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SVAZEK 14 (1969) A P L I K A C E M A T E M A T I K Y ČÍSLO i 

PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR WAVE EQUATION 
IN E3 IN A SPHERICALLY SYMMETRICAL CASE 

OTTO VEJVODA 

(Received December 27, 1967) 

In [ l ] the existence of periodic solutions of a linear and weakly nonlinear wave 
equation in one spacial dimension was studied. The spherically symmetrical case of 
a linear or weakly nonlinear wave equation in three dimensions may be treated 
analogously. Therefore we shall concentrate our attention to those points in which 
the two problems differ. 

§ 1. THE LINEAR CASE. 

As well known, supposing that the right-hand side and the solution depends only 
on r2 = x2 + y2 + z 2 the wave equation in E3 has the form 

2 
(1.1) utt - u„ --ur = f(t,r) . 

r 

We shall study the problem (^ 0 ) given by (1.1) and 

(1.2) |w(f, O)| < + oo , u(t, n) = 0 , 

(1.3) u(t + 2n, r) - u(t, r) = 0 . 

Together with this we shall investigate the problem (Ji^) given by (1.1), (.1.2) and 

(1.4) u(0, r) = cp(r) , ut(0, r) = i//(r) . 

Note, that making use of the substitution u(t, r) = v(t, r)jr the equations (1.1) to 
(1.4) take the form: 

(1.1') vtt - vrr = rf(t, r) ; 

v(t, r)\ 
(1.2') lim 

r-,0 

160 

< + oo , v(t, n) = 0 ; 



(1.3') v(t + 2TT, r) - v(t, r) = 0 ; 

(1.4') v(0, r) = r cp(r) , vr(0, r) = r i/,(r) . 

(Supposing that v(t, r) is continuously differentiable with respect to r in the neigh
bourhood of r = 0 the first condition in (1.2') is equivalent to v(t, 0) = 0.) 

Consulting the results of § 1 in [1] this leads us to formulate the following as
sumptions: 
( J / J ) The function rf(t, r) together with its derivative with respect to r is continuous 

in t and r for 0 g r ^ n, 0 £ t < + oo, 

(1.5) f{t + 2TI, r) - / ( t , r) = 0 and [_r f(u r ) ] P = 0 = [r / ( t , r)] r=7r = 0 . 

(stf2) The functions r <p(r) and r i//(r) are of class C2 or C1, respectively, and it holds 

(1-6) [r <Kr)]r = 0 = [r ?(r)]P"=0 = [r ^(r)] r = 0 = 0 , 

[r <p(r)]r=„ = [r <p(r)%.. = [r ^ ( r ) ] r = I = 0 . 

Let us continue the functions cp, \jj a n d / i n r onto (—00, +co) by the relations 

(1.7) r (p(r) = r cp( — r) = (r + 27i) cp(r + 27i) , 

r \jj(r) = r */•( — r) = (r + 27r) \j/(r + 27i) , 

r / 0 , r) = r / ( r , - r ) = (r + 2n)/(f, r + 2TT) . 

Let us denote the continued functions by the same letters as before. According to 
(1.5), (1.6) it may be easily verified that the continued functions have the same degree 
of smoothness as the original ones. 

Let us introduce the function s(r) by the relation 

(1.8) s(r) = \ r cp(r) + a \j/(a) da + c , 

c being an arbitrary constant. The function s being given the functions cp and i/J are 
uniquely determined as 

(1.9) r cp(r) = s(r) — s( — r) , 

r i//(r) = s'(r) — sf(—r) . 

The functions r <p(r) and r i/r(r) satisfy the assumption (s/2) if a n d only if the 
function s(r) satisfies the assumption: 
(jtf3) The function s(r) is 27i-periodic and of class C2 for — 00 < r < + 00. 

We shall denote S the B-space of functions s(r) satisfying the assumption («fl/3) 
provided with the norm 

||s|| = sup [|s(r)|, |s'(r)|, |s"(r)|] . 
0^r^2n 
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A solution of the problem (0>o) or (Jl0), respectively, will be sought in a B-space 21 
of functions u(t, r) which have first derivatives with respect to t and r continuous for 
0<r — n,0^t< + o o and such that u(t, r), ut(t, r), r ur(t, r), r utr(t, r), r utt(t, r), 
r2urr(t, r) have finite limits for r -> 0 and any t e <0, + oo) which define the values 
of these functions for r = 0. The norm in the space 21 is defined by 

||u|| = max [|u|, \ut\, \rur\, \rutt\, \rutr\, \r2urr\] . 
O^r^Tt 

0 ^ t < +oo 

The following lemma holds: 

Lemma 1.1. Let the problem (Ji0) be given. Let the assumptions (s4\) and (stf2) 
be fulfilled. 

Then the problem (Ji0) has a unique solution in 21. It is given by 

(1.10) u(t, r) = - \s(r + t) - s(-r + t) + 1 f P O/(S, O) dO d s l . 

Proof. It may be easily verified that the function u(t, r) given by (1.10) belongs 
to 21 and satisfies the equations (1.1), (1.2) and (1.4) in the usual way. The uniqueness 
of the solution follows readily from the energetic inequality. Indeed, u1 and u2 being 
two solutions of (Ji0) the function v = ux — u2 satisfies the relation 

0 =- f I O2 vt(9, O) \vtt(», O) - vrr(S, Q)-- vr(S, O)l dS dO = 
J o J o L Q J 

= i ^2[^2(^, ^) + v;(t, O)] dO . 

Whence in virtue of v(0, r) = 0 the assertion follows. 

Now let the problem (£P0) be given with / satisfying the assumption (s$ J). Then the 
condition (1.3) is equivalent to the conditions 

(1.11) u(2n, r) - u(0, r) = 0 , ut(2n, r) - ut(0, r) = 0 , O g r ^ T c . 

Inserting (1.10) into (1.11), differentiating the first of them with respect to r (the 

differentiate equation is equivalent to the primitive one since this is satisfied for 

r = n) and then adding and subtracting the two equation we obtain (according to 

(l-7s)) 

Í: ( r - Э ) / ( ð , r - S ) d Э = 0 , 
(*2n 

(r + 8)f($, r + Э) dЭ = 0 , 
J o 

0 < Г < 7T. 
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Taking again into account (1.73) these two conditions may be joined to a single one 

/»2TT 

(1.12) (r - S)/(S, r - 9) d# = 0 , 0 S r ^ In . 

Thus the following theorem holds. 

Theorem 1.1. Let the problem (&0) be given, let f satisfy the assumption (s^x). 
Then the problem (&0) has a solution if and only if (1.12) holds. If this condition 
is satisfied, then the solution (1.10) of (Ji0),for any s satisfying (stf3) is a solution 
of(0>o),too. 

The necessity of the condition (1.12) may be also found with help of Green's 
formula. It may be easily found that the problem (^*) adjoined to (0>o) reads 

(1.13) wlt- Wrr + 2~(-) = 0; 

or \rj 

(1.14) \w(t, 0)| < + oo , w(t, n) = 0 ; 

(1.15) w(t + 2n, r) - w(t, r) = 0 

and its solution is given by 
(1.16) w(t, r) = r(o(r + t) - o(-r + t)) 

for any a satisfying the assumption (stf3). Then, by the known procedure 

/»2TI /»7t /*27C I*K 

(1.17) 0 = w(t, r)f(t, r) dr dt = (o(r + t) - o(~r + t)) r / ( t , r) dr dt 
J o j o J o J o 

for any a satisfying (s43). 

Performing similar calculations as in [1] we find that (1.17) has (1.12) as a conse
quence. 

§ 2. WEAKLY NONLINEAR CASE. 

Let the problem (0>) be given by 

2 
(2.1) utt — urr ur = sf(t, r, u, ut, ur, e) 

r 

and by (1.2) and (1.3). Analogously let the problem (Ji) be given by (2.1), (1.2) and 
(1.4). 
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Let the following assumption be fulfilled: 

( J^ ) The function J(t,r,u0,ul,u2,s)=f(t,r,u0,ul,u2jr,s) together with its 
derivatives djjdr, djjduh d2Jj(dr dut), d2JI(dUi duj) (i,j = 0, 1, 2) is continuous 
in all its arguments for 0 = t < oo, 0 :g r :g n, — oo < ul < oo, 0 ^ e ^ s0 

(e0 > 0). Besides it is 27i-periodic in t and 

(2.2) f(t, n, 0, 0, u2, s) = 0 . 

Let US continue the function/in r onto (— oo, + oo) by the relations 

(2.3) r f(t, r, u0, ul9 u2, s) = rf(t, -r, u0, ux, -u2, e) = 

= (r + 2n)f(t, r + 27i, u0,ux, u2, s) ) 

According to (2.2) the function (which we shall denote again by / ) continued in 
this way has the same degree of smoothness as before. 

It may be easily verified that every solution u e 31 of (Ji) satisfies the integral 
equation 

(2.4) P(u) (s) (a) (t, r) = ~u(t, r)+ - \s(r + t) - s(-r + t) + 

ft pr + t-a -l 
+ ie\ F(u) (s) (9, Q) dg dS = 0 , 

J OJ r-t + S J 

where s has the same meaning as in § 1 and 

(2.5) F(u) (e) (t, r) = rf(t, r, u(t, r), ut(t, r), ur(t, r), e) . 

On the other hand every solution u e 31 of (2.4) is a solution of (Ji). The existence 
of a solution of (2.4) for 0 S t ^ T(T > 0), 0 ^ r ^ n and e sufficiently small may 
be proved with help of the following lemma. 

Lemma 2.1. Let the equation 

(2.6) P(u) (s) (e) = - u + L(s) + e K(u) (e) = 0 

be given, where P(u) (s) (s) maps the direct product 3t x S ini*O 3X/Or every value 
O/ the numerical parameter efrom (£ = <0, £0>, £0 > 0. 

Let L e [ S - > 31]. Let P(u) (e) be continuous in u and s and have a ©-derivative 
R'Ju) (s) continuous in u and s for any u e 31 and e e (£. Then to every s e 6 there 
exist numbers 6 and e*9 S > 0, 0 < E* = s0 such that the equation (2.6) has a unique 
solution U(s) (s) e 31 for each s e S(s; S) and e e <0, £*>. This solution has a (5-deri-
vative U's(s) (s) continuous in s and e. 

( N o t a t i o n . [ S -> 31] is the space of all linear operators mapping 6 into 31; 
S(s; 5) is the sphere with the center s and the radius S. See the theorem 2.1 in [1] 
where also the proof is indicated.) 
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For the spaces 21 and <3 of Lemma 2A let us choose the spaces 21 and 6 defined 
in § 1 . 

Let 

L(s) (t, r) = -\ s(r + t) - s(-r + t) , 

R(u) (a) (t, r) = J - f ^ F(u(S, O)) (c) (3, g) dO d3 . 

--r J 0 J r-t + 9-

It may be easily verified that under the conditions on <p, i/y a n d / a s stated above all 
assumptions of Lemma 2.1 are fulfilled and the following theorem follows. 

Theorem 2.1. Let the problem (Ji) be given. Let the assumptions (s$2) and (3$x) 
be fulfilled. 

Then a function s e S and a number T > 0 being given, there exist numbers S > 0 
and e*, 0 < £* = e0 such that the problem (Jl)for 0 = e = e* and for all s e S(s; 3) 
has a unique solution u*(e) (t, r) = U(s) (s) (t, r) e 21. The operator U is together 
with its (^-derivative Uf

s(s) (s) continuous in s and e, while 

u*(0) (t, r) - U(s) (0) (t, r) = s(r + t) - s(-r + t) . 

Now let us write down that the solution U(s) (s) (t, r) of (Ji) is a solution of the 
problem (&) i.e. that it satisfies the conditions ( l . l l ) . Inserting u(t, r) = U(s) (s) (t, r), 
into (1.11) making use of the fact that U(s) (e) satisfies the equation (2.4) and 
performing the same arrangements as in § 1 we find that U(s) (s) is a solution of the 
problem (0>) if and only if 

/•2TT 

(2.7) G(s) (e) (r) = (r - 3) F(U(s) (e) (3, r - 3)) (e) ($, r - 3) d3 = 0 , 
Jo 

0 ^ r = In . 

To bring this condition to a more practical form we make use of the following 
lemma. 

Lemma 2.2. Let the equation 

(2.8) G(p)(e) = 0 

be given, where G(p) (s) maps a B-space ty into a B-space QfOr all e e& = <0, £oX 

E0 > 0. Let the following assumptions be fulfilled. 

(i) The equation 

(2.9) G(Po) (0) = 0 

has a solution p0 = p* e 8̂ . 
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(ii) The operator G(p) (s) is continuous in p and s and has a (^-derivative Gp(p) (s) 
continuous in p and e for p e S(p0; S) (3 > 0 being a suitable chosen number 
such that S(p0; 5) cz .̂p) and E e (£. 

(iii) There exists 

II = [ G » ( 0 ) ] - 1 e [ Q - ^ ] . 

Then there exists e* > 0 such that the equation (2.8) has for 0 ^ e — e* a unique 
solution p = p*(e) e ?$, continuous in s such that p*(0) = p*. 

(For the p r o o f cf. [1].) 
In our case p = s and the equation, (2.9) reads 

(2.10) ^ G(so)(0)(r) = 

\r - 3 ) / (8 , r - ,9, s0(r) -s0(~r + 2,9), s'0(r) - s'0(-r + 29), s'0(r) + 

+ s'0(~r + 2£) ,0)d3 = 0 . 

By our above assumptions we have to choose for the space ^3 a subspace S of the 
space S. The choice of the space Q depends upon the form of the function / If 
\df\dut\ + |d//dwr| 4= 0 it is natural to take for Q a subspace S i of the space of 2n-
-periodic functions of class C1 with the usual norm which we shall denote S x . On 
the other hand if / = / ( t , x, u, e) it is more natural to suppose that in (2.7) no loss 
of smoothness occurs and to take for Q a subspace S of S. Further, we find easily 
that in the first case with regard to the continuity of U's(s) (s) in s and s the assumption 
( J^ ) ensures the existence of the derivative G's(s) (s) continuous in s and e. On the 
contrary to guarantee the existence of G's(s) (s) continuous in s and s in the second 
case the assumption o n / m u s t be strengthened as follows: 

( J 2 ) The function J(t, r,u,s) = rf(t, r,u,s) together with its partial derivatives 
dfldr, dj\du, d2J\dr2, d2J\(dudr), d2J\du2, d3J\(dr2du), d3J\(drdu2), d3J\du3 

is continuous in all its arguments for 0 ^ t < co,Q — r = n, — o o < u < + o o 
0 ^ s ^ e0. Besides it is 27i-periodic in t and f(t, n, 0, s) = 0. 

Then the following two theorems may be proved easily. 

Theorem2.2. Let the problem (0>) be given. Let besides the assumption (&t) the 
following assumptions be fulfilled: 

(i) The equation (2.10) has a solution s0 = s^(r) e S . 

(ii) There exists the operator 

H = [GK)(0)]-1 e [ © . - * § ] , 

where S x => G(S) (s). 

Then there exists a number £* > 0 such that the problem (&) has for any 

s e <0, e*> a unique solution U(s*(s)) (e) (t, r) e %l such that s*(0) (r) = s0(r), while 

the function s*(e) (r) e S is continuous in s. 
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Theorem 2.3. Let the problem (0>) be given with f = f(t, r, u, s). Let besides the 

assumption (J^2) the following two conditions be fulfilled: 

(i) The equation (2.10) has a solution s0 = s*(r) e ©. 

(ii) There exists the operator H = [GX5*) ( P ) ] 1 e [ ® - > £-0> where 6 3 G(S) (e). 

Theu there exists £* > 0, such that the problem (0>) has for any e e <0, L*> a uni
que solution u*(e) (t, r) = U(s*(e)) (e) (t, r) e 91 sue/? thut s*(0) (r) = s*(r), while 
the function s*(e) G © is continuous in e. 
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Výtah 

PERIODICKÁ ŘEŠENÍ SLABĚ NELINEÁRNÍ VLNOVÉ ROVNICE V F3 

V KULOVĚ SYMETRICKÉM PŘÍPADĚ 

OTTO VEJVODA 

V článku se vyšetřují podmínky existence 27i-periodického řešení v t úlohy (2,1), 
(1,2) za předpokladu, že funkce f je dostatečně hladká a 27r-periodická v t. 
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