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SVAZEK 14 (1969) APLIKACE MATEMATIKY CIsLo s

ON THE EXISTENCE AND UNIQUENESS OF SOLUTION
AND SOME VARIATIONAL PRINCIPLES IN LINEAR THEORIES
OF ELASTICITY WITH COUPLE-STRESSES

IvaN HLAVACEK, MIROSLAV HLAVACEK

(Received April 22, 1968)

I. COSSERAT CONTINUUM

INTRODUCTION

In the last few years a number of theories appeared taking into account the micro-
structure of materials. One of the simplest and most elaborated is the theory of
Cosserat continuum. In this continuum each mass point has six degrees of freedom:
three components of the displacement vector and three components of the micro-
rotation vector. For this case a number of simple examples of practical importance
was solved, but due to complicated equations to be solved, usually the only way
to succeed was to find the stress functions. More complicated problems, however,
are to be solved approximately. Variational methods rank among very important
approximate methods. The existence, uniqueness and continuous dependence of the
solutions upon the given data, and the estimates of errors of some approximate
variational solutions are discussed in this part of our paper for the case of Cosserat
continuum.

We restrict ourselves only to the static case of bounded bodies, the material being
generally anisotropic and inhomogeneous. We define a certain weak solution of
a boundary-value problem. On the base of inequalities of KORN’s type, following
J. NeCas, I. HLAVACEK in [2] we prove the existence, uniqueness and continuous
dependence of the weak solution upon the given data. The functionals of potential
and complementary energy are defined and the existence of the minima of these
functionals in a certain class of functions is proved. These minima are attained by the
weak solution and the corresponding stresses, respectively. An estimate of errors
of the approximate solution obtained from variational principles is suggested.
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Finally, some analogies of the principles of HU-WAsHIZU and of HELLINGER- REISSNER
are given for Cosserat bodies.

In the second part of our paper we shall deal with some other theories of elasticity
with couple-stresses, namely with Mindlin’s theory of microstructure and with the
first strain -- gradient theory.

1. BOUNDARY-VALUE PROBLEMS FOR ELLIPTIC SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS

In this section some definitions and theorems are presented which are taken from
[2]. The proofs of these theorems can be found in [1] a [2].

Q will denote a bounded region with Lipschitz boundary') in the three-di-
mensional Euclidean space with Cartesian coordinates X = (xy, x,, x3). L,(Q)
denotes the space of real functions square-integrable in Q in the Lebesgue sense.
Wi9(Q) denotes the subspace of L,(Q) of functions whose derivatives up to the
order k in the sense of distributions are in LZ(Q).

Let us introduce the scalar product on Wi(Q) by

(v,u) = Y f D*v D*u dX
la|=k J o
where

ol

D=
ay az a3
0xT 0x% 0x5

m
W denotes the Cartesian product [[ W§9(Q), s = 1,2,..., m where m, x, are
s=1

positive integers. Let a bilinear form A(v, u) be given on W x W in the form

m

Av, u) = Y Y diDWw,Diu dX
Qrs=1 |ijSu
ll=xs

where af;(X) are real bounded and measurable functions on Q. Furthermore, let
2(Q) be the space of real functions with compact support in Q, which are differen-

[e] o m o
tiable any times. Let W$(Q2) denote the closure of 2(Q)in WE(Q), W = [] w§(Q).
s=1

1y We call the boundary I Lipschitz if
a) to each point X € I" such open sphere Sy with the centre X exists, that the intersection
Sy (Y I may be described by means of a Lipschitz function and
b) Sy () I divides Sy into external and internal parts with respect to £.
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Let ¥ be a closed subspace of W such that W < V < W. Let us define functionals

flv) = Y fo,dX . fie Ly(Q), veW,
os=1
g(v) = Y g, dl + | Y Gu.dB, g,eL,(I"), G,eLyB), veW
r,s=1 Bs=1

and if %, < 2, then G, = 0.

Here L,(I'") and L,(B) denote the spaces of real functions square-integrable on
I'" = I''and B < T, respectively. B is a one-dimensional set (e.g. consisting of curves)
of a finite measure. The theorems of embedding imply that the functionals f(v),
g(v) are continuous on W.

Definition 1.1. Let # € W. We say that w € W is a weak solution of the boundary-
value problem if

u—uecV

and for eachve V
(1.1) Av, u) = f(v) + g(v) .

Let the operators N (I = 1, 2, ..., h) mapping W into L,() be given in the form

Np=Y Y ngD%,

s=1 |a|<xy

where n;.,(X) are bounded and measurable on Q.

Definition 1.2. We say that the operators N form a coercive system on W if for
each ve W

v iz = c1|v|§,,, c; >0

h m
(1.2) 1; INw|Z, + ;

holds where ¢, does not depend on v, | |,, and | | denote the usual norms in L,(Q)
and W, respectively.

Theorem 1.1. Let n;y, be constants for |a| = x,. Then the system N is coercive
on W if and only if the rank of the matrix

(1.3) NE= Y mgl,

laf =5

equals m for each & # 0, £ € Cy where C; denotes the complex three-dimensional
space and &, = EVERES
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Let us suppose that for each ve W

h
(1.4) Av,v)Zc; ¥ INp|f,, >0
1=1

and ¢, does not depend on v.
Let us denote

h
P ={veV, Y |Nplf,=0}.
=1
Let V|2 be the factor-space of classes § = {v + p, ve V, p e 2} with the norm
|5|V/9 = inflv + plw .
pe?
Theorem 1.2. Let
(1.5) A(v, u) =[5, @]

define a bilinear form for each ¥, iie W|®?, uc i, ve . Let (1.2), (1.4) hold. Then
the necessary and sufficient condition for the existence of a weak solution to the
boundary-value problem is

(1.6) pe? = f(p) + g(p)=0.

The solution is determined except for an element p € . Furthermore, for the
weak solution ue W the estimate

m 1/2 m 1/2
) e <[l + (5 lan) o+ (5 lokia) -+

m R 1/2
+ (Z G, LZ(B)) ], c; >0
s=1

holds. Further, for each © € W|? there is

(1.8) A3, %) = clblfyye, ca>0,
which we call the inequality of Korn’s type.

Theorem 1.3. Let (1.2), (1.4) and (1.6) hold. Let p(v), i = 1,2, ..., k, be linearly
independent functionals on 2, i.e. if for each p e P
k k
S a;p{p) =0, then Y af =0,
i=1

i=1

o; being real numbers. Furthermore, let
k
pe?, Y. pip)=0 = p=0.
i=1
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Let us define
k
V,={veV, Y pi(v)=0}.
i=1
Then there exists one and only one weak solution u of the problem such that

u—uel,.
There holds

m 1/2 m 1/2
(1-9) I",W S ¢ [lﬁlw + (21 lfsliz(9)> + (Z Igsliz(r,)) +
s= s=1
m 1/2
+ <Zl |Gs|§2(,,,) ] cs>0.
s=

Furthermore, for ve V, an inequality of Korn’s type
(1.10) A(v,v) > colo|yy, ¢ >0

holds.
Let the suppositions of Theorem 1.2 and (1.6) hold. Furthermore, let

(1.11) Alv,u) = A(u,v), vueW.
Define the quadratic functional on ¥V by
(1.12) d(v) = A(v, v) — 2{f(v) + g(v) — A(v, @)}

Let u € W be such that
u—ueV.

Then from (1.12) there follows
(1.13) O(u — ) = Au, u) — 2f(u) — 2g(u) + @,(7)

with
®,(@) = —A(a, ) + 2f (@) + 29(a) .

If 4 € W is a weak solution to the boundary-value problem, then
u—u=weV
and (1.1) can be written in the form
A(v, w) = f(v) + g(v) — A(v,5), veV.
Then (1.12) and (1.11) yield
(1.14) D(v) = A(v,v) — 24(v, w) = A(v — w, v — w) — A(w, w).
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(1.14) and (1.8) imply that @(v) attains its minimum on ¥ if and only if
v=w+p=a—u-+p, pe?.

As @,(ir) does not depend on w, the functional % (u) defined by

(1.15) L(u) = 1 A(u, u) — f(u) — g(u)

attains its minimum on the set

u=u®V
if and only if

u=ua+p, pe?, ic U=u.

In order to avoid the use of the classes @, # we can make use of subspaces V, as
introduced in Theorem 1.3. Let the suppositions of Theorem 1.3 and (1.1 1) hold.

Let us define the quadratic functional on ¥, by (1.12). In the same way as above
and using (1.10), we obtain that the functional

L) = 3A(u, u) — f(u) = g(u)

attains its minimum on the set
if and only if

where @ is the (unique) weak solution in & @ V.

2. THE BASIC EQUATIONS OF COSSERAT CONTINUUM

For the equations of equilibrium and the geometrical equations see for example [5]
or [6], for the constitutive equations of anisotropic bodies see [7].
We write the equations of static equilibrium in the form

(2.1) T+ X =0,
(2.2) my;+ epty + Y =0
and the geometrical equations in the form

(2.3) Vij = Uji — EijPrs
(2.4) Xij = Pji-
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Here the indices i, j, k etc. take the values 1, 2, 3 and summing is assumed over the
couples of the same indices. The comma denotes partial differentiation, as usual.
&;jx stands for the usual alternator, X; and Y; represent the volume density of the body
forces and the body couples, respectively. t;;, m;;, u;, @, in this order, designate
the asymmetrical stress tensor, the couple-stress tensor, the displacement vector
and the vector of micro-rotation, ¢; are independent of u;. y;; and x;; are called the
strain tensor and the curvature-twist tensor, respectively.

The consistitutive equations for the anisotropic inhomogeneous material are
written in the form

(2'5) T = By + Kijeot
(2.6) mi; = Kyijva + M
with

(2.7) Eiju = Exijs Mija = Myij

E; ;s Kijuw Mij, being bounded and measurable functions of X defined on Q =
=0QnTI.
The energy of deformation per unit volume .« is given by the quadratic form

(2-8) 2-9/(?ija %ij) = Eijkt)’ij)’u + 2Kijk1)’ij’fk1 + Mijkl’fij”kt-

We suppose that the form (2.8) is uniformly positive definite, i.e. there exists ¢ > 0
such that for each X € Q

3
(2.9) (i %) = ¢ Dy 1 (i + %)) -
i,j=

The matrix of the system of equations (2.5), (2.6)

(Eijir)s (Kijw)
[ (Kklij)* (Mijkl) |

is symmetric and represents at the same time the matrix of the quadratic form (2.8).
As the determinant of (2.10) by virtue of (2.9) is greater than a certain number
¢ > 0 for each X € Q, (¢’ does not depend on X), there exists the inverse matrix
to (2.10) and it is symmetric, as well. Consequently, we can solve equations (2.5),
(2.6) for y;;, ;; in the form

(2.10)

(2.1]) Vij = Pijti + QijraMy s
(2.12) %ij = OQuijTi + SijeiMu
where

(2'13) Pijkl = Pklij 5 Sijkl = Sklij'

393



Piiis Qijuas Sijur are bounded and measurable functions of X on Q. Using (2.5),
(2.6), (2.11), (2.12), we can rewrite (2.8) as follows:

(2.14) 2 (v, ni5) = 24(tij my) = Piitiitig + 2Q0TiMig + Sijiamijhyg -

Let Iy Tyey Tyny Tpey Tygny T ey Tyguy T'pge = I be either open in I" or empty sets
such that the following mutually disjoint decompositions hold (equalities bzing valid
except for sets of the zero surface measure)

IF'=TuwUlp =T UTpe =Ty Ulyn =Ty Uy .
Let the functions
(2.15a) e W(Q), p,ew(Q), i=123,
(2.15b) Tre Ly(I'yn), TieLy(lye), M'"e Ly(I'yn), MieLyI'y), i=1,2,3

be given and let the following boundary conditions be prescribed:

(2.16a) " =u" on I
(2.16b) it =ul on I,
(2.16¢) P =¢" on I,
(2.16d) p; =¢; on I,
(2.17) T =T on Iy
(2.17b) T, =T/ on Iy
(2.17¢) M" = M" on TI'yn
(2.17d) M{ = M on T@y..

Here n; denotes the unit outward normal to I', the indices n or t denote the normal
or tangential components of a vector into the direction of the outward normal n;
or of the tangential plane to I', respectively, i.e.

= —t _ = — no__ t_
=iy, =0 — upgng . u" = ump, o up = u; — unn;,

no__ t
T = Tjkn_i”k N Ti = Tjillj — Tjkl‘lj"lkni

and similarly for ¢;, m.

Now we deduce the principle of virtual work: Let X;, Y; € L,(Q) and (2.15a),
(2.15b) hold. We say that {u;, ¢;} is a kinematically admissible displacement and
micro-rotational field, if u;, @; e Wi"(Q) meet the kinematic boundary conditions
(2.16a)—(2.16d) in the sense of traces. We say that {t,;, m;;} is a statically admissible
stress field, if t;;, m;; € WS(Q) meet (2.1), (2.2) in the sense of L,(@2) and the boundary
conditions (2.17a)—(2.17d) in the sense of L,(I'). If {t;;. m;;} and {u;, ¢;} are a static-
ally admissible stress field and a kinematically admissible displacement and micro-
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rotational field, respectively, then using (2.1), (2.2) and the divergence theorem,
we obtain

(2.18) J‘[t,-j(uj,i — &) + mye; ] dX = J (Xu; + Yip,)dX +
o Q

f T"“"‘”WLJ Ti'uidf+f A‘/I"<p"dr+f Mipidl +
Lrn I'rt T'an gt

J " dI 4-_[ T'atdr +J M"@"dr +f MiGtdr .
T'un Tut Ton Tt

Equation (2.18) which holds for arbitrary, in general mutually independent statically
and kinematically admissible fields of stress and displacement and micro-rotation,
respectively, expresses the principle of virtual work for Cosseratcontinuum.?)

3. THE EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION
OF THE BOUNDARY-VALUE PROBLEMS FOR COSSERAT CONTINUUM

Now let us make the following choice of the quantities introduced in Section 1:
Let m=6, ¥, =1, s =1,2,...,6. The compaonents of the displacement vector
are denoted by u; or v;, the components of the micro-rotation vector by ¢; or ¥ .
We denote -

i

= 1
{“1-“2> Uz, @y, @2, (Ps} = {“ia Py u,

{Uu Vs, V3, Wy, Yo 11/3} = {Uia l/’.}

so that  or v represents a displacement and micro-rotation field. W is defined as the

v

Il

space of eclements
u=1{u,e), u,p eW(Q)

%) In case that the elastic coefficients Ejjii(X)s K j(X), M, j5(X) are piecewise continuous
with jump discontinuities on a finite number of surfaces (as it is the case for example with layered
bodies), the real ;5 m;j do not belong to W§”(.Q) for all i,j = 1,2, 3. In order to dgrive the
principle of virtual work, we define the statically admissible stress field as follows: Let £ can be

divided into a finite number of subregions Qg so that
Q=UQ, 2NQ2;=0 for i+;.
s
Let E;xp Kijxy Miji be continuous in every Q. Let 7y, m;; € wi(Qg) satisfy equations
(2.1), (2.2) in every Qg in the sense of L,(£2g) and let on all surfaces of discontinuities
(tijni)’ = "(Tij":)” ) (mijni)' = ~~(m,-jn,.)”

hold for the limits from one and the other side of these surfaces. Then using the divergence theorem
for every Q¢ we obtain again (2.18) because the corresponding surface integrals cancel out.
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with the norm
3
(3.1) |uli = _Zl (|uiliawi@ + |odiwm) -

V will be the subspace of W of all elements v € W which meet the homogeneous
boundary conditions (2.16a)—(2.16d), i.e. for

g":g;:-(ﬁ":@!:()

i

(in the sense of traces). The bilinear form A(v, u) on W x W is defined by

(32) Ao, u) = j [Eiia 7i(0) via®) + Kijalvif(®) 2ia(0) + i(0) ()} +

+ M x,-j(v) %k,(u)] dX
where
Vij(”) =V — gijkl//ks %.'j(”) = l//j,i,
Vij(”) =Uj i — &P s ij(u) = @i,

%
ll_—'{u,',(P,'}EWs v'_‘{vbl//i}eW'
Eijui» Kijus M i jy, are bounded measurable functions in @ which meet (2.7). Obviously
A(u,v) = A(v, u), A(u, u) =2 J‘ A (y;j(u), 3 (u)) dX .

Q
Let us define the functionals

(33) (o) = f (Xws + Ya)dX . ve W, X YieLo(Q).

(3.4) g(v) = J’rTnT"v"dl’ " [

J It

Twidr + J

'pn

A_d”v"dr+'[ Mwidlr, ve W
It

where all the quantities in (3.4) are defined in (2.15), (2.16a)—(2.17d).
Now let us define the weak solution in the sense of Definition 1.1.

Definition 3.1. We say thatu € Wis a weak solution of the boundary-value problem
if
u—iaeV where u={i,q]

and if

(35) [ [Eiia 7if(0) va(#) + Kijua{yij(w) ia(0) + 7i(0) ai(w)} +
+ Mg #i(0) ()] dX = f (X + Yp,)dX +
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+J T dr +.[ Tt dr +j M dr +f Mt dr
I'rn I'rt I'mn I'nmt

holds for each v = {v;, Y;} € V.

Note the connection between this definition of the weak solution, the principle
of virtual work and the principle of virtual displacement and micro-rotation. Let =
be a kinematically admissible displacement and micro-rotation field such that,
using (2.3)—(2.6), we obtain a statically admissible stress field {r;;(u),m;(u)}.
Applying the principle of virtual work to these {t;;(u), m;;(u)} and first to the field u
and second to a kinematically admissible displacement and micro-rotation field
u + v, ve Vand then subtracting, we derive just (3.5),i.e. u is the weak solution in the
sense of Definition 3.1. On the contrary, if u is a weak solution then tij(u), m,-j(u) €
€ L,(Q), but they need not belong to W4"(Q). That is why we call this solution weak.
The definition of the weak solution expresses the principle of virtual displace-
ment and microrotation, interpreting v as the variations éu and u + v, ve V
as “virtual” (i.e. kinematically admissible) displacement and microrotation fields.

Now it remains to make a choice of operators N,v. We choose

(3.6) Ny =y,,(v), Ny =y,(), Nyv =y;)),
Ny =3;,(v), Nsv =3x,(v), Ngv = x;3(v),
Nav = 7,,(v), Ngv =7y,5(v), Nov = y,3(v),
Niov = 3,,(v), Nyv = 535(0), Nypv = x,5(v),
N0 = }’31(") , Nyv= )’32(”)’ Nysv = Vss(”) s

Nigv = %31(”) , Nyv= %32(”) , Nigv= %33(”)~

Il

Il

Then
3 18
j 'Z] [viv) + x,zj(v)] dX = 121 |N,v|,212
0 L= =

and (2.9), (3.2) imply (1.4). It follows from Theorem 1.1 that the system of operators
(3.6) is coercive on W, because the matrix (1.3) is composed of three diagonal matrices
&.E, E being the unit matrix, so that the rank of (1.3) is 6 for each vector & € C,
E+0.

According to the definition of 2, for each v € 2 there holds

(3.7) 7ii(v) = %i(v) = 0

almost everywhere in Q.

Hence (3.2) defines a bilinear form [#, u] on W2 x W/, all the suppositions
of Theorem 1.2 are satisfied and (1.6) is the necessary and sufficient condition for
the existence of the weak solution as defined in Definition 3.1. Similarly to the case
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of the classical elasticity (cf. Lemma IL.1 in [2]), we can prove that

(3.8) P ={veV, v = ay+ euubXp Vi = b},

a, = const., b, = const.
The elements of # are displacements and micro-rotations of the rigid body, which
satisfy the homogeneous kinematic boundary conditions (2.16a)—(2.16d).
; Let us investigate some important cases of boundary-value problems.

Theorem3 1. Let 2 = {0}. There exists one and only one weak solution ue W
and the estimate

) 3
lulw < ¢ [(.;1 (@i, + [@fh.o@)!? + (Z {Xilto) + [Yiia@)"? +

3
+ (T2 + _21 |THE e + ML + _21 M2 ) *]
i= i=

holds for it.

The proof follows immediately from Theorem 1.2, from the coerciveness of oper-
ators (3.6) and the validity of (1.4). The following theorem gives some sufficient
conditions for 2 = {0}.

Theorem 3.2. Let one of the following conditions (a)—(f) be satisfied:

(@) Iyn Iy is a non-empty set open in I';

(b) I'y» contains such an open part of a smooth surface F, which is neither
surface of rotation nor cylindrical nor helical®) and also any open part of F,
is neither rotational nor cylindrical nor helical;

(¢) I'yn is a non-empty set open in I satisfying any condition from Theorems
I1.5—I1.10 in [2] that is sufficient for the implication (31) in [2];

(d) I'yn is a non-empty set open in I' and not consisting only of cylindrical
surfaces parallel with one straight line and moreover, I' , N I ;. is a non-empty
set open in I';

(¢) Iy is empty and T, contains

(1) an open part of a surface of rotation with the axis x5 (excluding planes,
cylinders and spheres) or

(2) an open part of a circular cylinder parallel to the xz-axis and an open
part of a plane normal to the x;-axis or an open part of a sphere with the centre
on the xj-axis, or

3) Here the surfaces of rotation are meant in the general sense including planes (orthogonal
to the axis of rotation), circular cylinders and spheres; the cylindrical surfaces include planes.
The helical surfaces are those that can be described in cylindrical coordinates (g, ¢, Xx3) by x3 =

= gcos ¢, x, = @sin ¢, x3 = f(@) + hp where h 4 0 is a constant, f(e) is a continuously
differentiable function for 0 < ¢ < 0.

398



(3) two open parts of spheres with different centres on the xj-axis or

(4) an open part of a sphere with the centre on the xs-axis and an open part
of a plane normal to the x;-axis or

(5) an open part of a helical surface with the axis in x;.
Furthermore, ' ’

(oc) I, is empty and I, contains an open part of a surface which is not cylin-
drical parallel to the x3-axis or
(B) T',n is empty and T, does not consist only of parts of planes normal to
the x5-axis;
(f) I'ye is empty, T',. contains an open part of a sphere with the centre in
the origin. Furthermore, either
(«) T',e is empty, I, does not consist only of parts of cylindrical surfaces pa-
rallel with one straight line or
(/}) I nisempty, I ,c does not consist of parts of mutually parallel planesonly.
Then 2 = {0}.

The proof of sufficiency of conditions (a), (b), (c) can be found in [2]. It remains
to prove the sufficiency of (d), (e), (f). Let condition (d) hold. Then according to (3.8)
Ve =b,=0(k=1,23)on I'pn T, vyn, =0 on I',, yields an, =0 on Iy
As n,(X) are not complanar for each X € I';., we obtain a, = 0 (k = 1,2, 3). Let
condition (e) hold. Then according to (3.8) and [2] (see Lemmas I1L.7, I.9, Theorems
11.8, 11.9) there holds either

vy = —bsx;, vy =bsxy, v3=0, Yy =y, =0, Y3 =b;
(for cases (1)—(4))
or
vy = —byx;, vy, =b3xy, v3=Dbsh, Y=y, =0, Y,
(for case (5)) .

bs

If () holds then bsns = 0 on I',. and consequently by = 0, as there exists a part
of I',» with ny = 0. If () holds then

03 = ba(l - "3)20

and there exists a part of I',. with n; + 1 which implies b; = 0. Let condition (f)
hold. Then Theorem IL.9 in [2] yields

v; = epbixi, Y =b;.

Let us suppose b + 0. We put the x;-axis parallel to the vector b and repeat the
proof of the case (e). This completes the proof of the theorem.
Now let us investigate the inverse case, namely when tractions are given all over I,
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Fun=Fug=F¢n=F¢:=0,
r=FTn=th=rMn=FMt

(the second row being valid except for sets of surface measure zero).

In this case ¥ = W and 2 is given precisely by (3.8), a,, b, being arbitrary con-
stants. Then the necessary and sufficient condition (1.6) for the existence of a weak
solution takes the form of the following system

(3.9) indX+jﬁdF=0, i=1,23,
r

Q2

J@Mﬂ;+KNX+j@mﬁﬂ+Kmdf=m
2 r
which expresses the total equilibrium for external forces and couples.
To get the unique solution, we use functionals p; introduced in Theorem 1.3.
We show here some possible sets of p(v), v = {v;, ¥;}:

pv) = v;dX, i=123,
Q‘
(3.10) -
pi(v) = | eg-spmixdX ., j=4,506;
J o
.
piv) = | v;dM, i=1,23,
JIm
(3.11) ;
pi(®) = | e dM, j=4,56;
J M
P
pv) = | vidM, i=123,
J M
(3.12) .
pi(v) = | ¥;-3dM, j=4,506,
JM

where
M=Q* or I*.

Here Q* < Qs an arbitrary set of positive volume measure, I'* < Q is a non-empty
sum of a finite number of Lipschitz surfaces.*) In particular, Q* = Q, I'* = I' may
be chosen.

4 Lipschitz surface is described in a Cartesian coordinate system by
&3 = x4, &), (€4, ¢&) E;

where yx is a Lipschitz function on g and § is a closed region.
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Theorem 3.2. Let (except for sets of surface measure zero)
F=FT,‘=FT,=FM..=FM:
and let (3.9) hold. Define the subspace V, = W as the set
V,={veW,p()=0,1=12,..,6},

where p(v) are chosen as in (3.10) or (3.11) or (3.12). Then there exists one and
only one weak solution u, € V, and the inequality

3 3
I"p'W < C[(";1 {[Xiliz(ﬂ) + YL} + (gl{l;filiz(n + |Mi'iz(r)})l/2] , ¢>0

holds for it.

To prove this theorem it is sufficient to verify that the functionals (3.10)—(3.12)
have the properties required in Theorem 1.3. The properties of functionals (3.10),
(3.11) were proved in [2], Section 2. Here we restrict ourselves to the choice (3.12).
pip)=0, pe?, j=4,56 yields Y, = b, =0, k = 1,2,3. Further, p(p) =0,
pe?, i=1,23 yields v, =a, =0, k =1,2,3 and therefore p = 0. p/v) are
linear and continuous on W due to the continuity of the embedding of W{Q)
into L,(M). It remains to prove the linear independence of p,(v) on 2. Let

6 3 6

(.13) 0= a;pp) = | [ X adai + eiubxi) + X a;b;s]dM .
j=1 M i=1 j=4

We could easily verify that the form of the functionals p,(v) and of the elements

p€P is invariant under the orthogonal transformation of Cartesian coordinates

(see [2]). Let us translate the origin of coordinates into the centroid of M. Then

choosing a; = a;, i = 1,2,3, b;_3 = a;, j = 4,5, 6, by virtue of (3.13)

a? =0

Mo

i=1

and the proof is complete.

Finally let us consider briefly the boundary-value problems with 1 < py <5
where py denotes the number of indeterminate coefficients in the elements p € 2
(i.e. the number of ““degrees of freedom of the rigid body”’). A group of such problems
is discussed in [2], Theorem II.13 in dependence on the shape of I',e N I',.. The
corresponding conditions of equilibrium may be derived again by substituting p € 2
into (1.6). These conditions are necessary and sufficient for the existence of a class
of solutions. As in the preceding case we can choose a subspace ¥, with the unique
solution by means of appropriate functionals p,(v), e.g. according to (37)—(39),
Lemma II.11 and Theorem II.14 of [2], or using also functionals for ¥ similarly
to (3.12).
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4. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY AND
THE PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY

Let A(v, u), f(v) and g(v) be defined by (3.2)—(3.4), i € W and 'V defined in Sec-
tion 3. 3A(u, u) represents the elastic energy, f(u) + g(u) the work of the external
forces and couples. As A(v, u) is symmetrical and the suppositions of Theorem 1.2
and (1.6) hold, hence following the procedure in Section 1 we can define #(u) as in
(1.15) and establish the principle of minimum potential energy:

The quadratic functional of total potential energy E(u) defined foru = {u;, ¢;} €
e Wby

(4.1) Z(u) = J‘Q[%Eijkt Vi) Viaw) + K vij(u) wia(u) +

+ M iy i (u) 2 (w)] X — J (Xu; + Yip;) dX —
o

—f T'w"dr —j Téuidf—j M‘"fp"dr—j Mip;dl'
Iru Irt Tan It

where

Yij(") = Uji — &P s %.’j(") = Qji>

attains the minimum on the set

if and only if
=8 +p

where i is a weak solution and p € P is defined in (3.8).

Following the end of Section 1, we can formulate the principle of minimum
potential energy using subspaces V), as defined in Section 3:

The quadratic functional (4.1) attains the minimum on the set
| iQV,
if and only if |
u =1

where i is the weak solution being unique in V.
Using the method of orthogonal projections in Hilbert space, we deduce the
principle of minimum complementary energy.
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Let 7 be a Banach space of stress fields T
T = {t;, my;}, 7, myeL,(Q)

with the norm

3
(4.2) 7|5 = ; (il ae + [miliae) -

i 1

Let us introduce for T’, T" €  a bilinear form
(443) (T', T”) = f [Pijkt‘f'ijTZt + Qijkl(r;‘jm;c’l + T,iljmllcl) + Siumimy] dX .
(2]

We show that (4.3) defines a scalar product in 7. By virtue of (2.13), (4.3) is sym-
metrical. #(y;;, %;;) being positive definite (see (2.9)), with help of (2.14) we have

_ 3
(4.4) (. T) = 2j (i, my;)dX = cj Z (yfj + x?j)dX, c>0.
2

0 bhi=1

Using (2.5), (2.6) and the boundedness of E;j;, K, My, We easily prove that

3 3
(4.5) P (i + mi) < ¢y D) (5 + %), ¢ >0.

i,j=1 i,j=1

Joining (4.4) and (4.5) together and using (4.2), we get
(1, 7) > Z|1f%.
€1

We could easily verify also the inverse inequality
(I,T) < e5|T|5. ¢, >0.

Let us write

(46) (1) =],

Thus we have created a Hilbert space of stress fields T with the scalar product (4.3)
and the associated norm (4.6). The norms (4.2) and (4.6) are equivalent.

Denote by #, < # the subset of all Te # to which u = {u;, ¢;} € V exists
such that using (2.3), (2.4), equations (2.5), (2.6) hold. (ie. T = T(u)). Second,
denote by #, = # the subset of T e # such that for each v = {v;, ¥;} € V

J [tij(v;.i — eiji) + mi; ;] dX =0
Q
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holds. Let T' e #,, T" € A ,. (4.3) yields
(T, 1") = f (tipi; + mipmi;) dX
2
and there exists #' = {u}, ¢;} € V such that

ro__ ’ r__ ’
Yij = Ui — €ixPrs> Hij = Pj ;-

As T" € #,, we have
(T, 1) = f [eiu).c — ecpl) + miyg, ] dX =0,
Q

therefore #, and #, are orthogonal.

Let Te # be an arbitrary stress field satisfying the equations of equilibrium
(2.1), (2.2) and the statical boundary conditions on I ,, I'.,, T, .., T, in the weak
sense, i.e. let (cf. (2.18) or (3.5))

(4.7) f eV — eintid) + mip; ] dX = J‘ (X + Y¥,)dX +
Q 0

+J T"v"dr +I Tiwidl + j M™"dr +J My dr
I'rn r Tyn Fae

T

hold for each v = {v;, Y;} € V. Denote T = {1,;, m;;} = T(i), i.e. T corresponds
to the weak solution #, by means of (2.3)—(2.6). From (3.7) there follows

T +p)=T(@), pe?.

If we write

R
Il
=
+
g

we have
T=7T@)+ T(w) and T(w)e.r,.

By virtue of (3.5) 7' meets (4.7) nad consequently T — F'e #,. Because of the
orthogonality of #, and #, we have

(4.8) |T — T(@)|% = |(T - ) + T(w)|% = |T — 7|3 + |T(w)|% -

It is obvious that |T — T(#)|% attains its minimum on the set of 7 e # which satisfy
(4.7), if and only if T = 7. The same holds for the functional

H(T) = H|T - T(@)|5 — |T@)|5%} = LT, 1) — (T, T()).
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Hence we can formulate the principle of minimum complementary energy:
The quadratic functional

(4'9) ﬁ(T) = I [%Pijkﬂijfkt + Qi + %Sijklmijmkt] dXx -
o

- f [y, — ep@i) + mi@;,] dX
Q

attains the minimum on the set of T € J which satisfy the equations of equilibrium
(2.1), (2.2) and the statical boundary conditions in the sense of (4.7), if and only if

|T - 7], =0

where T = T(&), & being the weak solution.

If moreover the weak solution # is such that T(i) meets the equations of equi-
librium (2.1), (2.2) in the sense of L,(®)®) and the boundary conditions (2.17a) to
(2.17d) in the sense of traces and therefore T(i#) is a statically admissible stress field,
then we can take for T the statically admissible stress fields and apply the principle
of virtual work (2.18) to the fields T and a:

J‘ [le(u_] i ljk(pk) + mlj(pj 1] dX j (Xiai + Yi(ﬁi) dX +

+J T"E"dF+J T‘u‘dI“+J MG dl"+j MGt dr +
I'yn

+f Tra"dr +j Tt dr +f M"@" dr +J M@t dr .
I'rn I'rt I'an

If we omit the integrals not depending on 7, we can formulate the principle
of minimum complementary energy in the common form: The quadratic
functional (complementary energy)

(4'10) .?(T) = J [%Pijkﬂ'iﬂkl + QijnTijmi + %Sijktmijmkz] dXx —
I

—J T"a"dr-J dl’—f MG dr J Migtd
Tyn

attains the minimum on the set of statically admissible stress fields T e F, if and
only i - Tl,=0.
Remark. If T is a statically admissible stress field, then T meets (4.7), because

each ve V is kinematically admissible displacement and micro-rotation field for
ii; = ¢; = 0 and (4.7) follows from the principle of virtual work (2.18).

5 Possibly in the sense of L,(2g5) — see the footnotez).
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5. SOME NON-CLASSICAL VARIATIONAL PRINCIPLES Coe

In this section we shall establish variational principles for Cosserat continuum
which correspond to the principles of Hu-Washizu and of Reissner-Hellinger in
classical elasticity.

We use the same approach, based on Lagrange multipliers method, as in [3] for
elastic bodies. For the sake of simplicity let us consider only the particular case when

F,,=I",,..=F,,,=F¢..=F¢e, rTern:th‘__Fanth
and ii;, ;€ Wi'(Q), T, M; € Ly(I'y). Then the boundary conditions are

(51) ﬁi=u’a (ﬁiz(pi on Fu

(5-2) T, =1n;, M,=m;n; on Ig.

Let us add conditions (2.3), (2.4), (5.1) to the functional (4.1) by means of coefficients
Aij» lij» & ;- The new functional has the form

](“i’ Pi> Vij> %ij» Aijv Hijs & ’1i) = J‘ [d(yij» ”ij) — Xu; — Yi(pi] dX +
Q
+ J~ i =vij + uji — €iuei) + i =i +9;,)]d X —
Q

_ f (Tas + M) I + f [&u; — ) + o, — @)]dT

Iy

where (y;;, ;;) is defined in (2.8) and all variable functions are mutually inde-
pendent. From the necessary conditions for 6.4 = 0, it is obvious that 4;;, u;; have
the sense of t;;, m;;, respectively and

&= _Ajinj’ Ny = —pgn; on I'.

We can establish a variational principle which is a counterpart of Hu-Washizu
principle in classical elasticity, as follows:
The condition

0 (Ui, @iy vijy %ij, Tijy myj) = 0
where

(5-3) j(”i’ Pis Vijs Xij» Tij’mij) = J [‘Q/Z(Yij, %ij) + Tij(_'yij +u; = Eijk‘Pk) +
Q
+ mifp;; — %) — (Xu; + Yip)]dX —

—J (Tw; + M) dI +J [0:(i; — uy) + mi@; — @;)] n.dl’
re I.
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yields the following Euler’s conditions in Q and natural boundary conditions re-
spectively: the equations of equilibrium (2.1), (2.2), the geometrical equations (2.3),
(2.4), the constitutive equations (2.5), (2.6); the boundary conditions (5.1) on I, and
the boundary conditions (5.2) on I'y.

Similarly we can derive another variational principle (a counterpart of Reis-
sner-Hellinger principle) when adding conditions (2.1), (2.2) and (5.2) to the
functional V(T) of complementary energy (4.10). The principle reads like this:

The condition

59?(17.‘,', m;j, U, (Pi) =0,

(5'4) 9?(1,-1-, myj, uj, ‘/’i) = f [‘;(TU’ mij) - (Tij)’ij + mij‘Pj,i) +
2
+ (Xu; + Yi0)]dX +

+ J [(“j — @)ty + ((/’j - (ﬁj) mij] n;dl’ + J (T, + Miq’i) dr
Iy I'r

where o/(t;;, m;;) and y;; are defined by (2.14) and (2.3), respectively, yields the
following Euler’s conditions in @ and natural boundary conditions: the equations
of equilibrium (2.1), (2.2) and the equations

Uj i — &Py = Pijkl'sz + Qijklmkl ,

@i = kaij'fkl =+ Sijklmkl in Q,

the boundary conditions (5.1) on I', and the boundary conditions (5.2) on I';.

We could also deduce the latter principle (5.4) from the former (5.3) when sup-
posing that the constitutive equations (2.5), (2.6) are satisfied a priori.

From these two principles we could deduce a group of variational theorems (as it
was done for the classical elasticity in [3]) when choosing various Euler’s conditions
as additional conditions. In this way we could have also deduced the principle
of minimum potential energy and that of the minimum complementary energy.

6. ESTIMATES OF ERRORS OF THE APPROXIMATE SOLUTIONS
OBTAINED FROM THE PRINCIPLES OF MINIMUM POTENTIAL AND
MINIMUM COMPLEMENTARY ENERGY

Let
"w=u+"w

where "u = {"u,, "(p,-} is an approximate solution obtained on the base of the principle
of minimum potential energy, i.e. the n-th term of a sequence minimizing the func-
tional #(u) in (4.1). Let "T = {"1;;, ™m,;} be an approximate solution obtained
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on the base of the principle of minimum complementary energy, i.e. the m-th term
of a sequence minimizing the functional #(T) in (4.9) or &(T) in (4.10), respectively.
™T meets (4.7) or it is a statically admissible stress field, respectively. (1.14) yields

(6.1) A('u — &t,"u — &) = O("w) + A(w, w)

where & = & + wis the weak solution. From (2.5), (2.6) or (2.11), (2.12), respectively,
(3-2), (4.3) and (4.8) we obtain

(62) Am,w) = [T < T — 1@
(1.13) and (1.15) yield
(6.3) O("w) = 2% ("u) + ().

The definition of #(T) implies
(64) T - 1@ = 29(7) + |T@)3 -
Combining (6.1)—(6.4) we obtain the estimate

A('u — it,"u — 4) < 2[2("u) + F("T) + (@) + g()]

where f, g are defined by (3.3), (3.4).
If moreover ™T is a statically admissible stress field, then there holds (see the
relation between (4.9) and (4.10))

A('u — it,"u — i) < 2[L("u) + £("T)] .
Next let us estimate |"T — 7/,,. From (4.8), (1.8), (6.1), (6.2) we obtain
T - 23 = "T - @5 - [T < 0(w) + |"T - T@)3
and again
I"T = Tl% < 2[2("w) + ("T) + f(@) + 9(@)] -
If ™T is an admissible stress field, there is

I"T — 7|5 < 2[£("u) + £("T)] .

7. ISOTROPIC MATERIAL

For the case of the isotropic material, the form (2.8) is invariant with respect to all
orthogonal transformations of coordinates. Then E;j;;, M, and Kjji are isotropic
tensors and furthermore,

(7.1) Kia =0
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because x;; is an axial tensor as the gradient of micro-rotations. We can write
(7-2) Eijy= E 040+ E30; 03 + E30;;6u,
My =M 040, + My 36y + Mjd;; 6y
where E;, M, are constants for homogeneous bodies. As the matrix (2.10) is positive
definite, all the principal minors of the matrix (2.10) are positive. This fact combined
with (7.1), (7.2) yields inequalities
(7.3) E,+E, >0, M+ M,>0
E,—-E, >0, M, -M,>0
E,+E,+3E;>0, M+ M, +3M;>0.

(7.3) are the necessary and sufficient conditions for the form (2.8) to be positive
definite in the isotropic case.

Instead of M, E; other constants may be introduced, which are commonly used
in the literature (for example see [5]):
(7.4) A=2Ey;, k=2E —E,)), 2u+k=2E, +E,)),

a=2M5, B =2M,, y =2M, .
Here A, u represent the Lamé’s constants of classical elasticity. Then the quadratic
form (2.8) may be rewritten as follows
(7.5) .szf(y,-j, %ij) = &2(8,-_,', i 90,') = %[}»Skksu + (2# + k) sklakl] +
+ k(”k - ‘Pk) ("k - ‘Pk) + %[Ofﬁl’k,k@z,z + PPy ik + V‘Pk,z(”k,t]

where
(7.6) e = 3y + uin) s e = Yorumln -

According to (7.3), (7.4), the necessary and sufficient conditions for the form (7.5)
to be positive definite with respect to y;;, x;; are the following inequalities
(7.7) 3+ 2u+ k>0, k>0, 2u+ k>0,

7+ >0, y—pf>0, 3a+B+y>0.

Using (2.3), (2.4), (7.6) we write the constitutive equations of an isotropic conti-

nuum in the form

5 = 2eudi; + (2u + k) ey + kegp(re — o) 5

i

m;; = apudi; + Poi; + 795,

If 2, u, k, o, B, y are e.g. piecewise constant functions satisfying the inequalities
(7.7) in @, then all the results of the preceding sections hold again.
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Vytah

EXISTENCE A JEDNOZNACNOST RESENI A NEKTERE VARIACNI
PRINCIPY V LINEARNICH TEORIICH PRUZNOSTI
S MOMENTOVYMI NAPETIMI

IvaN HLAVACEK, MIROSLAV HLAVACEK

Cést 1: COSSERATOVO KONTINUUM

V prvni ¢dsti prdce se definuje zobecnéné feSeni okrajovych uloh pro Cosseratovo
prostiedi. Jsou dokdzdny existence, jednozna¢nost a spojitd zdvislost slabého feseni
na danych zatiZenich pro staticky pfipad omezenych, anisotropnich, nehomogennich
téles. Formuluji se princip minima potencidlni energie a minima dopliitkové energie
a jiné zobecnéné variacni principy.
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