (0) , r) = { x | | | x - x (0) | | g r}
then:

1. F has a fixed point x* in U(x(0), r0).
2. x* is the unique fixed point of F in U(x(0), r).
3. The sequence of successive approximations defined by

x (w + 1) = F(x(w)), m = 0 , 1 , 2 , . . .

converges to x* with

(4-3) ||x(m) - x*|| g Qmr0 .

An interesting application of this principle is the following.

Suppose we are given an initial value problem

(4-4) x' = f(t, x), x(t0) = x0

(with / continuously differentiate in a suitable region) and an approximate numerical
solution at the points t0 < tx < t2 < . . . < tn, say xt « x(tj); i = 1, 2 , . . . , n where
x(t) is the exact (unknown) solution to (4-4). The contraction mapping principle
can be used to compute bounds on the errors x£ — x(t^) without knowing how the
numbers xt were computed.

We choose for X, the Banach space of continuous functions on [f0, tj] with the
norm

||x|| = max |x(t)| for x e K .
te[to,tnl

We write the initial value problem (4-4) as an integral equation

(4-5) x(t) = x0 + f(s, x(s)) ds .
J fo

The equation (4-5) has the form

(4-6) x = F(x)

where the operator F is defined for y e X by

(4-7) F(y)(t) = x0+ ! f(s,y(s))ds.
J to

Suppose we interpolate the approximate numerical solution by some continuous
function x (0) (for example a polynomial) such that x(0)(tf) = xt, i = 0, 1, 2, ..., n.

If the conditions (4-1), (4-2) are satisfied, then we will have, from (4-3), ||x(0) - x|| ^
<; r0; in particular, we have a uniform bound on the errors of the approximate

85

solution

(4-8) H - x(ti)\ = \\x (0)
4 й r0 .

We illustrate the details of the application with an example.

Consider the initial value problem

(4-9) x2 , x(0) = 1-0

and the single approximate solution value x x = 1443 « x(425). The problem

can be rewritten as the integral equation

(4-10) x(t) - 1-0 + f x2(s) ds .

We define F for the space X of continuous functions on [0, -125] by

(4-11)

Then

F(y)(t)= 1-0+ y2(s)ds.
Jo

(4-12) \\m = max
íє[0,125]

(x2(s)-y2(s))ds

á 425||x + y\\ ||x - y\\ .

For x (0), we choose an interpolating quadratic polynomial x(0)(t) = 1 + xA(0) t
+ at2. We find from (4-9) that x'(0) = 1 and determine the coefficient, a, from
x (0)(425) = 1-143 that is, 1 + 425 + (425 ;

2 a = 1443 o r a = 1-152 and so

(4-13) x(0)(t) = 1 + t + 1452t2 .

Now, for x, y e U(x(0), r) and since

(4-14) max |x(0)(t)| = 1443 ,
r e [0 , 1 2 5]

we have

(4-15) ||x + y\\ S 2(||x(0)|| + r) = 2(1443 + r) .

Thus for 6 in (4-2) we can put

(4-16) 6 = -125(2-286 + 2r) - -28575 + -25r .

We check that 0 = Q < 1 provided that r < 2-86. . .

86

We next compute an upper bound on r0 from (4-1). For this, we need an upper
bound on ||x(0) - F(x(0))||. From (4-13) and (4-11) we have

(4-17) x(0) - F(. (o) __ FMon = r
((x (0)(S)-l) ' -(x (0)(S))2)dS

= J («304s - 3-304s2 - 2-304s3 - V327104s4) ds .

Put

(4-18) p(t) = 452t2 - (140V ..) t3 - -578t4 - (-265...) t5 .

Then

(4-19) ||x(0) - F(x(0))|| S max \p(t)\ .
r e [0 , 1 2 5]

We have for te [0,425]

(4-20) p[t) e 452[0, 452]2 - [140, 141] [0, 425]3 - -578[0, 425]4

- [-26, -27] [0, 425]5 .
Therefore

max \p(t)\ < -00238
te[0, 125]

and

(4-21) ||x(0) - F(x(0))|| ^-00238.

The smallest r0 we are entitled to use for (4-8) is, from (4-1) and (4-16) and (4-21),
the smallest positive root of

Call
•0033...

gOo) =
1 - (- 3 5 . . .) r 0

then
•00 ̂ n

fl(r-003, -0041) = <= T-0032, -00341
[•9986..., -9989...]

so

(4-23) r0 < -0034

and we have finally arrived at the result that

(4-24) |x(-125) - 1-143] < -0034.
87

Actually the exact value of x(-125) for (4-9) is x(-125) = f = 1-14285... and so the
actual error is x(-125) - 1-143 = - -00015 . . .

We will comment upon the possibility of programming the various steps in ap
plying the technique from (4-12) through (4-24).

The factorization we did in (4-12) could be carried out, at least for rational functions
/ in (4-4) by "polynomial manipulation programs".

The computation of coefficients for an interpolating function (perhaps a poly
nomial) leading to (4-13) can certainly be programmed.

The computation of an upper bound for 0 in (4-16) as a function of r and testing
for 6 < 1 could be programmed for a given form (say polynomial) of the majorizing
function of r (at least for rational/) using interval techniques, for example.

The computation of (4-17), for sharp results, should use some algebraic mani
pulation for symbolic cancellations and the upper bound in (4-19) can be programmed
using interval methods, for example, such as we in fact used in (4-20) to get (4-21).

Again we used interval methods, which could be programmed, to get (4-23) from
(4-22).

Some of the steps could be refined to give sharper bounds. For example, the bound
(4-21) can be sharpened (among other ways, [36]) by subsividing the interval [0, -125]

N

as [0, -125] = U [a i5 bj\ and computing, in place of (4-20),
/ = i

p(t)e\Jp{[apbj-]).
1 = i

We turn now to an application of Newton's method using a generalization to
Banach spaces by KANTOROVIC, [30].

We will outline briefly some recent work of Mr. T. TALBOT, a doctoral candidate
at the University of Wisconsin. A more complete description of his work will appear
elsewhere.

The form of the Kantorovic theorem [30] used by Talbot is:
Let P be an operator in a Banach space B. Let y0 e B and let (P ' (yo)) 1 exist. If

(4-25) yi^yo-Cnyo))"1^)

and

(4-26) II^'OV))"1! = Po

and

(4-27) || yi - y01| = no

and

(4-28) ||P"(y)|| ^ K for \y - y0\ = 2i/0

and

(4-29) / W ^ = i ,

then there exists y* e B such that P(y*) = 0 and

(4-30) ||y! - y*\\ S 2p0Kfj2
0 .

Taibot considers the application of this theorem to the computer solution, with
automatic guaranteed error bounds, of the two point boundary value problem

(4-31) y"(x) = f(x, y) ; y(a) = y(b) = 0.

(Non-homogeneous boundary conditions can, of course, be reduced to (4-31) by
addition of a linear function of x to y.)

Talbot has written a computer program for the CDC 1604 computer which, given
a problem of the form (4-31), tries to construct the numbers /?0, rj0, and K for (4-26),
(4-27), and (4-28) using interval analysis [36]. The program first tries to generate
a y0 by iterating (via Newton's method) a discrete solution several times starting with
the constant function 0. This is then interpolated by cubic splines. Then an interval
function Yx containing y± is found, if possible, such that yx satisfies (4-25). The
numbers p0, rj0, and K are obtained using interval techniques for obtaining upper
bounds on the norms. If these numbers satisfy (4-29) then the bound (4-30) is
computed. All the derivations, (e.g. for P'(j/0)), and computations are carried out
automatically by the computer. If some part of the process cannot be carried out
for a given problem, (which may not satisfy part of the hypotheses), then the com
putation stops and a "discouraging" message is printed out.

The program was tried on the following example

(4-32) y"(x) = 2(y(x) - -8x + 1-8)3, y(í) = y(Ь25) = 0

(with known solution y(x) = ljx + -8x — 1-8).

Three Newton iterations were required by the program to obtain j ; 0

 a s tabulated
here. The known solution is listed for comparison.

X У0(
x) У(x) У0(x) ~ У(x)

10 00 00 00
105 -0-007556487 -0007619048 0000062560

110 -0-010861949 -0010909091 0000047142

1-15 -0010403285 -0-010434783 0-000031498

1-20 -0-006650829 -0006666667 0000015838

1-25 00 00 00

89

The program then constructed an interval function containing y^(x) and then

constructed the following bounds to be used with (4-30)

p0 = -068 , rj0 = -000076 , K = 12-0 .

The final output of the program was given as the first three columns in the table

below. The actual errors in yt(x) are listed for comparison.

X Уì(x)
Guaranteed bound for

lyiW-yWІ
Actual error

Уl(x) — y(x)

100 000000000000 000000000000 000000000000

105 -•00761904746 0-00000000956 000000000016

110 -•01090909072 0-00000000959 000000000019

115 -•01043478245 0-00000000963 000000000016

1-20 - 00666666657 000000000968 000000000009

1-25 000000000000 000000000000 000000000000

References

[1] Anselone, P. M., "Convеrgеnсе and ЄГГOГ boundѕ for approximatе solutions of intеgral
and opеrator еquationѕ," EГГOГ in Digital Computation, Vol. II, Ed. bу L. B. Rall, Wilеу,
Nеw York, 1965, pp. 219-230.

[2] Apostolatos, N. and Kulisch, U., "Grundlagеn еinеr Masсhinеnintеrvallarithmеtik", Tесhni-
sсhе Hoсhsсhulе Karlѕruhе, Karlѕruhе, Sеptеmbеr, 1966.

[3] Apostolatos, N. and Kulisch, U., "Approximation dеr еrwеitеrtеn Intеrvallarithmеtik durсh

diе еmfaсhе Maѕсhinеnintеrvallarithmеtik", THK, Karlѕruhе, Novеmbеr, 1966.
[4] Apostolatos, N., Kulisch, U., and Nickel, K, "Ein Einѕсhliеѕѕungѕvеrfаhrеn für Nullѕtеllеn",

THK, Kаrlѕruhе, Dесеmbеr, 1966.
[5] Babuška, L аnd Sobolev, S. L., "Oптимизация числешiыx метoдoв", Aplikасе mаtеmаtikу,

ѕvаzеk 10 (1965), pp. 96-129.
[6] Babuška, L, Práger, M., аnd Vitásek, E., Numеriсаl Proсеѕѕеs in Diffеrеntiаl Equаtions,

Intеrsсiеnсе, London, 1966.
[7] Banach, S., Opérаtionѕ LinЅаirеs, Monogrаfjе Mаtеmаtусznе, Wаrsаw, 1932.
[8] Boche, R., "Complеx intеrvаl аrithmеtiс with somе аppliсаtions", Loсkhееd Missilеs аnd

Ѕpасе Compаnу rеport # 4—22—61—1, 1966.
[9] Brown, R. W., "Uppеr аnd lowеr bounds for solutions of intеgrаl еquаtions", Error in Digitаl

Computаtion, Vol. II, Ed. bу L. B. Rаll, Wilеу, Nеw York, 1965, pp. 231-252.
[10] Collatz, L., Numеriсаl Trеаtmеnt of Diffеrеntiаl Equаtions (English Ed.), Bгrlin, 1959.
[11] Collatz, L., "Appliсаtions of funсtionаl аnаlуѕiѕ to еrror еѕtimаtion", Error in Digitаl

Computаtion, Vol. II, Ed. bу L. B. Rаłl, Wilеу, Nеw York, 1965, pp. 253-269.
[12] Collins, G., "PM, а ѕуѕtеm for polуnomiаl mаnipulаtion", Comm. A.C.M., Vol. 9, No. 8,

Auguѕt, 1966, pp. 578 — 589. (Ѕее аlѕo other pаpеrs in tһis sаmе iѕsuе.)
[13] Dahlquist, G., "On rigоrоus ЄГГOГ bоunds in thе numеriсаl sоlutiоnѕ оf оrdinаrу diffеrеntiаl

equаtiоns", Numeriсаl Ѕоlutiоnѕ оf Nоnlineаr Differentiаl Equаtiоnѕ, Ed. bу D. Greenѕpаn,

Wileу, 1966, pp. 89-96.

90

[14] Dargel, R. H, Loscalzo, F. R., and Witt, T. IL, "Automatic Error Bounds on Real Zeros
of Rational Ғunctions", Communications of the ACM, Vol. 9, No. 11, 1966, pp. 806—809.

[15] Fehlberg, E., "Eine Methode zur Fehlerverkleinerung beim Runge-Kutta-Verfahren",

Z. Angew. Math. Mech., 38 (1958), pp. 421-426.

[16] Fehlberg, E., "Runge-Kutta type formulas of high order accuracy and their application
to the numerical integration of the restricted problem of three bodies." Proc. Int. Symp.
on Anаlogue аnd Digitаl Тechniques Applied to Aeronаutics, Liege, Belgium, September,
1963.

[17] Fehlberg, E., "Zur numerische Integrаtion von Differentiаl-gleichungen durch Potenzreihen-

Ans tze.. .", Z. Angew. Mаth. Mech., 44 (1964), pp. 83—88.

[18] Fehlberg, E., "New Нigh-Order Runge-Kuttа Formulаs with Step-size Control for Systems
of First-аnd Second-Order Differentiаl Equаtions", Z. Angew. Mаth. Mech., 44 (1964), Son-
derheft, pp. Т17-Т29.

[19] Fehlberg, E., "New High-order Runge Kuttа Formulаs with аn Arbitrаrily Smаll Тrun-
cаtion Error," (personаl communicаtion), 1965.

[20] Fréchet M., Les Espаces Abstrаits, Gаuthier-Villаrs, Pаris, 1928.

[21] Gallaher, L. J. аnd Perlin, I. E.f "A compаrison of severаl methods of numericаl integrаtion
of nonlineаr differentiаl equаtions", RECC, Georgiа Institute of Тechnology, Atlаntа,

Georgiа, 1966.

[22] Gibb, A., "ALGOL 60 Procedures for Rаnge Arithmetic," Тech. Rep. No. 10, Appl. Mаth.
Stаt. Lаb., Stаnford University, 1961.

[23] Gingerich, O., "Тhe Computer Versus Kepler", Americаn Scientist, 52, 1964, pp. 218—226.
[24] Goldstine, H. H. аnd Von Neumann, J., "Numericаl inverting оf mаtrices оf high оrder, I I " ,

Prоc. Amer. Mаth. Sоc, Vоl. 2, 1951, pp. 199-202. Alsо: Bull. Amer. Mаth. Sоc. 53 (1947)

pp. 1021-1099.

[25] Gröbner, W., Die Lie Reihen und Ihre Anwendungen, Deutscher Verlаg der Wissenschаften,
Berlin, 1960.

[26] Hansen, E., "Intervаl аrithmetic in mаtrix cоmputаtiоns'', J.S.I.A.M., series B, Numericаl
Anаlysis, Pаrt 1, 2 (1965), pp. З08-З20.

[27] Hansen, E. аnd Smith, R., "Intervаl аrithmetic in mаtrix cоmputаtiоns, Pаrt 2", J.S.I.A.M.,

series B, Numericаl Anаlyѕiѕ, 4: 1 (1967), pp. 1 — 9.

[28] Hansen, E., "On ѕоlving ѕyѕtemѕ оf equаtiоnѕ uѕing intervаl аrithmetic", (tо аppeаr).

[29] Henrici, P., Diѕcrete Vаriаble Mеthоdѕ in Ordinаry Diffеrеntiаl Equаtiоnѕ, Wilеy, Nеw
Yоrk, 1962.

[30] Kantorovič, L. V., "On Nеwtоn'ѕ mеthоd fоr functiоnаl еquаtiоnѕ", Dоkl. Akаd. Nаuk
SSSR (N.S.), 59 (1948), pp. 1237-1240.

[31] Kruc/ceberg, F., "Zur numеriѕсhе Intеrvаllrесhnung", Rhеiniѕсh-Wеѕtf liѕсheѕ Inѕtitute
Шr Inѕtrumentelle Mаthemаtik, Bоnn, June, 1966.

[32] Krückeberg, F., "Defekterfаѕѕung bei gew hnliсhen und pаrtiellen Differentiаlgleiсhungen,

Bоnn, June, 1966.

[33] Meinguet, J, "Lа соntrôle deѕ erreurѕ en саlсul аutоmаtique", М.B.L.E. Lаbоrаtоire
deѕ Reсherсheѕ, Bruѕѕelѕ, Rаppоrt R 29, аvril, 1965.

[34] Moore, R. E., "Тhe аutоmаtiс аnаlyѕiѕ аnd соntrоl оf errоr in digitаl соmputаtiоn bаѕed
оn the uѕe оf intervаl numberѕ", EГГOГ in Digitаl Cоmputаtiоn, Vоl. I, Ed. by L. B. Rаll,
Wiley, 1965, pp. 61-130.

[35] Moore, R. E., "Autоmаtiс lосаl сооrdinаte trаnѕfоrmаtiоnѕ tо reduсe the grоwth оf errоr
bоundѕ in intervаl соmputаtiоn оf ѕоlutiоnѕ оf оrdinаry differentiаl equаtiоnѕ", EГГOГ
in Digitаl Cоmputаtiоn, Vоl. II, Ed. by L. B. Rаll, Wiley, New Yоrk, 1965, pp. 103—140.

[36] Moore, R. E., Intervаl Anаlyѕiѕ, Prentiсe-Hаll, 1966.

91

[37] von Neumann, J. and Goldstine, H., "Numerical Inversion of Matrices of High Order",
Bulletin of Amer. Math. Soc. 53 (1947).

[38] Rail, L. B., Computational Methods for Nonlinear Operator Equations, (to appear).
[39] Reiter, A., "Compiler of differentiable expressions", MRC Computer Program # 1 . , Mathe

matics Research Center, University of Wisconsin.
[40] Reiter, A., "Interval arithmetic package", MRC Computer Program # 2 , Math. Res. Cen

ter, University of Wisconsin.
[41] Turing A. M., "Rounding-off errors in matrix processes", Quart. J. Mech. Appl. Math.,

Vol.1 , 1948, pp. 287-308.

Ramon E. Moore, Computer Sciences Department, University of Wisconsin, 1210, W. Dayton,
Madison, Wisconsin, U. S. A.

92

		webmaster@dml.cz
	2020-07-01T23:59:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

