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SVAZEK 13 (1968) A P L I K A C E M A T E M ATI KY ČÍSLO 1 
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0. INTRODUCTION 

"Interval computation" or "interval analysis", [36], is concerned with the design 
and study of algorithms for the computer which produce, automatically, guaranteed 
upper and lower bounds to exact solutions of various types of mathematical problems. 
The aim is to exploit the high speed and accuracy of the computer by programming 
it to carry out all the necessary detailed analysis for each specific problem. 

I wish to thank all those whose contributions are mentioned in the text following 
and in addition I am grateful for the programming assistance of Mr. M. Mc CLELLAN 
and Mr. D. GOOD. I am grateful for and honored by the invitation of Mr. I. BABUSKA 
and the Czechoslovak Academy of Sciences to present this paper to the Liblice 
conference. 

My remarks may range from self-evident generalities to boring details but I hope 
that in between there may be something of interest to help stimulate further efforts. 
Much remains to be done. 
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1. COMPUTERS AND COMPUTATION 

The electronic stored program digital computing machine — the "computer", 
for short — has made extensive, rapid numerical computation available to vast 
numbers of scientists and engineers and has revolutionized the applications of 
mathematics. 

An electromechanical desk calculating machine requires about ten seconds to 
multiply a pair of ten decimal digit numbers. The computer can do this millions 
of times as fast at less than a thousand times the cost. 

For computations of sufficient length, the computer is vastly less expensive and 
time consuming than the desk calculator. If you are only going to do one multipli
cation, or a few, then use the desk calculator, a slide rule, or pencil and paper. If you 
are going to calculate the orbit of Mars, then use the computer. Recently [23], 
a computer reproduced in a few minutes calculations on the orbit of Mars upon 
which the astronomer KEPLER spent four years. 

The analytical preparation and programming of computations to be carried out 
by the computer can, unfortunately, be difficult, time-consuming, and costly. The 
early recognition of this fact motivated the development of a vast array of aids to the 
preparation of computations for the computer based on the use of the computer itself. 

The earliest computers had only fixed point arithmetic wired-in and programs 
were coded in a "binary" representation of machine language. A considerable 
amount of time had to be spent "scaling" fixed decimal point computations before 
they could be programmed. And programming in machine language required a 
considerable amount of binary arithmetic by the programmer in order to assign 
addresses to the quantities in the program. An odd, perhaps unfortunate, side effect 
of this was the introduction of lessons in binary arithmetic at various elementary 
levels in the public schools. 

Computer manufacturers very soon introduced built-in floating point arithmetic 
operations thereby eliminating the need for scaling preparation. Once computers 
appeared with large enough "memories" (high speed storage capacity of several 
thousand words), programmers invented various "languages" with notation much 
closer to "ordinary" mathematical notation and easier to use than machine language 
such as FORTRAN and ALGOL in all their versions, and many others as well 
and wrote compiler programs to translate statements written in these languages 
into machine code1); thereby greatly reducing the human time and effort needed 
to program a computation. The preparation of the computer program for Kepler's 
determination of the orbit of Mars was made with the help of FORTRAN in about 
three weeks. 

1) The compiled machine code is, somewhat unfortunately, often a less efficient program 
than could be written by hand in machine language. A program written in FORTRAN might 
take twice as long to run on the computer as the hand written machine language program, but 
only a tenth of the time to writte and check out. 
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Ail sorts of programs, "routines", and "subroutines" have been written and rewrit
ten and distributed for use in the approximate numerical, solution of various types 
of problems. 

Programs enabling the computer to perform algebraic manipulations and symbolic 
differentiation have begun to appear and should eventually have a strong impact 
on computational practices [39], [12]. Such programs seem to require fairly large 
memory capacity, perhaps 30 000 words or more, to be really effective. 

One source of difficulty in connection with the publication, distribution and use 
of programs written for a specific type of computer or even in a specific program
ming language has been the proliferation and rapid obsolescence of "better and 
better" computers, programming languages, and operating systems. This situation 
has given rise to intense efforts to standardize programming languages. International 
groups have been formed to agree upon a universal programming language. As 
a result, we now have, in addition to all the other programming languages, several 
"universal" programming languages. 

In practical applications of mathematics much of the analytical work that is done 
on a problem consists of performing transformations using previously obtained 
information in order to simplify further deductions about the properties of solutions — 
in particular, to make numerical computations go as "smoothly" as possible. "Pre
conditioning" transformations or a variety of other analytical devices can be program
med to be carried out by the computer before, during, or after a numerical solution. 

As an aid to the analytical preparation of computations, programs for the ap
proximate solution of various types of problems can be written which enable the 
computer itself to analyze and control the accuracy of the computation. A natural 
approach to the construction of such programs can be based upon computations 
with intervals, [36]. 

2. DECIMAL ARITHMETIC AND COMPUTING WITH INTERVALS 

2.1. Decimal arithmetic. In most practical applications of mathematics, approxi
mate results will suffice. Requirements of accuracy in numerical calculations vary, 
of course, but exact results are rarely needed. 

Exact results will usually be impossible to compute anyhow, since most calculations 
begin with inexact data (i.e. with quantities known only to a certain degree of accuracy 
or with finite decimal approximation to real initial data). 

Exact arithmetic calculation with rational numbers, even beginning with small 
integers, can lead to results with arbitrarily large integer numerators and denomi
nators; and so can become prohibitively time consuming — even on electronic digital 
computers. Programs have been written [12] for exact arithmetic with arbitrarily2) 

) Within the memory capacity of the computer. 
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large integers. For multiplication, the time increases as the square of the number 

of digits and each multiplication approximately doubles the number of digits. 

F ôr all these reasons, practical calculations are nearly always carried out only 

approximately using the more convenient decimal (or binary) fractions. Only part 

of the decimal digits in intermediate and final results are retained. 

An assumption commonly made concerning the accuracy of such approximate 

calculations is that the number of correct decimal digits ("significant figures") 

in the result of a single arithmetic operation is the same as the smaller of the numbers 

of correct digits in the two operands (except in subtraction where it may be less on 

account of cancellation of leading digits). 

This rule of thumb gives, of course, only a rough guide to an estimation of the 

accuracy of final results of a calculation.3) 

Examples of calculations occur in practice in which the number of correct decimal 

digits decreases rapidly or increases rapidly once an initial error has been made 

no matter how many decimal digits (beyond a certain minimum) are carried 

in subsequent steps. 

Consider the following two illustrative computations (chosen from the excellent 

book of BABUSKA, PRAGER, and VITASEK, [6]) in which e is the base of natural 

logarithms, e = 2-71828 18284 5 9 . . . 

(-) 7„ = (1/e) I x"e" dx . 

From mathematical tables (or by long division) we find that 

\\e = 0-36787 944117. . . 

Thus 
I0 = 1 - (i/ e) = -63212 05588... 

Table 1 

d= 2 d= 3 d= 10 

Io •63 •632 •63212 05588 

II •37 •368 •36787 94412 

h •26 •264 •26424 11176 

Iз •22 •208 •20727 66472 

h •12 •168 •17089 34112 

h •40 •16 •14553 29440 

h -1-4 •04 •12680 23360 

h 10-8 •72 •11238 36480 

) For a survey of some refinements of this rule, see [33]. 
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Compute In from the recurrence formula (derived using "integration by parts") 
I„ = 1 - nln_1 for n = 1, 2, 3, 4, 5, 6, 7. 

Starting with I0 correct to d decimal digits and doing the subsequent arithmetic 
exactly we obtain the results given in Table 1. 

The first 11 correct digits of I7 are actually I7 - -11238 35040 6 . . . 
In order to obtain I7 correct to 10 decimal digits it turns out to be necessary 

to start with 14 correct digits in I0. 
If we wish to continue the calculation of In for n = 8, 9, 10, ..., 14 then it turns 

out to be necessary to start with 16 correct decimal digits in I0 in order to obtain 
Ii4 = -0627... to even 3 correct digits! 

Thus it is in the nature of this example that a rapid loss of accuracy occurs due 
to growth of error in initial data. 

On the other hand, consider the following example: 

(2) 
Compute 

I7 - -11238 35040 6. 

1 - L 
for n = 7, 6, 5, 4, 3, 2, 1 . 

Starting with I7 correct to d decimal digits and carrying only d decimal digits 
in subsequent calculations we obtain results which are also accurate to d places. 
Furthermore, starting with I7 correct to only d digits and carrying 10 decimal digits 
in subsequent calculations we obtain the results given in Table 2. 

In this example the calculations beginning with I7 correct to only two decimal 
digits produce a result for I0, for instance, which is correct to better than five digits. 

Table 2 

d= 2 d= 3 d = 10 

Һ •11 •112 •11238 35040 

Һ •12714 28571 •12685 71428 •12680 23565 

Һ •14547 61904 •14552 38095 •14553 29405 

Һ •17090 47619 •17089 52381 •17089 34118 

IЗ •20727 38095 •20727 61903 •20727 66470 

Һ •26424 20635 •26424 12699 •26424 11176 

Һ •36787 89682 •36787 93650 •36787 94411 

Һ •63212 10318 •63212 06350 •63212 05588 

2.2. Computing with intervals. One means of keeping track of how many digits 
are correct during a calculation is to do the calculation with "interval numbers", [36]. 

The set (interval) of all real numbers x such that 1 = x = 2 is denoted by [1, 2] . 
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Similarly, for any pair of real numbers a, b such that a _ b, [a, b] represents the 
interval of numbers between a and b, including end points. 

We can think of the quantity [a, b] as another kind of number — an interval 
number, made up of two real numbers — just as we regard the ratio of two integers 
mjn as another kind of number — a rational number, made up of two integers. 

In order to set up a useful way of doing arithmetic with interval numbers we can 
use the following simple facts about inequalities. 

Suppose a, b, r and x are real numbers and that p is a positive real number and n 
is a negative real number. The following statements are then true. 

1. p > 0 
2. n < 0 
3. if r 4= 0, then either r > 0 or r < 0 
4. if a = x = b, then a + r<x + r<b + r 
5. if a ^ x rg b, then pa < px = pb 
6. if a :_ x < b, then rcb ^ nx ^ ?ia 

From these simple properties of inequalities the following additional properties 
can be derived: 

7. if a ^ x <, b and c = y S d, then a + c ^ x + y < b + d 
8. if a ^ x = b, then — b = — x ^ —a 
9. if 0 < a ^ x ^ b, then l/b = l/x = l/a 

10. if a = x = b and c < y ^ d, then 
min (ac, ad, be, bd) rg xy ^ max (ac, arf, be, bo7) 

Based on these results we define arithmetic operations for interval numbers as 
follows: 

addition [a, b] + [c, a1] = [a + c, b + d\ 
negative —[a, b] = [ — b, —a] 
subtraction [a, b] — [c, a*] = [a, b] + ( — [c, a7]) 
multiplication [a, b] [c, a7] = [min (ac, ad, be, bd), max (ac, ad, be, bd)\ 
reciprocal l/[a, b] = [l /b , l /a] (if a > 0) 
division [a, b]/[c, d\ = [a, b] (l/[c, d\) 

We can mix arithmetic with interval numbers and real numbers by treating [a, a ] 
and a as the same thing. 

If we perform a calculation with interval numbers using the arithmetic operations 
just defined for such numbers, we will obtain interval numbers as results. These will 
contain the exact real number results of the same sequence of arithmetic operations 
for any set of choices of real numbers from the intervals involved. If we start with 
intervals containing the initial data and compute the end points of the intervals 
using approximate decimal arithmetic, and if we take care to "round" in such a way 
that the resulting approximate intervals contain the correct interval results then we will 
have computed intervals which contain the exact real result. 
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In short, if we calculate with interval numbers we can keep track of how many 

digits are correct. 

To illustrate, we repeat now some of the calculations of the examples already 

discussed — but this time using interval arithmetic. 

Consider again the computational problem beginning with I0 = 1 — (1/c), or 

I0 = -63212 05588... to compute In = 1 nln 
for n = 1, 2, ..., 7. 

Starting with intervals of width one in the Jth decimal place and containing the 

exact value of I0 and doing the subsequent interval arithmetic to 10 decimal places 

we obtain the results given in Table 3. To illustrate how these results were obtained 

we will first carry out explicitly the interval calculation ofIl9 I2, I3 for d = 2. 

With d = 2, we put 

I0 = [-63, -64] ; 

then 

and so 

/, = 1 - / 0 = 1 + [--64, - - 6 3 ] , 

h = [-36, -37] . 

Similarly, 

I2 = 1 - 27, = 1 - 2[-36, -37] = 1 - [-72, -74] = 1 + [--74, --72] ; 

then 

Next, 

I2 = [-26, -28] 

I3 = l - 3I2 = 1 - 3[-26, -28] = 1 - [-78, -84] = 1 + [--84, --78] = [-16, -22], 

The rest of the results for d = 2, 3, 10 are given in Table 3. 

Table 3 

d= 2 d= 3 d= 10 

Һ [•63, -64] [•632, -633] [-63212 05588, -63212 05589] 

Һ [•36, -37] [•367, -368] [-36787 94411, -36787 94412] 

Һ [•26, -28] [•264, -266] [-26424 11176, -26424 11178] 

Һ [•16, -22] [•202, -208] [•20727 66466, -20727 66472] 

Һ [-12, -36] [-168, -192] [-17089 34112, -17089 34136] 

Һ [- '8, -4] [04, -16] [14553 29320, -14553 29440] 

Һ [-1-4, 5-8] [04, -76] [-12680 23360, -12680 24080] 

Һ [-39-6, 10-8] [-4-32, -72] [-11238 31440, -11238 36480] 
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Each interval number entry in Table 3 contains the exact value of In because of the 
properties of inequalities discussed earlier, especially properties 7., 8., 9., and 10. 
Each entry of Table 3 also contains the corresponding entry of Table 1. It is in this 
way that the calculations which produced Table 3 kept track of the number of correct 
digits in the calculations which produced Table 1. 

We turn now to the second example, connected with Table 2, 

I7 - -11238 35040 6 . . . 

IH-i=^-—^ for 7 1 - 7 , 6 , 5 , 4 , 3 , 2 , 1 . 
n 

We will carry out explicitly the interval calculation corresponding to the first column 
of results in Table 2. 

The exact value ofI7 is contained in the interval [-11, -12]; so we putI7 = [-11, -12] 
and calculate (using 10 decimal digit arithmetic with appropriate rounding for 
computation of end points of intervals). 

I6 - (l - [ 1 1 , -12])/7 - [-88, -89]/7 = [-12571 42857, -12714 28572] 
I5 - (J _ I6)/6 _ [-87285 71428, -87428 57143]/6 = [-14547 61904, -14571 42858] 
I4 - (i _ I5j/5 = [-17085 71428, -17090 47620] 
I3 = [-20727 38095, -20728 57143] 
I2 = [-26423 80285, -26424 20635] 
I! = [-36787 89682, -36788 09858] 
Io = [-63211 90142, -63212 10318] 

Again, these intervals contain both the exact results and the results of Table 2. 
Notice that in this example the calculated intervals decreased in width from -01 

for I7 to -000002 for I0 and indicated a gain in accuracy as the computation proceeded 
whereas the intervals calculated for the previous example, (see Table 3), grew in 
width and indicated a loss of accuracy as that computation proceeded. 

Calculations with intervals can easily be programmed for the computer [36], [40], 
[22], [8], [12]. 

In fact, using the CDC 1604 computer at the University of Wisconsin, the fol
lowing table of intervals containing In was computed using rounded interval arith
metic4) for the first example discussed above, namely 

Z0 = 1 - \\e\ In = 1 - nln^1 , n = 1, 2 , . . . , 14. 

The results are given in the form aEe = a . 10e. 

4) In our program, [40] we did not bother to account for the error in converting the final 
machine results from binary to decimal before printing. This can be corrected by pessimistically 
adding one to the eleventh decimal digit of all the upper bounds given here and subtracting one 
from the eleventh digit of the lower bounds. 

59 



n Lower bound Upper bound 

0 6-32120 558806E-01 6-32120 558911E-01 
1 3-67879 44Ю72E-01 3-67879 441177E-01 
2 2-64241 П7629E-01 2-64241 H7850E-01 
3 2-07276 646432E-01 2-07276 647090E-01 
4 1-70893 411615E-01 1-70893 414249E-01 
5 1-45532 928736E-01 1-45532 941908E-01 
6 1-26802 348529E-01 1-26802 427575E-01 
7 1-12383 006953E-01 1-12383 560275E-01 
8 1-00931 517777E-01 1-00935 944353E-01 
9 9-15765 007958E-02 9-16163 399816E-02 

10 8-38366 001844E-02 8-42349 920422E-02 
11 7-34150 875360E-02 7-77973 979712E-02 
12 6-64312 243462E-02 1-19018 949565E-01 
13 -5-47246 344376E-01 1-36394 083497E-01 
14 -9-09517 168975E-01 8-66144 882143E-00 

The second example discussed above was also programmed and (cf. table 2.5 in [6]) 
was recomputed using interval arithmetic beginning with 

I; = [°> 1/0' + 1)] f o r ì = 9> î 9 > 2 9> 39> 59 

and computing 
h-i = (1 -h)ln, n=j,j- I, . . . , 2 , 1 . 

We will reproduce some of the results here for j = 9, 59. 

/ = 9 
n-f 1 Lower bound Upper bound 

10 0 1 00000 000000E-01 
9 9-99999 999953E-02 1-11111 ШЮ9E-01 
8 1-11111 1Ш07E-01 1-12500 O00O0OE-01 
7 1-26785 714278E-01 1-26984 126985E-01 
6 1-45502 645496E-01 1-45535 714287E-01 
5 1-70892 857134E-01 1-70899 470901E-01 
4 2-07275 132264E-01 2-07276 785711E-01 
3 2-64241 071412E-01 2-64241 622575E-01 
2 3-67879 188701E-01 3-67879 464285E-01 
1 6-32120 535697E-01 6-32120 811287E-01 

/ = 59 

n+ 1 Lower bound Upper bouпd 

60 0 1-66666 666669E-02 
59 1-66666 666657E-02 1-69491 525325E-02 
58 1-69491 525416E-02 1-69540 229885E-02 
57 1-72464 206483E-02 1-72465 060963E-02 
56 1-75491 695336E-02 1-75491 7Ю601E-02 
55 1-78627 423436E-02 1-78627 423727E-02 
54 1-81877 269922E-02 1-81877 269942E-02 
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J= 59 

n+ 1 Lower bound Upper bound 

53 1-85247 598667E-02 1-85247 598682E-02 
52 1-88745 238484E-02 1-88745 238492E-02 
51 1-92377 544340F02 1-92377 544349E-02 
50 1-96152 449Ю2E-02 1-96152 449114E-02 
40 2-44044 317823E-02 2-44044 317835E-02 
30 3-22906 775342F02 3-22906 775359E-02 
20 4-77227 557939E-02 4-77227 557974E-02 
10 9-16122 929845E-02 9-16122 929915E-02 
9 1-00931 967440E-01 1 00931 967446E-01 
8 1-12383 504066E-01 1-12383 504069E-01 
7 1-26802 356556E-01 1-26802 356562E-01 
6 1-45532 940567E-01 1-45532 940576E-01 
5 1-70893 411877E-01 1-70893 411888E-01 
4 207276 647020E-01 2-07276 647026E-01 
3 2-64241 П7646E-01 2-64241 П7658E-01 
2 3-67879 441165E-01 3-67879 441171E-01 
1 6-32120 558806E-01 6-32120 558829E-01 

The following computations, also chosen from [6], were also run on the computer 

using properly rounded interval arithmetic. 

Put Zi = 1; compute 

yn = zn\n , zn + 1 = nyn, n = 1, 2,. . . , 10000 . 

The computer obtained the result 

yioooo x 104 e [-99999 9621534, 1-00000 024744] . 

Putting yx = 1, 

y« + i = ynvn > vn = w/(n + 1), n = 1, 2, ..., 10000 

the computer obtained 

yioooo x 104 e [-99999 9622745, 1-00000 018076] . 

3. INTERVAL METHODS FOR COMPUTERS 

3.1. Introduction. The evaluation of any rational expression, using interval arith

metic, for given intervals of values of the real arguments can be carried out by the 

computer to obtain upper and lower bounds on the range of values of the real rational 

function defined by the expression. 

Furthermore, it has been shown [36] that arbitrarily sharp upper and lower 

bounds on the range of values of a real rational function can be obtained by subdiv

iding each of the intervals of values of arguments, evaluating the rational expression 

using interval arithmetic over each subdivision and forming the finite union, (and, 

of course, carrying enough digits in the computation). 
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An "extended" ("erweiterte") interval arithmetic based on arbitrary unions 
of intervals has recently been developed [2], [3], [4] . 

KRUCKEBERG [31] considers "inner" and "outer" intervals and develops an arith
metic for both kinds of intervals on the extended real line. W. KAHAN (personal 
communication) has suggested a generalization of interval arithmetic to "interior" 
and "exterior" intervals. 

A very frequently made suggestion is that of developing a probabilistic version 
of interval arithmetic. The argument goes like this: in a large number of practical 
applications of mathematics, guaranteed bounds on errors in numerical solutions 
of equations have no real meaning, since the mathematical equations themselves 
are only approximate descriptions of the real physical process involved. Therefore 
(continues the argument) it would make better sense to estimate intervals which 
"contain" values of exact solutions with high probability. 

An interesting attempt along these lines is the current work of A. CHAI, 
a doctoral candidate at the University of Wisconsin, based on computing with 
approximating normal distributions represented by the number pairs: (mean, 
variance). Numerical experiments on the computer have yielded encouraging results. 
A very great difficulty encountered in such work, however, is that of establishing 
a precise interpretation of the numerical results, once an algorithm has been chosen; 
that is, in what sense precisely is an exact result contained with a certain probability 
in a computed "probabilistic interval" and what value should be assigned to that 
probability. See also [24], [29], [41]. 

I would like to cite an occurence that took place in a research laboratory some 
years ago. A physicist who was puzzled by some numerical results he had obtained 
from the computer came to me one day. He told me he didn't believe the results 
and that he suspected "round-off error" as the source of the trouble. The computation 
was quite involved and it would have been difficult and time consuming (but not 
impossible, of course) to analyse the round-off error accumulation by pencil and 
paper methods. Instead, we put the same computation on the computer a second 
time but using rounded interval arithmetic. The bounds on round-off error computed 
in this way did not exceed one in the sixth decimal digit of any result and round-off 
error was ruled out as the source of the trouble. It turned out later that the mathem
atical description of the physical process had been inadequate. 

The degree of sharpness of bounds obtained using rounded interval arithmetic 
on the computer depends upon, among other things, the number of occurrences 
of a given variable, [36]. In computations involving a large number of occurrences 
of each of many independent variables and involving lots of subtractions, the 
intervals may grow very wide and give very pessimistic bounds. Direct evaluation 
of a rational expression in interval numbers will give the same result as if the interval 
numbers each represented the range of values of a distinct real variable. Thus cancel
lation of error by subtraction for example, is lost. An example of such a computation 
is the inversion of large matrices by use of Gaussian elimination. For such comput-
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ations the interval bounds on accumulated round-off error seem from experiments 
to be about as pessimistic as the a priori bounds of VON NEUMANN and GOLDSTINE [24] 
who summarized their results as follows: "Matrices of order 15, 50, 150 can usually 
be inverted with a (relative) precision of 8, 10, 12 decimal digits less respectively 
than the number of digits carried throughout". Actual errors are often much smaller 
because of cancellations. HANSEN [26] has combined interval arithmetic with 
Neumann series expansion about an approximate inverse for much sharper guar
anteed bounds in numerical matrix inversion. The propagation of initial error is also 
taken into account in this method. 

The sharpness of round-off error bounds obtained using interval arithmetic will 
depend upon the specific form of a rational expression, (i.e. the particular factoriz
ation and order of operations used in its evaluation). The actual error also depends 
on the specific form used, [36]. Interval arithmetic can be useful as a tool in the 
search for a particular way of evaluating a rational function on a computer which 
minimizes the error. 

An important property of interval arithmetic is inclusion monotonicity. If 
F(Xl9 Xl9..., Xn) is a rational expression in the interval variables Xl9 X2,..., Xn 

then X\ c= Xi9 i = 1, 2 , . . . , n implies F(X[9 X2, ..., Xn) c F(X1? Xl9..., Xn). 
In particular, if F(X) is a rational expression in X and if F(Xo) c : ^o> which can 

be tested by a computer, then it follows that the sequence of intervals defined by 

X(0) = X0, X(*+1) = F(X(fc)), k = 0 , 1 , 2 , . . . 

is a nested sequence Z ( 0 ) ==> K(1) => X(2) => .. . and hence converges to some interval 
X* with X* c= X(k) for all k. 

Of course inclusion monotonicity supposes exact (i.e., infinite precision decimal) 
arithmetic in the computation of end points of intervals. On the computer, using 
fixed (or limited) precision arithmetic properly rounded for the computation of end 
points of intervals it may happen that 

Xd) = F(X(o)^ 

is properly contained in X(0) but that for some k, x(k+1) <£ X(fc). We can program 
the iteration procedure to evaluate 

Z(*+D = X
(k)nF(Xw) 

and to stop when X(k+1) = X(fc); then the computer will have obtained the smallest 
interval it can find for the fixed precision used in the rounded interval arithmetic 
evaluation of F. 

Furthermore, if F(X) n X is empty, then X clearly contains no fixed points of F; 
i.e. there is no x e X such that F(x) = x. 

A computer program for finding intervals guaranteed to contain a zero (or no 
zeros of a real rational function has been written [14] using the above mentioned 
properties and an interval version of Newton's method, [36]. 
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3.2 Algebraic systems. An interval version of Newton's method for solving 

systems of algebraic equations with guaranteed error bounding has been described 

[36]. Improvements have recently been made by Hansen [27], [28]. We now describe 

briefly the original version and the improvements. Suppose the system of algebraic 

equations is, in vector form, f(x) = 0, with components fi(xx,x2,...,xn) = 0, 

i = 1, 2, ..., n, and that x0 = (xxo, x20, ..., xn0). If cp(s) is a continuously differenti-

able path from x 0 to x, with cp(0) = x0, <p(i) = x, and gt(s) = ft((p(s)) then by the 

mean value theorem 

gi(l)=fi(x) = 0=fi(xo) + g'i(sl) 

for some s, e [0, 1]. Now 

e w - i ^(cp(sd)<pj(s>) 
J-.1 dxj 

and if the path is chosen as the "diagonal" line segment connecting x0 and x, namely 

cp(s) = (l — s) x0 + sx then cpj(s^) = Xj — xj0. Therefore, if Xh i = 1,2, ..., n 

are intervals which contain both the corresponding solution components xt and the 

components of the approximate solution xi0 we can conclude that <P;([0, 1]) c Xt, 

i = 1, 2,..., n, and the solution Xx, X2, ...,Xn of the linear algebraic system with 

interval coefficients 

(3.2-1) f(x0) + t 7T (xi> x2, • •., Xn) (xj - xJ0) = 0, i = 1,2,. . , n 
7 = 1 dxj 

will also contain the solution point x. If Vis a matrix of intervals which each contain 

all the values of the corresponding elements of the inverse of any real matrix with 

coefficients in the intervals (dfjdxj) then x e X a x0 — Vf(x0). 

Hansen [28] observes that the evaluation of the Jacobian matrix dfjdxj over the 

entire H-dimensional rectangle (interval vector) Xx, X2, ..., Xn is unnecessary and 

that sharper results (faster convergence, narrower resulting interval bounds) can 

be obtained by using a path going along edges of an rc-dimensional rectangle from x0 

to x in n steps applying the mean value theorem in one coordinate direction at a time. 

In this way many of the arguments of the matrix elements dfijdxj are real numbers 

instead of intervals. Furthermore, instead of computing the interval matrix Vcontain-

ing the inverses of the Jacobian matrices with elements ranging over intervals, the 

linear system (3.2-1) can be solved directly for X, [27] again improving both speed 

and accuracy (sharpness of bounding intervals). 

We will illustrate these remarks with a simple example. 

For the algebraic system 

(3.2-2) fi(xi, x2) = x\ - x\ + 1 = 0 , f2(xx, x2) = xxx2 - 1 = 0 , 

we have the Jacobian matrix 

'dft\ /2Xl -2x2 

кõx 
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Suppose that x10 , xx eXx and x20 , x2 e X2 and call f 1 0 = *io "~ x2o + L> f2o = 

= *io*2o - h then the two forms of the mean value theorem discussed lead to the 
linear systems. 

(3.2-3) f 1 0 + 2Xx(xx - x10) - 2K2(x2 - x20) = 0 

f2o + X2(ix - x10) + Xx(x2 - x20) = 0 

(for the "diagonal" path) 

(3.2-4) f 1 0 + 2Xx(xx - x10) - 2K2(x2 - x20) = 0 

f20 + ^2 (^1 - *lo) + *1(>(*2 - X2o) = 0 

(using the edges of (Xu X2)) 

Now take x10 = -9, x2 0 = M , Xx = [0, -9] X2 = [ M , 2] then fxo = -6, f 2 0 = 
= —-01 and (3.2-3) has the form 

•6 + [0, 1-8] (xx - -9) - [2-2, 4] (x2 - 1-1) = 0 

- •01 + [ M , 2] (xx - -9) + [0, -9] (x2 - M ) = 0 

That is to say we want to find intervals Xx, X2 such that x t eXx and x2 eX2 for 
all solutions x l 9 x2 of systems 

a(xx - -9) - b(x2 - M) = - - 6 

c(xx - -9) + J(x2 - M ) = -01 

for which a e [0, 1-8], b e [2-2, 4], c e [ M , 2], d e [0, -9]. Using an interval version 
of Gaussian elimination and "pivoting" on c we find that 

x2 - M = (-6c + -01a)/(bc + ad) 

xx - -9 = (-01 - d(x2 - VI))Ic 

be + ad e ([2-2, 4] [1-1, 2] + [0, 1-8] [0, -9]) = [2-42,9-62] 

•6c + -01a G ( - 6 [ M , 2] + -01 [0, 1-8]) = \>66y 1-218] 

x2 - 11 6 [-66, l-218]/[2-42, 9-62] = [-068..., -50 . . . ] 

x2 e [1-168.. . , 1-60...] , 

xx - -9 e (-01 - [0,-9] [-068,-51])/[M, 2] 

x 1 e [ - 4 9 F . . , - 9 0 9 . . . ] . 
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Therefore (3.2-3) leads to the conclusion that a solution of (3.2-2) which is in the 

rectangle 

( x . , . x 2 ) 6 ( [ 0 , . 9 L [ H , 2 ] ) 

is also in the smaller rectangle 

(x 1 ,x 2 )6([-49V -91] , [1168, 1-61]). 

Now repeating the calculations using (3.2-4) instead of (3.2-3), (which just amounts 
in this example to replacing the statement d e [0, -9] by d = -9) we obtain the 
slightly improved result 

(xu x2) e ([-491, -875], [1-168, 1-61]). 

For other (and especially higher dimensional) examples the improvement can 
be more marked. 

The computations in this example amount to one iteration of the interval version 
of Newton's method. The whole process can be iterated and will converge rapidly 
to a bounding rectangle of arbitrarily small width, limited only by the number of 
digits carried in the interval arithmetic operations. 

Applications of the interval version of Newton's method for algebraic systems 
have been made to: the determination by the computer of arbitrarily small rectangles 
in the complex plane guaranteed to contain complex roots of polynomials, and 
machine computed upper and lower bounds on eigenvalues and eigenvectors of 
matrices, [28]. Interval versions of Wielandt's ''inverse iteration" and methods 
of Wilkinson are also discussed by HANSEN [28]. 

3.3. Quadrature. Interval quadrature methods have been developed based on Tay
lor series with remainder [36]. Specifically, if F(r), r = 0, 1, 2, .. . , k are rational 
interval extensions of the real rational function / = f ( 0 ) and its first fc derivatives 
and if I = f [ o h ] f(x)dx and 

n fc-l F(r)( \ 
(3.3-i) /„, = £ y ^ L - ^ ^ . - x , . ^ 1 

i = i r = o [r + 1)! 

(k + ť ! г = i 

with a = x 0 <
 xi < ••• < xn — b then for all n, k ** 1 we have I el„tk and the 

width of the interval Ink satisfies 

w(ln,k) ^ Lk max (XJ - * i - i ) * + J . 

i=l,2,...,» 

A sharper result pointed out by E. Hansen (private communication) is 

n fc-l rs / _i \ / \ r + l 

("•2) I e/.•„ - I 1 ^ *•* ( S i i l ) (i-JLt!) 
+ ( S T T ) ! (

i C T t l J " ' F < " ^ — - • 
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(3.3-3) 

An interval version of Gaussian quadrature formulas with remainder has been 
developed also [34]. 

An interval "cubature" method for multidimensional iterated integrals based 
on Taylor series or Gaussian quadrature should not present any insurmountable 
problems in programming since computer programs for generating partial derivatives 
of any order are available, [39]. 

The computer generated subroutines for derivatives can be executed in interval 
arithmetic, so that the computer can produce intervals containing such terms in the 
formulas we have been discussing as dfijdxj (Xl9 X2,..., Xn) and F(2fc)([xi_1, xf]), 
[36], [38], [39]. 

An alternative to the direct evaluation of remainder terms in higher derivative 
form using computation with intervals is the use of Cauchy's inequality. Recall 
that iff is analytic in the open disc \z — z0\ < D, then 

f(r)(z0) ^ m a x l f ( z 0 + O^)l for 6 e [0, 2TE] 

r! ~~ Qr 

for any 0 < Q < D. 
By treating real and imaginary parts separately, complex functions can be bounded 

in rectangles in the complex plane using interval computation [8], [28]. 
An optimization problem arises in connection with formulas such as (3.3-2). 

For a fixed choice of {xt}, depending only on n, both the computation time for 
evaluating I*2fc and the width of the interval I*2fe depend on the two approximation 
parameters n and k. The question is for a given width of J*2fc what choice of n and k 
minimizes computation time? A discussion of this question for formula (3.3-1) 
is given in [36]. We will take up similar questions in connection with methods for 
differential equations later in this paper. The question of the "best" choice of {xf} 
will not be considered in this paper, except for the following remark. A popular 
opinion, based on experimental evidence in practical computation is that an efficient 
scheme for variable step size in numerical integration (quadrature as well as numerical 
solution of ordinary differential equations) is one in which some estimate of the local 
truncation error is kept approximately constant; for formula (3.3-2), this would 
mean choosing {xt} such that 

\ (2k + 1)! 

is roughly independent of i. For this, w(F(2fc)([x^ l5 xf])) could be estimated by 
|F (2 fe+1)(x l_1)| (xi — x ^ i ) . Given x0, xx we could then put 

p(2k + 2)/ \ l/(2fe + 2) 

Xi = X;_! + --------
F< 2 * + 1 ) (* i - i ) 

We will now illustrate some of the methods and considerations just mentioned by 

detailed examination of a specific example. 
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We will study the application of (3.3-2) to the integral 

(3.3-4) I = f ( l /x)dx = l n b . 

We put f(x) = 1/x, then xf = 1 and by Leibniz' formula (which is used by the 
computer programs for generating derivative subroutines, [36]) we have 

Wr) = í(r)^fr-J) = o, г_l. 

Solving for f(r)/r! we obtain (as the computer does), making use of the additional 
information x ( 1 ) = 1, x ( r ) = 0, r __ 2, the result 

<-) ^ - - (£W«-»« • - • • • 
The programs referred to seek recursion relations (such as (3.3-5)) defining higher 

derivatives in terms of lower order ones. The interval extensions off(r), r = 0, 1, 2, . . . 
are then simply defined by interpreting the operations in (3.3-5) and f(x) = l/x 
as interval arithmetic operations. Thus, for F(2fc)([x;__, xtJ) in (3.3-2) we have in this 
example, from (3.3-5), 

- - [ l / x f , l / x ^ ^ ^ f e i i i i l ) _ ( _ ! ) - [ 1 / X ; , l / x , . . ] - * " . 

Note that this means, in particular, 

f(2k)(Z\ 

(3.3-7) _ _ I - 6 ( - l ) - - [ i / „ £ , l / x i . _ ] - * + - for any . e [*.__, „ J . 
2k! 

Let us now compare this part of our numerical illustration with an alternative 
approach using Cauchy's inequality. 

For this, we put f(z) = l/z and representing complex numbers by real pairs we 
have for z = (x, y) and 0 e [0, 2TC] that z + Qe

ie = (w, ir is contained in a rectangle 
in the complex plane defined by (u, v) G z + ( [ -O , OJ, [-O , O]) = (x + [ -_ , O], 
y + [-Q, ,])• In order to bound f(2fc)(<_ /2k! for any <_ e [xf__, x j using Cauchy's 
inequality (3.3-3) we need to bound max | / ( z + ^ | for 6 e [0, 2TE] and for z in the 
segment [ x . ^ x j . Then z + geie = (u,'i,) will lie in ([x,_ l 5 x,], 0) + ( [ -O , O], 
[ -_ , _]) = ([*_-_ - e, *i + e], [ - & -]) and 

f(z + Oe") = l/(z + Qe») = l/(w + fe) __ f „ _ _ _ i _ ________\ 
V ; \u2 + v2 u2 + vV 
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will lie in 

[ X f - t - O, X,- + O] [-Q>Q] 
[X;_x - O, Xř + O]2 + [0, Q2~] ' [X^i - Q, XІ + OQ2 + [0, £2] 

Xj-1 - g *i + g 

Jx f + Q)2 + 2 ' (X,-І - <?)2. Ц ^ І - I 
\2 ' 

( * i - l - í?)2 

for any 0 < Q < Xj_x. Therefore 

l/ ( w(fll^((s, + g)2 + e2)1/2 
(3.3-8) 

2/c! " ( ^ - i - ď 

for any £ e [xf_1? x j and any 0 < O < x ^ ^ 

We could program the minimization of the right hand side of (3.3-8) with respect 
to admissible choices of Q for particular numerical values of Xi_x and xt and k. 

Doing this we would obtain Q = 6xi_l for some 0 < 0 < 1 and (3.3-8) would 
become 

(3.3-9) 
(2fc)IíЛ H2ҺҲ 

2/c! 
< 

( ^ + Ø x ^ + Ø2*2-,)1'2 

( 1 - 0 2 д2/c v2fc+2 

The bound given by (3.3-9) will not be as sharp as that given by (3.3-7). 
Using (3.3-6) we obtain from (3.3-2) for the width of J*)2fc' (ignoring round-off, 

for the moment) 

w(Л*2*) = I 2/c + 1 І = I 

X ; — X ; 
2fc+l 

2/c+l 2/c+: 
X i- i XІ 

ï = 4 £ p 
X ; ~ X ; 

2X; 

2fc + 2 

According to a previous remark on schemes for variable step size we set 

X ; X ; _ 1 _ 

= h . 2xt_! 

Then xt = x ^ + 2ftxi_1 = (1 + 2ft) x ^ and x£- = (1 + 2ft)1 x0. For our problem 

Ґ 
= (l/x)dx 

so we put x 0 = l ,x n = band obtain (1 + 2ft)n = b or ft = -2-(b1/w — 1) and x f = bl/n. 
With this choice we have 

(3.3-10) w'xI*,2k) < 4n 
bl/n _ j\2fc + 2 

We will now consider briefly the problem of minimizing for s > 0 the computation 

time required to evaluate (3.3-2) among choices of n and k for which 

4n{±(b1/n - \))2k + 1 S c 
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The next remark to be made is this. A common practice in predicting computing 
time is to count arithmetic operations in a formula to be evaluated. This is not too 
bad a procedure, but it should always be realized that actual numerical evaluation 
of a formula by a computer involves many other operations as well: storing partial 
results, modifying addresses of instructions, etc. In a "typical" situation the compu
tation time may be proportional to the number of arithmetic operations but the total 
time might be five times the time for executing the arithmetic operations alone. 

At this point we will suppose that all arithmetic operations are to be carried out 
by the computer in rounded interval arithmetic so that round-off error will be ac
counted for in the final result. 

From (3.3-5), (3.3-6) and (3.3-2) we determine that the evaluation of I*2fc requires 
n(2k - 1) divisions to get F(2r)(i(x; + xt-x)) for r = 0, 1, 2, ..., k - 1, i = 
= 1, 2, ..., n\ another n(2k + 1) divisions to get F(2fc)([xi_1, x,]), i = 1, 2, ..., n; 
plus an additional n(2k + 2) multiplications and additions (using the "nested" 
form of evaluating the polynomial) and nk divisions to complete the evaluation 
of I*2fc- Thus, the computation time can be assumed to be proportional, for this 
example, to nk. 

In order to see which choices of n, k minimize nk subject to 

/M l " __ l\2fc + 2 
(3.3-11) 4 n ( - - ) g f i > 

for some small value of a, say e = 10" 1 0 ard for various values of b, we notice first 
that we certainly must have b1/n < 3, otherwise no choice of k will work. 

A systematic way of searching for n and k might be to start with the smallest 
n ^ In b/ln 3, find the smallest k satisfying (3.3-11) then add one to n and find the 
smallest k again, proceeding in this way until the product nk has passed through 
a minimum value. 

As BABUSKA and SOBOLEV [5] have pointed out one should really take into account, 
in such deliberations, the time required to obtain the optimal choice of parameters. 

Even for such a simple example as the one we have been discussing, the determi
nation of the optimal choice of parameters can be disturbingly complicated. 

A reasonably good choice for most practical purposes is to set the number of terms 
carried in the Taylor expansion equal to the number of decimal digits of accuracy 
sought, or, say, the number of decimal digits carried in the arithmetic used, [36]. 

In this example, if the computations are carried out using about 10 decimal digit 
rounded interval arithmetic, then 10~10 is certainly as small as is reasonable fore 
and we could put 2fc = 10 or k = 5 and solve for the smallest n such that 

ru^ln _ l \ 1 2 

An[t M < 1Q-10. 

By rough slide rule calculation, I predict for example, that for b = 2 this gives 
about n = 3 and for b = 100, about n = 25. 
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A rough sketch of the dependence of nk on n, k and b from (3.3-11) with s = 10 1 0 

is given in the following tables. The figures given are only approximations. 

b= 2 100 

n k nk 

1 17 17 

2 6 12 

3 6 18 

850 1 850 

n k nk 

5 45 225 

6 19 114 

10 10 100 

25 5 125 

28 000 1 28 000 

A useful thing about an interval method such as formula (3.3-2) is that whatever 
choice of n and k we (or the computer) make, the computed interval will contain 
the exact result for certain and if the interval result is too wide for our purpose we can 
get a narrower one by repeating the calculation with more steps (larger n) and by 
using higher precision arithmetic (more digits) if necessary. 

An application of interval computation by the computer which should not be 
overlooked is in the preparation or checking of published tables of numerical values 
of functions. I have not undertaken this in any extensive way. However, I have 
checked some interval results against tables and have noticed occasional errors 
in the last digit or two of a published result. 

3.4. Integral equations and two point boundary value problems. In this section 
we will use the following type of notation for the interval extension of real rational 
functions f(x, y) = x + x\y -> F(X, Y) = X + XJY. From inclusion monotonicity 
and the mean value theorem, it follows that 

(3.4-1) 

where 

ľ f(x')dx'єtғ(Xү 
Jla,Ъl i = 1 

)\íb — a 

xp = a + [i-í, q(lzЛ. 

If F is an interval function whose real restriction, F([x, *]) = F M i s m i n t e r v a l . 
valued, we define v J 

(3.4-2) I E(x)dx = n i *•(*<">) ( t z ^ \ 
Jr..»] »-i.-i J\ n y 
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Consider an integral equation of the form 

(3.4-3) y(x) = h(x) + g(x, x, y(x')) áx' for a ^ x ^ b . 
J [ß,bì 

Define a sequence of interval-valued functions 

Y0(x) = [c, d] 

(3.4-4) Ym+1(x) = Цx) + G(x, x', Ym(x')) áx', m = 1,2, ... 
[a,Ь] 

If Yi(x) <= [c, d] for all x e [a, b], then for each x e \a, b], we have 

(3.4-5) y(x) e Ym+p(x) cz Ym(x) , (m, p = 0, 1,2,...). 

Let n be a positive integer; for i = 1, 2, ..., n; m = 0, 1,..., define 

Y(n} EE [C, J ] 

(3.4-6) YW">M = H(X<">) + £ W# G(X<">, Xf, y£>) 
1=i 

where 

(«) _ \(b ~ a)ln> if i * J ' Ww = 
[[0, (b - a)/n], if * = j . 

If H and G are rational interval functions, with real restrictions h and g, then 
a computer program can be written for the evaluation of Ym

n\ using rounded interval 
arithmetic. 

If Y^l cz [c, d\, (which can be tested by the computer), then 

y(x) e Ym(x) cz Ym
n) 

for a l l x e X ^ ; m, n = 1,2, ... 
At "mesh points" x(n) = X(n) n X(nll9 we have the sharper result, [36], 

(3.4-7) y(xT))eYm
n}nYm

n}+1. 

If the number of places in the rounded arithmetic used is increased with n and m, 
then for rational (x — a)\(b — a) = M/N, we have convergence to real values: 

(3.4-8) v(*) = OYJTJ: «,_.,/(»-.,). 

The two point boundary value problem 

(3.4-9) y" = / (x , y) , y(a) = y0 , j (b) = y± , 

which can be put into the form of the above integral equation, can also be treated 
in this way; if/ is rational, then the corresponding g is piecewise rational. 
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Consider the boundary value problem 

(3.4-10) / ' = t2 + y2 , y(0) = y(l) = 0 . 

It is sometimes useful to note that (3.4-2) gives for the interval-valued function 

-tO = [fi(0>f2(t)]> the integral 

(3.4-11) F(t) àt = Л(t) dí, .tødí] 

We can define (and program) the square of an interval by 

f [a2, b2] , a > 0 , 
[ a , b ] 2 = : ] [ b 2 , a 2 ] , b<0, 

(|o, max (a2, b2)] , a < 0 < b . 

Now write the boundary value problem as an integral equation 

(3.4-12) 

with 

K0 = 

к(t, ť) -

K(t,ť)(ť2 + y2(ť))dť 

(t - 1) ť , 0 S ť й t, 

l(t' - i)t, t' < t < l . 

We define a sequence of interval valued functions as follows. 

Yo(0 = [-i,o] 

(3.4-13) Yk+1(t) = Cx(t, t') (t'2 + Y2(t')) dt' 

For this example, we will carry out directly some of the integration instead of using 
the discretized form given by (3.4-6). 

By interval computation, using the above definitions, we find, remembering that 
0 g tt% 1, 

(3.4-14) Yt(t) = !\t - 1) t\t'2 + [0, 1]) dt' + f V - 1) t{t'2 + [0, 1]) dt' 
Jo J t 

= (ř - 1 ) 

+ Ѓ 

г í'3 dí\ í (ť3 + ť) dť 
Jo Jo 

Г ((ť - 1) ř'2 + ť - 1) dí', Г (ť - 1) í'2 dř'l 
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r 7 t2 t3 ť i ř3 ř4n 
+ f + t + , + 

L Í2 2 3 4 12 3 4 j 

" [ • 
It ť ŕ t ŕ~ — + - + —, + — 
12 2 12 12 12 

Now it happens that Yx(t) a Y0(t) = [—1, 0] for all t in [0, 1]. From inclusion 
monotonicity it follows that for all k = 1, 2,,.., the interval valued functions defined 
by (3.4-13) satisfy Yk+1(t) c Yh(t) for all t in [0, 1] and furthermore if Yk(t) = 
=- [yk(t), uk(ij\, then ufc(t) — vk(t) converges to zero for all t as k increases and the 
solution to the boundary value problem, y(t), satisfies y(t) e Yk(t) for all k and all t 
in [0, 1]. 

Carrying out part of the calculation of Y2(t) we find that the part which is linear 
in t is given by 

(3.4-15) Ү2(í) = 

For Yi(t) we had 

i-fi + i9-
12 V 144 

i f , + i 
12 V 144 

t + .. 

Yí(t) = 1_ 

12 
J_" 
12 

t + .. 

This means that we have determined the following intervals containing the initial 

slope y'0 of the solution: 

from Yt(t): 

from Y2(t): 

7 , 1 
< Уo < 

12 12 

1 Д 4 9 \ , 1 (. 1 
— 11 + — < ľ ó < 1 + — 
12 V 144/ 12 V 144 

The width of the interval derived from Yt(t) is \ while that derived from Y2(f) 
has the smaller width jg. 

If Yh(t) gives Sf^ < y0 < ^(2k)? t n e n a calculation such as that indicated above 
yields the following information: 

The interval function Yk+1(t) will have the linear part 

(3.4-16) У»+.(ť) = (i + (sîП -ү2(i + sľ)2) t +.. 
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so that Yk+1(t) yields the following bounds on y'0, 

(3.4-17) Sf + 1) < y'0< S2"
 + 1) 

where 

Sf+ 1) = _ J - ( l + (S^)2), S(
2*

+1) = - — (1 + (S f ) 2 ) . 

Define wk - S f - S f , then wfc+1 - -£ (S (
2

k ) + S f ) wk. From Yfc+1(r) c= Yfc(t)„ 
it follows that 

S ? > < * S ? + 1 ) < S ? + , ) < Sf 

so for fc _ 2, S(
2
fc) 4- Sf} is very close to — £ and we have, approximately, 

(3.4-18) wk+1 - — wfc. 

Thus y4(f) should give upper and lower bounds to y'0 differing by less than 10"5 . 
We point out this application of interval methods for two-point boundary problems 

since oftentimes it is of practical importance to compute bounds on the initial slope 
of the solution. 

A more rapidly convergent sequence of interval valued functions containing the 
solution to an integral equation or a two point boundary value problem can be obtain
ed using Newton's method and a combination of techniques from interval analysis 
and functional analysis. But we will defer a discussion of that until the last section 
of this paper, 

3.5. The initial value problem in ordinary differential equations. There are 
several "standard" types of problems for which a large number of competitive 
computational algorithms have been derived and studied (and continue to be derived 
and studied). 

Included among such types of problems are: systems of linear algebraic equations,, 
algebraic (polynomial) equations, and the initial value problem in ordinary dif
ferential equations. 

A specific algorithm for problems of a certain type often has some advantage over 
other algorithms for a certain subclass of the class of problems of the type in question. 

In practice it is usually difficult to tell at a glance whether a specific problem falls 
in the subclass for which a given algorithm is "best" in some sense. For one thing, 
a precise and simple description of the subclass is rarely available. So the choice 
of which of a number of algorithms to use in each specific case is usually considered 
to be a matter for the judgment of an expert — a person experienced in the 
"art of computation". 
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To quote Babuska, Prager, and Vitasek: 

"Given a mathematical problem and an automatic computer, it is required to 

select the best numerical method of solution," [6]. 

If we choose a precise enough and narrow enough definition of "best", then 

a selection process can be programmed for the computer as part of the computation 

[36]. If this is done, however, the time required to obtain the optimal choice should 

also be considered (as pointed out by Babuska and Sobolev [5]). 

Sometimes, it doesn't make very much difference which of several comparable 

algorithms are used. 

There have been a number of comparative numerical studies made in which several 

popular methods are tried on the same problem. In such studies, however, there is 

always some question about the generality of the conclusions drawn. It has often 

been conjectured that given two distinct numerical methods there are problems, 

perhaps artificially contrived, for which either method will give better results than 

the other. Still, it is of practical significance to compare actual running times on 

a computer required to obtain results of the same accuracy on some nontrivial 

problems of real interest using various available methods. 

An interesting study of this kind was reported recently [21]. The differential 

equations used as the test problem were those for the restricted three body problem. 

(3.5-1) y\ = , . + 2y'2 - (±zAk±±±) _ life _J +__ 

n n 

rъ rъ 

г l r2 
with 

ri = ((Уг + џf + УÌУ'2 , r2 - ((Уl - í + џf + yiУ" 

The methods compared were each used with some flexibility, varying step size and, 

when possible, even the order of the method in order to obtain something like an 

experimentally determined optimal use of the formula. A variety of initial conditions 

were used and a variety of "error tolerances" were used to choose step size. The 

computations were carried out using double precision arithmetic (about 22 decimals) 

on the Burroughs B-5500 computer. Another set of runs was made using 30 decimal 

place arithmetic on the IBM 7094 computer with the Runge-Kutta-Fehlberg method 

to obtain more accurate results for comparison. These are "believed" to be accurate 

to 24 significant figures. We will quote one of the tables of comparative results [21] 

corresponding to the initial conditions: 

yi = 1-2 yi = 0 

y2 = 0 y'2 = -1-04935750983031990726 

H = 0-0121285627653123104912068 
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"This table summarizes results of runs of comparable accuracy (~10~1 2) for the 
various methods." The solutions were carried out over an interval slightly larger 
than [0, 6] in the independent variable. 

Number 
Average 

number of Processor 
Maximum 

of function time in units of 
10~ 1 2 

Order Method 
steps evaluations seconds 

units of 
10~ 1 2 

per step 

693 21 293 008 7 - 8 
Runge-Kutta-

Fehlberg 

236 5 173 003 11 
Runge-Kutta-

Fehlberg 

1912 3-1 296 0-2 12 -13 
Adams-Bashforth-

Moulton 

1959 3-1 330 001 13-16 Stoermer-Cowell 

1893 3-2 133 1 12 
Cowell, constant jVth 

order difference 

1126 31 177 0-8 11 
Stetter-Gragg-
Butcher 

The figures given in the study for computer processing time do not appear to vary 
enormously — from a little over two minutes to five and a half minutes. On this 
basis the methods compared could be judged to be, more or less, equally good. 

E. FEHLBERG has derived recently some very efficient algorithms, [16], [17], [18], 
[19]. One of these, referred to by Fehlberg as the "Runge-Kutta-Transformation" 
method, which combines Taylor series expansions and Runge-Kutta type formulas, 
is the algorithm referred to in the above table as the "Runge-Kutta-Fehlberg" 
method. GALLAHER and PERLIN, [21], conclude from their numerical studies that 
in several senses "the Runge-Kutta-Fehlberg method is probably superior" to the 
other methods they tried. 

Fehlberg [16] has also run some timing studies on the same numerical example 
as used in the study quoted in the above table (involving equations (3.5-1) and the 
same initial conditions). We quote now some of the results of his study obtained 
using double precision arithmetic (about 16 decimals) on the IBM 7090 computer. 
Again the methods were programmed with "automatic step size control". 
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Number 
of 

steps 

Processor 
time 

in seconds 

Error 
estimates*) 

Order Method 

17 750 
726 
520 
280 
176 

592 
106 
57 
79 
42 

•28 .10" 1 0 

•25. 10" 1 0 

• П . I O " 1 0 

•25. 10" 1 0 

•18 .10" 1 0 

4 
8 
8 

12 
12 

Runge-Kutta-Nyström 
Tayłor series expanѕions 
Runge-Kutta-Transformation 
Taylor series expansionѕ 
Runge-Kutta-Transformation 

*) Change in value of Jacobi integral. 

Notice here the rather significant decrease in the computing time from the fourth 

order to the 12th order methods. 

Suppose we consider a much larger class of methods for this same problem, 

including say Newton's method [30], Lie series [25], etc. Suppose we allow all sorts 

of transformations of the variables in the problem itself. And suppose we are to 

define "best" here in terms of processor time to obtain a solution of at least 12 

decimal place accuracy. Clearly, if we carry out enough analysis and hand computa

tion on the problem before we begin the machine computation we could, in principle, 

even finish the computation by hand and have the machine simply read in and print 

out the answers! Therefore a reasonable criterion for "best" when allowing prepar

atory analytical work must include some measure of the time and labor involved in 

that work. On the other hand, if it were possible for the machine to do practically 

ail the "analytical" work: setting up transformations, choosing step size and order, 

etc., then processor time alone would be a reasonable criterion for "best". 

It is my belief that the "art of computation" can eventually, to some extent be 

made into a "science of computation" by a formal algorithmic description of various 

analytical processes, transformation techniques and selection criteria; putting these 

descriptions into the form of computer programs; and letting the computer carry 

out the symbolic manipulations and computations leading to the selection of the 

"best (or, at least, a good) method of solution" for given a mathematical problem. 

Sometimes we want the algorithm chosen to have special properties. This limits 

the selection to the available algorithms with those properties. 

Suppose, for example, that we want an algorithm for calculating approximate 

solutions along with guaranteed error bounds with all the analysis and computation 

to be carried out by the computer. 

For the initial value problem in ordinary differential equations & family of such 

algorithms has been derived and programmed for the computer based on repeated 

expansions in Taylor series truncated at the Kth term with the remainder in "mean-

value form" to be bounded by interval computation, [36]. Recurrence formulas 
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for the Taylor coefficients are derived by the computer in the form of subroutines. 
This is done once, for a given problem, during "compilation time", requires little 
computer time and no work or time on the part of the user. During the "execution" 
of the computation for a given problem the time T(K) required by the computer 
to obtain values for the first K Taylor coefficients is proportional to K2 for differential 
equations which are non-linear after reduction to autonomous systems of first order 
equations. The values t0, tl9 t2, ... of the independent variables at which successive 
Taylor expansions are to be carried out and the number of terms K0, Kl9 K2,..., 
to be carried respectively in each expansion are the parameters in the "family" 
of algorithms. 

Alternatively we can think of this as a single algorithm if we add some procedure 
for choosing t0, tl9 tl9... and K0, Kl9 K2, ... 

The time required by the computer to obtain the approximation and error bounds 
at each ti + 1 from its expansion of order Kt at tt is roughly proportional to K2, [36]. 

One criterion for "optimization" of the algorithm is the following: choose the 
values of ti9 Ki9 i = 0, 1, 2, ... so that for maximum accuracy obtainable using a fixed 
precision machine arithmetic the total computation time is minimum. 

It does not seem possible to mechanize this precise choice of ti9 Kt by any procedure 
which would involve an amount of computation which could be ignored in compar
ison to that required by the resulting optimal algorithm itself. 

An approximation to this choice of ti9 Kt is evidently to set K0 = Kx = .. . = Kt « 
« (1-15...) d where d is the number of decimal places carried in the fixed precision 
machine arithmetic used; and to choose ti+1 so that, ([36] p. 102), the local truncation 
error is kept roughly constant relative to the change in solution values from step 
to step. 

For the algorithm under discussion this can be programmed for the computer as: 

(3.5-2) ti+1 - t i = 

if this is less than 

( io^|j j V/(K+1) 

\\F(K\ym. 

\Уt\ 

otherwise, 

\F(0)(y.)\' 

t - t = Í^-T°\yt)\\/K 

In the expressions given for ti+1 — tt by (3.5-2), the quantity \yt\ is supposed to be 
the maximum absolute value of any component of the approximate solution vector y 
at tt and F(A)(y;) is the Kth derivative with respect to t of the right hand side of the 
autonomous system of differential equations: in vector form, dy/dt = F(y). 

Numerical experiments with a number of systems of differential equations were 
run on the computer to compare actual running time using the choice of ti9 Kt indi-
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cated with the time required for other choices of th Kt. In all cases tried the choices 
given here gave results of comparable known accuracy (i.e. comparable machine 
computed error bounds) in computing times which were close to the minimum times 
found. 

A suggestion sometimes heard is that in the presence of a nearby singularity the 
order Kt should be varied from step to step for more efficient computation. However, 
I do not know of any very definite results to that effect. 

Over a fairly short range of values of the independent variable quite sharp intervals 
(containing exact solution values) are obtained by the computer based on repeated 
Taylor series expansions with interval computation of the remainder terms. Interval 
widths of a few units in the last place carried in the fixed precision arithmetic used have 
been obtained in this way for initial value problems involving a variety of systems 
of differential equations including the restricted — three body equations (3.5-1), [36], 
This required about 5 seconds per step for the restricted three body problem on the 
IBM 7094 computer but no preparatory analysis by hand. 

This could be compared with about -1 seconds per step using truncated Taylor 
series expansions of the same order at each step but without all the error bounding 
interval computations. 

There is a price to be paid for automatic guaranteed error bounding by the com
puter. It may still be infinitesimal compared to the cost of guaranteed error bounding 
by the analyst, (see section 1 of this paper). 

For long range numerical solutions with automatic error bounding by the computer 
using this approach there is a source of excessive growth in the widths of the bounding 
intervals. It is that the family of solution points [y(t) | y(t) e R(ti)} emanating from 
an n-dimensional (for an nth order system) rectangle R(t) fill out a region S(t) 
which at some ti+1 must be bounded by another ^-dimensional rectangle R(ti+1) 
with sides parallel to the coordinate axes. If the region S(t) is a rigidly rotating 
rectangle, for example, then R(ti+1) can grow to arbitrarily large width, [36]. 

Methods for reducing the effect of this source of growth of error bounds have 
been studied, [35], [36]. These include a procedure based on local coordinate 
transformations y = y* + C*z using an approximation C*(t) to the "connection 
matrix" C(t) of the vector field (given by y' == f(y)) along an approximate solution 
y*(t), defined by 

(3.5-3) ^ = J(t)C(t), C ( 0 ) = J 
dt 

where I is the identity matrix and J(t) is the Jacobian matrix (Of/O>y) | y*(t). 

A computer program incorporating this procedure did not, at first, have the 
expected beneficial effect. The bounds grew faster, in fact. 

The cause of the trouble was the loss of cancellation of error in interval subtraction 
because of the loss of the identity of variables after substitution of interval values. 
The cancellations must be done symbolically, [36]. Computer programs and program-
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ming languages providing this capability in convenient form may be available soon. 
Meanwhile, the formulas required for the application of the transformation technique 
can be derived by hand for each specific problem and programmed for use by the 
computer in connection with an interval solution of that specific problem. 

Results obtained in this way were reported [36] for the initial value problem 

(3.5-4) f-y2, - ^ - - , . , 
dx ax 

yi(0) = 0 , j;2(0) = l-0. 

The computations were performed on the CDC 1604 computer using the interval 
version of repeated Taylor series expansion with K = 12 (twelve terms in the series 
plus remainder in interval form) and using local coordinate transformations based 
on approximate solution of (3.5-3). We refer to [36] for details. We quote part of the 
results of the computation. 

SOLUTION AT X = 30 

Yl = 44112000805 ERROR BOUND = 5-6 . 10"1 0 

Y2 = --98999249665 ERROR BOUND = 6-2 . 10"1 0 

SOLUTION AT X = 6 0 

Yl = --27941549819 ERROR BOUND = 2-3 . 10"9 

Y2 = -96017028692 ERROR BOUND = 2-4 . 10"9 

SOLUTION AT X = 9 0 

Yl = -41211848524 ERROR BOUND = 9-3 . 10"9 

Y2 = --91113026212 ERROR BOUND = 9-4 . 10"9 

The error bounds are still growing, but not as fast as without the use of the trans
formation technique. Using the transformation technique the bounds in this example 
grew (from x = 3 0 to x = 9-0) by the factor 

9-4. 1Q"9 

6-2. 10" 1 0 ~ 

whereas without the transformation technique the factor of increase was 420. 
i n principle, the transformation technique can reduce the factor of increase to 

1 + s for any s > 0 in this example. The bounds can also be decreased without the 
transformation technique by going to higher precision arithmetic, (and corresponding
ly more terms in the Taylor series). 

Which of these approaches is more efficient has not yet been determined. 
An alternative approach based on quadratic forms describing ellipsoidal bounding 

regions has been suggested by W. Kahan of the University of Toronto, (see p. 335 
of the proceedings referred to in [13]). 
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We have chosen another example from [6] to further illustrate the sharpness of 
bounds obtainable using the transformation technique. 

On p. 101 of [6] is given a table of results obtained using the Runge-Kutta method 
to solve approximately the problem 

(3.5-5) y' = - v for y(0) = 0-9. 

The Runge-Kutta method was modified for the computations to include addition 
and subtraction of bounds on the local error (taking round-off error into account) 
at each step and the results are reported in the form of a "lower" and an "upper" 
solution. 

We repeat the example, for comparison, using our interval-transformation method. 
In order to obtain a reasonably fair comparison with the results of [6], we will reduce 
the number of terms to be carried in our Taylor series expansions to five so that 
our local error will be O(h5) like the Runge-Kutta method. Also we carry out our 
successive Taylor expansions at the constant step h = 0-1 used in [6]. 

For the approximate solution y*(t) in (3.5-3) we use the discrete approximation 

y* ~ y('lP) given by y% = 9 

(3.5-6) y*p = ( | o i ^ ( - ly) y%t , p = 1, 2 , . . . 

For the approximate connection "matrix" C*(t), (which in this simple example 
is a scalar function) we use CQ = V0. From (3.5-5), J(t) = —1-0; we put Cp = 
= (1 + hJ)C*„u or 
(3.5-7) C* = -9C*_!, p = l , 2 , . . . 

at "mesh points" tp = \p and define C*(t) for intermediate points by linear inter
polation. 

From y' = — y we obtain, for z defined implicitly by y = y* + C*z, the derived 
differential equation in tp ^ t < tp + 1 

(3.5-8) z' = (C*)"1 (-y* - y*' - C*z - C*'z) 

= ( 73^P^ + (<-<.>0). 
Notice the cancellations we have performed in (3.5-8). 

If z(tp) e Zp9 then for tp ^ t < tp + -1 we have z(t) e zp + (t - tp) z'([tp, tp + -1]) 
by the mean value theorem, so 

(3.5-9) z(t)ezp + Bp, 

where Bp is an interval such that (using (3.5-8)) 

(3'M0) *°+ â k:(" ^ * + [0'"]^+ *~) ~-+B-
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By continuity, we also have z(tp + T) e zp + Bp. Thus if we choose z0 such that 

yo e yo + c o z o a n ( l P u t z
P+i = Z

P + # P then it will follow that for tp ^ t <, fp+1 

(3.5-n) XOG y*(f) + C*(0 (ZP + BP) • 

We must now choose Bp satisfying (3.5-10). We try Bp in the form 

(3.5-12) Bp = azp + Rp , 

and try to satisfy 

(3.5-13) - E ° ^ p £ + [o , ^ ] (zp + azp + * , ) cz a Z p + R, . 

If 0 e z0 and 0 e Rp, then 0 e zp + Rp = zp+l by induction for all p and 

(3.5-14) 0, — \(zp + azp) e azp provided a ^ — . 

Put Kp = [ — rp, rp] and choose rp so that 

(3.5-15) ^ ^ g c A . l \ [ , r y r F ] 

then (3.5-13) and (3.5-10) will be satisfied. We can satisfy (3.5-15) by choosing 

I * I 
(3.5-16) rp = 4-7. 10"7 - ^ . 

\Cp\ 

This gives (along with (3.5-14)) 

(3.5-17) Bp = l z p + [ - V l ] ( V 7 . 1 0 - 7 

From (3.5-17) and zp+x = zp+ Bp and (3.5-6) and (3.5-7) and (3.5-11) we have, 

finally that 

(3.5-18) Cp*+1zp+1 e(-9102)"+1 (1-06 . 1 0 " 4 [ - 1 , l ] + z0) 

and,the exact solution to (3.5-5) at tp+1 satisfies 

(3-5-19) y ( tp + 1 )ey* + 1 + C*zp + 1 

with C*p+lzp+l bounded by (3.5-18) and y*+l = (-9048375)p + 1 (-9) from (3.5-6). 

For p = 100, this gives r100 = 10-0, y( 10-0) e [-000040844, -000040876]. The 
exact solution is y(10-0) = -000040860... 

By comparison the upper and lower solutions given in [6] determine the following 
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bounds at ?ioo — 100: 

y(lO-O) = [-000040314, -000041403] . 

The relative error in our y*+t can be bounded using (3.5-18) and (3.5-19) by 

\y(tP+i) - y$< (3.5-20) 
УP + Í 

< (I-006)' + 1 (2-12). 10" 

The right hand side of (3.5-20) will be less than 1-0 for p < 1424; i.e. the bounds 
will be sharper than one in the leading non-zero digit for t < 142-4. This point is 
reached by the method of [6] by t = 19-0. 

The desirability of programming a general procedure enabling the computer 
to carry out all the derivations and computations involved in applying the transfor
mation technique to specific examples should be obvious from the details of the very 
simple example just discussed. 

I am convinced it can be done. 

In addition to providing a means for the automatic determination of sharp rigorous 
error bounds in the initial value problem, such a computer program would be a 
valuable aid in the computation of "reachable sets" in control theory problems. 

4. FUNCTIONAL ANALYSIS FOR COMPUTERS 

It is beyond the scope of this paper to attempt a survey of the unifying concepts 
and very general techniques of functional analysis which are enjoying such vigorous 
application to computational problems. Important examples of work in this area 
can be found in [1], [5], [7], [9], [10], [11], [13], [20], [30], [38]. 

In this final section we will merely discuss a few of the computational and error 
bounding techniques of functional analysis which can, in principle, be carried out 
by the computer with the help of interval computations. KRUCKEBERG [32] has reported 
some work on partial differential equations using interval computation. 

In this section, we will discuss an application of the contraction mapping principle 
to the initial value problem and an application of Newton's method to the two point 
boundary value problem. 

We will use the following form of the contraction mapping principle, given by 
RALL [38]: 

If F is an operator in a Banach space X which is a contraction mapping of U(x(0), r) 
for 

(4-1) r ;> J L |x(0) _ ^(0)11 = ro 

where 0 ^ 0 < 1 and 

(4-2) . \\F(x) - F(y)\\ g B\\x - y\\ 

84 



for all 

x , y e U ( x ( 0 ) , r ) = { x | | | x - x ( 0 ) | | g r} 
then: 

1. F has a fixed point x* in U(x(0), r0). 
2. x* is the unique fixed point of F in U(x(0), r). 
3. The sequence of successive approximations defined by 

x ( w + 1 ) = F(x(w)), m = 0 , 1 , 2 , . . . 

converges to x* with 

(4-3) ||x(m) - x*|| g Qmr0 . 

An interesting application of this principle is the following. 

Suppose we are given an initial value problem 

(4-4) x' = f(t, x), x(t0) = x0 

(with / continuously differentiate in a suitable region) and an approximate numerical 
solution at the points t0 < tx < t2 < . . . < tn, say xt « x(tj); i = 1, 2 , . . . , n where 
x(t) is the exact (unknown) solution to (4-4). The contraction mapping principle 
can be used to compute bounds on the errors x£ — x(t^) without knowing how the 
numbers xt were computed. 

We choose for X, the Banach space of continuous functions on [f0, tj] with the 
norm 

||x|| = max |x(t)| for x e K . 
te[to,tnl 

We write the initial value problem (4-4) as an integral equation 

(4-5) x(t) = x0 + f(s, x(s)) ds . 
J fo 

The equation (4-5) has the form 

(4-6) x = F(x) 

where the operator F is defined for y e X by 

(4-7) F(y)(t) = x0+ ! f(s,y(s))ds. 
J to 

Suppose we interpolate the approximate numerical solution by some continuous 
function x (0 ) (for example a polynomial) such that x(0)(tf) = xt, i = 0, 1, 2, ..., n. 

If the conditions (4-1), (4-2) are satisfied, then we will have, from (4-3), ||x(0) - x|| ^ 
<; r0; in particular, we have a uniform bound on the errors of the approximate 
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solution 

(4-8) H - x(ti)\ = \\x ( 0 ) 
4 й r0 . 

We illustrate the details of the application with an example. 

Consider the initial value problem 

(4-9) x2 , x(0) = 1-0 

and the single approximate solution value x x = 1443 « x(425). The problem 

can be rewritten as the integral equation 

(4-10) x(t) - 1-0 + f x2(s) ds . 

We define F for the space X of continuous functions on [0, -125] by 

(4-11) 

Then 

F(y)(t)= 1-0+ y2(s)ds. 
Jo 

(4-12) \\m = max 
íє[0,125] 

(x2(s)-y2(s))ds 

á 425||x + y\\ ||x - y\\ . 

For x (0), we choose an interpolating quadratic polynomial x(0)(t) = 1 + xA(0) t 
+ at2. We find from (4-9) that x'(0) = 1 and determine the coefficient, a, from 
x (0)(425) = 1-143 that is, 1 + 425 + (425 ;

2 a = 1443 o r a = 1-152 and so 

(4-13) x(0)(t) = 1 + t + 1452t2 . 

Now, for x, y e U(x(0), r) and since 

(4-14) max |x(0)(t)| = 1443 , 
r e [ 0 , 1 2 5 ] 

we have 

(4-15) ||x + y\\ S 2(||x(0)|| + r) = 2(1443 + r ) . 

Thus for 6 in (4-2) we can put 

(4-16) 6 = -125(2-286 + 2r) - -28575 + -25r . 

We check that 0 = Q < 1 provided that r < 2-86. . . 
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We next compute an upper bound on r0 from (4-1). For this, we need an upper 
bound on ||x(0) - F(x(0))||. From (4-13) and (4-11) we have 

(4-17) x(0) - F(. (o) __ FMon = r 
((x ( 0 )(S)-l) ' -(x ( 0 )(S))2)dS 

= J («304s - 3-304s2 - 2-304s3 - V327104s4) ds . 

Put 

(4-18) p(t) = 452t2 - (140V ..) t3 - -578t4 - (-265...) t5 . 

Then 

(4-19) ||x(0) - F(x(0))|| S max \p(t)\ . 
r e [ 0 , 1 2 5 ] 

We have for te [0,425] 

(4-20) p[t) e 452[0, 452]2 - [140, 141] [0, 425]3 - -578[0, 425]4 

- [-26, -27] [0, 425]5 . 
Therefore 

max \p(t)\ < -00238 
te[0, 125] 

and 

(4-21) ||x(0) - F(x(0))|| ^-00238. 

The smallest r0 we are entitled to use for (4-8) is, from (4-1) and (4-16) and (4-21), 
the smallest positive root of 

Call 
•0033... 

gOo) = 
1 - ( - 3 5 . . . ) r 0 

then 
•00 ̂ n 

fl(r-003, -0041) = <= T-0032, -00341 
[•9986..., -9989...] 

so 

(4-23) r0 < -0034 

and we have finally arrived at the result that 

(4-24) |x(-125) - 1-143] < -0034. 
87 



Actually the exact value of x(-125) for (4-9) is x(-125) = f = 1-14285... and so the 
actual error is x(-125) - 1-143 = - -00015 . . . 

We will comment upon the possibility of programming the various steps in ap
plying the technique from (4-12) through (4-24). 

The factorization we did in (4-12) could be carried out, at least for rational functions 
/ in (4-4) by "polynomial manipulation programs". 

The computation of coefficients for an interpolating function (perhaps a poly
nomial) leading to (4-13) can certainly be programmed. 

The computation of an upper bound for 0 in (4-16) as a function of r and testing 
for 6 < 1 could be programmed for a given form (say polynomial) of the majorizing 
function of r (at least for rational/) using interval techniques, for example. 

The computation of (4-17), for sharp results, should use some algebraic mani
pulation for symbolic cancellations and the upper bound in (4-19) can be programmed 
using interval methods, for example, such as we in fact used in (4-20) to get (4-21). 

Again we used interval methods, which could be programmed, to get (4-23) from 
(4-22). 

Some of the steps could be refined to give sharper bounds. For example, the bound 
(4-21) can be sharpened (among other ways, [36]) by subsividing the interval [0, -125] 

N 

as [0, -125] = U [a i5 bj\ and computing, in place of (4-20), 
/ = i 

p(t)e\Jp{[apbj-]). 
1 = i 

We turn now to an application of Newton's method using a generalization to 
Banach spaces by KANTOROVIC, [30]. 

We will outline briefly some recent work of Mr. T. TALBOT, a doctoral candidate 
at the University of Wisconsin. A more complete description of his work will appear 
elsewhere. 

The form of the Kantorovic theorem [30] used by Talbot is: 
Let P be an operator in a Banach space B. Let y0 e B and let (P ' (yo) ) 1 exist. If 

(4-25) yi^yo-Cnyo))"1^) 

and 

(4-26) II^'OV))"1! = Po 

and 

(4-27) || yi - y01| = no 

and 

(4-28) ||P"(y)|| ^ K for \y - y0\ = 2i/0 



and 

(4-29) / W ^ = i , 

then there exists y* e B such that P(y*) = 0 and 

(4-30) ||y! - y*\\ S 2p0Kfj2
0 . 

Taibot considers the application of this theorem to the computer solution, with 
automatic guaranteed error bounds, of the two point boundary value problem 

(4-31) y"(x) = f(x, y) ; y(a) = y(b) = 0. 

(Non-homogeneous boundary conditions can, of course, be reduced to (4-31) by 
addition of a linear function of x to y.) 

Talbot has written a computer program for the CDC 1604 computer which, given 
a problem of the form (4-31), tries to construct the numbers /?0, rj0, and K for (4-26), 
(4-27), and (4-28) using interval analysis [36]. The program first tries to generate 
a y0 by iterating (via Newton's method) a discrete solution several times starting with 
the constant function 0. This is then interpolated by cubic splines. Then an interval 
function Yx containing y± is found, if possible, such that yx satisfies (4-25). The 
numbers p0, rj0, and K are obtained using interval techniques for obtaining upper 
bounds on the norms. If these numbers satisfy (4-29) then the bound (4-30) is 
computed. All the derivations, (e.g. for P'(j/0)), and computations are carried out 
automatically by the computer. If some part of the process cannot be carried out 
for a given problem, (which may not satisfy part of the hypotheses), then the com
putation stops and a "discouraging" message is printed out. 

The program was tried on the following example 

(4-32) y"(x) = 2(y(x) - -8x + 1-8)3, y(í) = y(Ь25) = 0 

(with known solution y(x) = ljx + -8x — 1-8). 

Three Newton iterations were required by the program to obtain j ; 0

 a s tabulated 
here. The known solution is listed for comparison. 

X У0(
x) У(x) У0(x) ~ У(x) 

10 00 00 00 
105 -0-007556487 -0007619048 0000062560 

110 -0-010861949 -0010909091 0000047142 

1-15 -0010403285 -0-010434783 0-000031498 

1-20 -0-006650829 -0006666667 0000015838 

1-25 00 00 00 
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The program then constructed an interval function containing y^(x) and then 

constructed the following bounds to be used with (4-30) 

p0 = -068 , rj0 = -000076 , K = 12-0 . 

The final output of the program was given as the first three columns in the table 

below. The actual errors in yt(x) are listed for comparison. 

X Уì(x) 
Guaranteed bound for 

lyiW-yWІ 
Actual error 

Уl(x) — y(x) 

100 000000000000 000000000000 000000000000 

105 -•00761904746 0-00000000956 000000000016 

110 -•01090909072 0-00000000959 000000000019 

115 -•01043478245 0-00000000963 000000000016 

1-20 - 00666666657 000000000968 000000000009 

1-25 000000000000 000000000000 000000000000 
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