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SVAZEK 14(1969) A P L I K A C E M A T E M A T I K Y ČÍSL01 

ON A CLASSIFICATION OF STATIONARY POINTS 
IN NONLINEAR PROGRAMMING 

JAROSLAV HROUDA 

(Received April 20, 1967) 

§ 1 

We will deal with a constrained extremum problem (that of nonlinear programming) 

(1) max {F(x) | f(x) ^ ah i = 1,..., m; cpk(x) g bk, k = 1,..., ?i} . 

Here x is a point of Banach space E; F a n d f are nonlinear functionals continuously 
diflerentiable in the sense of Frechet;1) F'(x),f-(x) are their derivatives at the point x; 
<pk are linear functionals; ah bk real numbers. Let R stand for the set of E (called the 
feasible domain of the problem) defined by the inequalities in (l); R is a closed set-

Let us now briefly mention the terms introduced by ALTMAN in [ l ] . 2 ) 

Definition 1. s e E, s 4= 0 is called a feasible direction of the point x e R if there 
exists a number t > 0 such that 

(2) x + tseR for all 0 < t ^ t . 

We denote by A(x) the set of all feasible directions of the point x. 

Definition 2. x e R is called an R-stationary point of the functional F if A(x) 4= 0 
and 

(3) sup {F'(x) s\se A(x)} = 0 . 
s 

Let us denote by Mx, Nx the sets of indices 

(4) Mx = {i | fix) = at, 1 = i = m} , 

(5) Nx = {k | cpk(x) = bk,l = kSn} 

1) Fis not assumed to be concave norff convex. 
2) Keeping his original notation. 
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and by S(x) the set of vectors 

(6) S(x) = {seE\ f;(x) s = 0, i e Mx; <pk(s) S 0, k e Nx} .3) 

Definition 3. se E is called a regular direction of the point x if s e S(x) and 

(7) f;(*)s<0, ieMx. 

For the set of all regular directions of the point x the symbol SR(x) will be used. 
Obviously, 0 $ SR(x) if Mx * 0. If Mx = 0, then S^(x) = 5(x). 

Definition 4. x e K is called a regular stationary point of the functional F if 
SR(x) + 0 and M 

(8) sup (F'(x) s | s e SR(x)} - 0 . 
s 

[The condition SR(x) 4= 0 can be formulated equivalently as follows: For any 
numbers uh vk the relations 

X > I / I ( * ) + Yvk<Pk^ 0, uf = 0, % ^ 0 
JeM* keNx 

imply w,- = 0 (ie Mx). Usually, this condition is required to be fulfilled for all the 
points of the domain R as the so-called regularity condition.4) 

§2 

In this paragraph we will derive some properties of the concepts given by 
Definitions 1 through 4. It will be shown that the regular stationary point is an 
JR-stationary point", under the regularity condition the concepts given by Defini
tions 2 and 4 are equivalent. 

Lemma 1. For each xe R the inclusions 

(9) SR(x) c A(x) <= S(x) 

hold. 

Proof. Let s e SR(x). According to the generalized Lagrange's formula we can 
write 

(10) fix + ts) - fix) + tffa + 0tts) s, i = 1,..., m .5) 

3 ) If Mx = 0, Nx = 0, then S(x) = E. 
4 ) In [1] it is denoted by R 3 , in [3, sect. 7.7] by CI. 
5 ) 0 < ą < Ь 
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Assuming f- to be continuous, it follows from (4) and (7) that there exist sufficiently 
small numbers tt > 0 such that 

f(x + ts) = ax for all 0<t£ti9 i = 1, . . . , m . 

Further, for the linear functionals according to (5) and (6) there exist sufficiently 
small tk > 0 such that 

cpk(x + ts) = cpk(x) + t q>k(s) S bk, 0 < t = tfc , k = 1 , . . . , n . 

Then the demand (2) can be fulfilled by putting t = min {th tk), hence s e A(x), and 
the first inclusion in (9) is proved. l,k 

Let now s <£ S(x). This means that f/(x) s > 0 for some i e Mx or (p&(s) > 0 for 
some k e Nx. (Following footnote 3, Mx = 0, Nx = 0 cannot hold simultaneously.) 
In the former case the continuity of f'i9 (10), and (4) imply 

fi(x + ts) > a i for all sufficiently small t > 0 , 

i.e. s <£ A(x). The same conclusion can be reached also in the latter case. Thus A(x) c 
c S(x) holds. 

Lemma 2. If SR(x) + 0, fhen SR(x) is dense in S(x) for each x. 

Proof. Let seSR(x). To each seS(x) there exists an arbitrarily close regular 
direction 

(11) sf = s + ts , t > 0 arbitrary . 

Indeed, 

ft*) $t = /JW 5 + '/'*(*) s~ < ° ' i e M , ' 
V*(sO = %(«) + ^ * ( S ) .SO, keN,,. 

Lemma 3. If xe K, S^(x) 4= 0, fhe conditions (3) and (8) are equivalent to 

(12) sup {F'(*> | 5 G S(x)} = 0 . 
s 

Proof. Let us denote by mA, mRi and ms the left-hand sides of (3), (8), and (12), 
respectively.6) With regard to (9) it holds 

(13) mR = mA = ms . 

According to Lemma 2 there exist regular directions arbitrarily close to element 
0 e 5(x), thus 

(14) mR = 0. 

) Clearly, either mA £S 0 or mA = + oo; the same is true for other two symbols. 
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Now, 

(15) 

for if there were an s e S(x) such that F'(x)s > 0, a regular direction s* formed like 
that in (11) with a sufficiently small t > 0 would satisfy the (impossible) inequality 

F'(x) 5r = F'(x) s + t F'(x) s > 0 . 

Then it follows from (13), (14), and (15) 

mA = 0 o mR = 0 <=> ms = 0 . 

§3 

In this paragraph we will propose a generalization of the concept of the R-stationary 
point. 

Definition 5* x e R is called an R-quasistationary point of the functional F if 
either 

(16) 

or 

(17) 

SR(x) = 0 

sup {F'(x) s\se SR(x)} = 0 . 

SR(x)°0 
R-stationary points 

Fig. 

The extent of the new concept is schematically illustrated in Figure 1. The logical 
circle represents the set R and its dashed part the .R-quasistationary points. 

The quasi-stationarity of a point in the sense of Definition 5 can be proved by 
means of a criterion identical with that of Altman [2, Theorem 1]: 
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Theorem 1. x e R is an R-quasistationary point of the functional F if and only if 

(18) max {a \ F'(x) s ^ a\f\[x) s g - C T , / G M X ; <pk(s) ^ 0, lc e Nx} = 0 . 
(5,(T) 

Proof. Let 6= denote the left-hand side of (18). Let d = 0. Let us admit that the 

point x is not R-quasistationary, i.e. there exists a vector s e SR(x) for which F^x) s > 

> 0. If we put down 

<r = min {F'(x) s; ~/i(x) s, i e Mx) , 

the vector s and the number <r will fulfil the inequalities in (18) and at the same time 

<r > 0; but this contradicts our assumption. Conversely, let us suppose that the 

point x is R-quasistationary. If there were some vector s satisfying the inequalities 

in (18) with <T > 0. then s would be a regular direction of the point x and 

F'(x) s > 0. This is impossible, however, and therefore a = 0 must hold (this value 

of a is realized, e.g., by s = 0). 

A constructive way of getting R-quasistationary points is provided by the well-

known method of feasible directions. Altman's theorem [2, Theorem 2] on con

vergence of this method remains valid even if the regularity condition is omitted;7) 

then the limit point of the method will be an R-quasistationary point. The usefulness 

of the new concept is now apparent: The regularity condition is a strong require

ment when applied to general (non-convex) regions and is difficult to verify in prac

tice. The method of the feasible directions can be used without it, however. 

R e m a r k . The terms from Definitions 2, 4, and 5 are essentially related to the 

maximization-type problem (1), although this is not explicitly worded in them. 

Evidently, the corresponding terms for the minimization-type problem could be 

obtained by means of infimum. 

The author wishes to express his thanks to Mr. JOSEF NEDOMA for help in correcting some 
mistakes. 
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Souhrn 

K JEDNÉ KLASIFIKACI STACIONÁRNÍCH BODŮ 
V NELINEÁRNÍM PROGRAMOVÁNÍ 

JAROSLAV HROUDA 

M. Altman v práci ,,Stationary points in non-linear programming" popsal třídy 
K-stacionárních a regulárních stacionárních bodů (R je přípustná oblast úlohy 
nelineárního programování v Banachově prostoru — obecně nekonvexní). V našem 
článku ukazujeme, že na množinách JR splňujících tzv. podmínku regularity jsou obě 
tyto třídy totožné. Definujeme širší třídu stacionarit zahrnující všechny body, k nimž 
může (slabě) konvergovat Zoutendijkova metoda přípustných směrů, je-li použita 
bez ohledu na podmínku regularity. 
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