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SVAZEK 15 (1970) APLIKACE MATEMATIKY ČÍSLO 2 

ONE GENERALIZATION OF THE DYNAMIC 
PROGRAMMING PROBLEM 

MILAN VLACH and KAREL ZIMMERMANN 

(Received July 26, 1968) 

PART I. 

1. INTRODUCTION 

The main purpose of this article is to provide an exact theory of the dynamic 
programming on a sufficiently general basis. One attempt to carry out this task was 
made in [ l ] . However, in the theory of [1] there are some inaccuracies in introducing 
the topology on the set of transformations and in some proofs. We hope that the 
theory described in this article will be a contribution to the various attempts to give 
a dynamic programming theory which is both sufficiently general and exact. 

2. SOME INTRODUCTORY CONCEPTS 

Let M be a compact topological Hausdorff 's space (further the abbreviation H-space 
will be used), let TM be the set of all continuous transformations of the space M into 
itself and let <P be the trasformation of the Cartesian product M (x) TM into the space 
M which is defined by 

<p(x, y) = y(x) for all XEM , y e fM . 

Here y(x) means the point from the space M which represents the result of applying 
the transformation y to the point x. 

3. INTRODUCING THE TOPOLOGY ON THE SET TM 

Let us denote by TM the set of topologies, which can be introduced on TM and 
which have the following two properties: If 3T e TM and 9" is introduced on TM, 
then 
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(1) fM is a topological H-space; 

(2) $ is a continuous transformation of the topological product M ® TM into the 
space M (the definition of the topological product see [2]). 

N o t e 1. The dynamic programming theory described below needs introducing 
on TM some topology from the set TM. The problem of introducing on TM some 
topology from the set TM is solved in [5]. In [5] a set of topologies VM is found such 
that VM c TM. The set VM is defined in such a way that its definition provides one 
rather general prodedure of introducing on TM topologies from TM. Moreover the 
set VM contains most of usually used topologies (for example the metric space topo
logy, discrete topology). 

4. FORMULATION OF THE DYNAMIC PROGRAMMING PROBLEM 

Further we shall assume that on TM some topology from TM is introduced. 

Let TM be a compact subspace of the space fM. A pair SP = {M; TM} is called, 
the automaton 0* with the set of states M and the set of transformations TM. Let 
us note that the topology on TM is the topology induced on TM by the topology on TM 

and thus TM with regard to this topology is an H-space. 

Let 9Jl = M ® TM ® ... ® TM ® ... (The set of factors TM in this product is 
a countable set.) Let on 501 Tichonoff's topology be introduced (the definition of 
Tichonoff's topology see [2], [5]). Then 9JJ with regard to this topology is a compact 
topological H-space (see [2], [5]). 

Two following assertions may be proved (see [5]). 

Assertion 1. Let £ be a topological H-space. Let N a E, let N be a ccmpact set 
letf(x), g(x) be continuous functions defined on N. Then 

max 
xєN 

\f(x) - g(x)\ ^ |maxf(x) - maxg(x) | J ) 
xeN xeN 

Assertion 2. Let Mx be a topological H-space, let M 2 be a compact topological 

H-space, let M be the topological product of the spaces M1 and M 2 , let W(x, y) be 

a function defined and continuous on M and let 

f(x) = max W(x, y) . 
yeM2 

Then the function f(x) is continuous on M x . 

x) Note that the continuous function on a compact set assumes on this set its supremum 
(see [3]). 
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Let X = (x0, y0, yx, . . . , yn, ...) be an arbitrary point from 9ft. Then x0 eM, 
yt e TM, i = 0, 1, . . . We define the transformations P and N by the following two 
relations: 

PX = (y0(x0),yl9...9yn9...)9 

NX = x0 . 

Then Pisa transformation of the space ffl into itself and N is a transformation of the 
space Wl into the space M. 

Lemma 1. The transformation P is continuous on ffll with regard to Tichonoff's 
topology introduced on 9M. 

Proof. Let X = (x0, y0, yl9 ...) be an arbitrary fixed point in $01. Then PX = 
= (yo(*o)> yi> y2» •••)• We need to prove the continuity of transformation P at the 
point X, i.e. that for an arbitrary neighbourhood U of the point PX there exists 
such a neighbourhood U of the point X that the following implication holds: X e U => 
=> PX G U. Let us introduce the following notation: 

PX = (zl9 z2, z3, z4, ...) so that z1 = y0(x0) e M , 

f. = y._x G TM for all i ^ q. Let the neighbourhood U be generated (in the sense 
of Tichonoff 's topology, see [2], [5]) by the neighbourhoods Ut (i = 1, ..., k) of the 
points zn.(i = 1, ..., k). We can assume that Ut are opened. To this neighbourhood U 
we shall now construct the corresponding neighbourhood U of the point X. We 
introduce the notation X = (z1? z2, z 3 , . . . , zn,...). Let us note that z1 = x0eM, 
z2 = y0e TM, Zi = z l _ 1 = yt_2 e TM for all i > 2. At first we suppose that nt 4= 1 
for i = 1 , . . . , k. Then the neighbourhood U can be constructed as a neighbourhood 
which is generated (in Tichonoff's sense) by the neighbourhoods Ut (i = 1, . . . , k) 
of the points z„. + 1 = zn. (i = 1, ..., k). Let now nio = 1 where 1 — i0 ^ k. Without 
any loss of generality we can assume that i0 = 1. So we have the following situation: 
there is given a neighbourhood U1 of the point ^0(x0) and we must construct such 
neighbourhoods Ot of the point x0 e M and 02 of the point y0 e TM that the fol
lowing implication holds: 

x0£Ol9 y0e 02=> y0(x0) e U1 . 

On TM (and thus also on TM) a topology from TM is introduced and therefore the 
transformation <P is continuous on M ® TM. Thus for the neighbourhood U1 of 
the point y0(x0) = $(x0 , y0) there exists such a neighbourhood 012 of the point 
(x0> yo) which is generated (in Tichonoff's sense) by the neighbourhoods Ox of x0 

and 02 of J!0 that the following implication holds: (x, y) e 012 => <?(x, y) = j(x) G U.. 
The neighbourhood U will be now in this case generated by the neighbourhoods 
Ol9 02, and Ut (i = 2 ,3 , ..., k) of the points zni+1 (* = 2 ,3 , ..., k). 
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In the both cases described above the neighbourhood U is constructed in such 
a way that if X e U, then PX e U. This completes, the proof of continuity of the 
transformation P on SR. 

Let x be an arbitrary point of M . We define the set 9W(v) as follows: 

m(x) = {x; x e an, NX = x}. 

Lemma 2. 9R(x) is a topological subspace ofWl with Tichonoffs topology induced 
on yR(x) by the topology of SOL 9R(x) is with regard to this topology a compact 
topological H-space. 

Proof. Let us denote by {x} the set containing only the element x e M. Then 

$0l(*> = {x} ® TM ® TM ® .. . ® TM ... 

(The set of factors TM in this product is countable.) Thus 90l(x) is a subspace of SOI 
with Tichonoff's topology induced on SW(x) by Tichonoff's topology on 9JI. {x} is 
a compact topological H-space and the same holds for the space TM. Thus SM(x) is 
also a compact topological H-space (see [2], [5]). 

Lemma 3. Let W(X) be a real function defined and continuous on SOL Let us 
define on M a real function f(x) by: 

f(x) = max W(X) for all x e M . 
XeVlK*) 

Then f(x) is continuous on M (with regard to the topology introduced on M). 

Proof. LetK = (x0, y0, yl9 ..... yn, ...) be an arbitrary point of SDL The function 
W(X) can also be regarded as a function of two variables which is defined on the 
topological product of two compact topological H-spaces, namely of the space M 
and of the space 9t = TM ® TM ® .. . ® TM ® .. . We denote this function of two 
variables by the symbol W(x, Y) so that W(X) = W(x0, Y0) where x0e M,Y0e$l and 
further 

f(x) = max W(X) = max ^(x, Y) for all xeM . 
XeSffl Ye% 

Thus according to Assertion 2 the functionf(x) is continuous on M. 

We shall further assume that a real continuous function W(X) is given on SM. 
This function will be called the objective function of the automaton 0>. Now we can 
formulate the dynamic programming problem as follows: 

Find for all x e M the element (or elements) X = (x, y0, yi9 ...) e 9R(x) such that 
W(X)^f(x). 
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5. EXISTENCE AND UNIQUENESS OF THE DYNAMIC PROGRAMMING 
PROBLEM SOLUTION 

Let us assume that the function W(X) is continuous on $Jl and such that for all 

X = (x09y09yl9...)eW9 

T(X) - W(PX) = 0(x0, y0) . 

Let us note that 0(xO9 y0) is a continuous function of its variables because it is a dif

ference of two continuous functious of X (namely of the function W(X) and of the 

composed function W(PX)) and such a difference must be continuous with regard 

to Tichonoff's topology on %Jl. Then 

y(x) = w(x) - W(PX) + W(PX) 

OГ 

V(X) = (x0, y0) + ЦPX) . 

We pass on the both sides of this equation to the maximum. On the left hand side 

we have f(x 0 ). On the right hand side, this procedure will be carried out in two steps. 

At first we take the maximum over all such X eWfl that N(PX) = y0(x0) for some 

jo e TM and then we take the maximum of these expressions over all y0

 G TM. The 

maximum on the left hand side exists because it is the maximum of a continuous 

function on a compact set. Thus the maximum on the right hand side exists too and 

it holds: 

max W(X) = max [0(xO9 y0) + max W(PX)] 
Xe9JJ(-V ;voeTM Xeffl,N(PX)=yo(x0) 

f(x0) = max [fl(x0> yo) + m a x ^(J?)] 
I yoeT M XeWKyoi^) 

or 

( 0 f(^o) = m a x [6(x09 y0) + f(y0(->Co))] . 
y o e T M 

We have just deduced a functional equation satisfied by f(x). From the existence 

of the maximal values both on the left and on the right hand sides of this equation 

the existence of the solution of the equation (1) follows. Now we shall solve the ques

tion of the uniqueness of this solution. 

We define the sets M{ for i -= 0, 1, . . . as follows: 

M0 = M 

ML = [y(x); yeTM

9xe M ^ J for i = 1, 2, ... 

It is Mj cz M , - ! for all i. If Mr = Mr+l for some index r then M r = Mr+k for an 

arbitrary integer k — 2. 
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Lemma 4. Mt is a compact subset of M for an arbitrary i. 

Proof. We prove the lemma by induction M 0 = M is a compact (and thus 
closed2)) set. Let us assume that Mt-._! is compact for some i ^ 1. We want to prove 
that Mi is compact. We know that 

Mi = {y(x), y e TM, x e M ^ J = {<f>(x, y); y sTM,xe M , _ J 

or Mt = <P(Mi_l ® TM). 

Thus Mi is the image of the compact space Mt-_ { (x) TM obtained by the continuous 
transformation <P. Thus Mt is compact (see [3]). Note that the continuity of # follows 
from the assumption that on TM a topology from TM is introduced. 

According to the definition of Mh Lemma 4 and the footnote 2) the sets M£ form 
a sequence of sets which are closed, and have the property that Mt c_ Mi^1 for all i. 
Since M is a compact topological space, it holds (see [3]) 

n Mi * 0 . 
i = 0 

Definition 1. The automaton 0* = {M; TM} is ea//ed contractive if f) Mt = {xj. 
The point x is then called the stationary state of the automaton 0*. , = 0 

Lemma 5. Let f(x), cp(x) be two solutions of the equation (l), let for all x e Mn + l 

be 

\f(x) - cp(x)\ < e . 

Then \f(x) — <p(x)\ < sfor all x e M. 

Proof . The functionsf(x), cp(x) satisfy the equation (l) , thus 

(2) f(x) = m!ix[0(x,y)+f(y(x))], 
yeTM 

(3) <p(x) = max [6(x, y) + 9(y(*))] • . 
yeTM 

Let us assume that x e Mn. Then y(x)e Mn+i and according to our assumption 

\f(y(*)) - <p(A.x))\ < * • 

Using Lemma 1 we obtain for x e Mn 

\f(x) - cp(x)\ = | max [0(x, y) + f(y(x))] - max [0(x, y) + cp(y(x))]\ ^ 
yeTM yeTM 

S max \f(y(x)) - (p(y(x))\ 
yeTM 

2) Note that every compact set in an H-space is closed. Thus we prove here that Mf is also 
a closed subset of M for an arbitrary i. 
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and further it is 
max \f(y(x)) - <p(y(x))\ ̂  max \f(x) - <p(x)\ < a . 
y<=TM x<=Mn+i 

So we have obtained that \f(x) — <p(x)\ < e for all x e Mn. The procedure applied, 
n-times yields that \f(x) — <p(x)\ < s for all x e M q.e.d. 

Lemma 6. Let 0* = {M; TM] be a contractive automaton and let x be its stationary 
state. Then for an arbitrary neighbourhood U of the point x there is an index n0 

such that for n ^ n0 there is Mn cz U. 

Proof. Let us introduce the notation 

Gn = M - Mn for n = 1,2, . . . 
Then 

00 

U Gn = M - {*} . 
7 1 = 1 

Thus the sets Gn for n = 1, 2, . . . and the set U form an opened cover of the compact 
space M. There exists a finite subcover of this cover which covers M as well. Let this 
finite subcover be formed by the sets Gnv Gn2, ..., G„c, U where nx, n2, ..., ne and let 

e e 

n0 = ne. Then U G„k u U = M and further G„m = \J Gnk => M - U and thus 
fc=l fc=l 

Mn# c U. For MB# 3 Mnt+l z> Mnt+2 =>..., there holds: 

M„ c: U for n ^ ne = n0 . 
q.e.d. 

Theorem 1, Let & = \M\ TM} be a contractive automaton and let St be its stationary 
state. Then there exists one and only one solution f(x) of the functional equation (l), 
which is continuous on M and satisfies the condition f(x) = c where c is an arbitrary 
given real number. 

Proof. First we shall prove the existence of such a solution of the equation (1). 
We know that there exists at least one solution of this equation (see the considerations 
when deducing equation (l)). We denote this solution by f(x). For this solution need 
not be / (£) = c. Let us assume that / (x) = cx 4= c The function/(x) = f(x) + c — 
— Cj represents also a solution of (1) and moreover it is f($) = c. Thus we have 
proved the existence of the solution f(x) of (1) for which f(x) = c. Now we prove 
the uniqueness of such a solution. We use here the proof by contradiction. Let us 
assume that there are two solutions of ( l ) / ( x ) , <p(x) such t ha t / (x ) =f= <p(x), / (£ ) = 
= <p(x) = c and tha t / (x ) , <p(x) are continuous on M. Thus/(x) , <p(x) are continuous 
also at the point x. Thus for an arbitrary e > 0 there exists such a neighbourhood Ut 

of the point £ that for all x e Us 

\f(x) - f(x)\ < \s and \<p(x) - cp(x)\ < is 
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or 
|f(x) — c\ < \e and \(p(x) — c\ < \E . 

Then for x e Uc it is 

| f(x) - cp(x)\ = \f(x) - c + c - <D(x)| ^ |f(x) - c| + \<p(x) - c\ < Є . 

According to Lemma 6 there exists such an index n0 that for n ^ n0 there is M„ c: U£. 
Thus |f(x) — cp(x)\ < e for x e M,J0+1. Then following Lemma 5, |f(x) — <p(x)| < s 
holds for all x e M. Taking into account that £ is an arbitrary positive real number 
we come to the conclusion thatf(x) = cp(x) for all x e M. But this is a contradiction 
with the assumpton thatf(x) EJE (p(x). This contradiction proves our Theorem. 

Theorem 2, Let & — {M; TM} be a contractive automaton with the stationary 
state x. Let f(x) be the solution of (1), continuous on M and such that f(x) = c 

where c is an arbitrary given real number. Let be given a functional sequence 

(f"(x)} which is constructed as follows: 

(1) f°(x) is an arbitrary function continuous on M and such that f°(x) = c; 

(2) f"+l(x) = max [d(x, y) + f"(y(x))] for n = 0, 1,2, ... 
yeTM 

Then this sequence is uniformly convergent to the solution f(x) of the equation (l)3). 

Proof. According to Lemma 1 it is for all x e M 

\f(x) - f" + i(x)\ = | max [6(x, y) + f(y(x))] - max [6(x, y) + f"(y(x))]\ ^ 
yelM yeTM 

^ max \f(x) - f"(x)\ . 
xeMi 

This inequality holds for all x e M, thus it must hold also for those x where the func
tion on the left hand side of this inequality assumes its maximum, i.e.: 

max \f(x) - f" + i(x)\ ^ max \f(x) - f"(x)\ . 
xeM xeMi 

Analogously we obtain 

max |f(x) - f"(x)| S max |f(x) - fn^(x)\ 
xeMi xeMi 

and thus 
max |f(x) - ftt + 1(x)\ S max |f(x) - f " " 1 (x)| . 
xeM xeMz 

Now we shall this successively diminish the index n in this way and estimate the 
differences |f(x) — f*(x)| for k = n — 2, n — 3 , . . . until we come to the difference 
|f(x) - f°(x)| and to the relation: 

(4) max |f(x) - fn~\x)\ <, max |f(x) - f°(x)| . 
xeM xeMn + j 

3) Such a solution exists according to Theorem 1. 
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The functions f(x)9f°(x) are continuous on M and thus they must be continuous also 
at the point £. Therefore for an arbitrary e > 0 there exists a neighbourhood U of the 
point x such that for all x e U 

| / ° ( * ) - j 0 ( * ) | = | / ° ( x ) - c | < i £ 

and 

I/O) - /0)| = I/O) - c| < is. 
Thus 

| /0)-/°0)|g|/0)-c| + |/°0)-c|<£ . 

Now we choose such an index n0 that for n = n0 it is Mn cz U 4) . From the rela
tion (4) it follows 

max \f(x) - f" + 1(x)| < s for n = n0 . 
xeM 

Since the choice of the index n0 depends only on s and does not depend on x, we 
have just proved that the sequence {f"(x)} is uniformly convergent to the solution 
f(x) of the equation (1) q.e.d. 

N o t e 2. Further, this theory can be developed in the following two directions: 
The first one consists in giving the objective function more concrete forms and keeping 
all its other properties which are necessary for the validity of the above described 
theory. The second one consists in further generalization of the above described 
theory to a larger set of objective functions (for instance we can require that the 
relation V(X) - W(PkX) = 6(x09 y09 yl9 ..., y2k„2) holds instead of W(X) -
— W(PX) = 6(x0, y0)), or to the case of an automaton whose set of transformations 
depends on the state of the automaton. These further generalizations can be found 
in [5] and some of them will be the subject of some other publication. 

PART II. 

6. SPECIAL FORM OF THE FUNCTION ¥(X) 

00 

Lemma 7. Let W(X) = £ @i(xh y/) where xt = yj--i(xj--i) for i = 1, 2, ..., let 
oo i = 0 

the series £ \9t(xi9 yt)\ be uniformly convergent and let the functions Ofai, y) 
i = 0 

be continuous on M ® TM for all i. Then the function W(X) is continuous on Wl. 

Proof. Let X = (jc0, j 0 , yl9 ...) be an arbitrary but fixed point of the space 9W. 
We must prove that for an arbitrary e > 0 there exists such a neighbourhood O of 

) This can be done according to Lemma 6. 
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the point X that if X e 0 then \W(X) - W(X)\ < e or 

00 00 

\ZUxi,y,)-iei{xi,y^\<e. 
i = 0 

Let be given an s > 0. The series £ |^f(xi5 >;£)| is uniformly convergent, thus for this 
1 = 0 * 00 

e > 0 there exists such an index n0 that for n > n0 there is ]T |0f(x-, y..)j < Je and 
oo i = n 

at the same time ]T jfl^Xj, y)\ < \e. Further 
i = n 

oo no 

\V(X) ~ <F(X)\ g I ^(x,, j,,) - ^(x,, j?,)| = E W*,, *) - 0((xj; j?,)| + 
i = 0 i = 0 

oo oo no 

+ E M*., .v,)| + E M*.- ?«)| < E W*.. .v,) - 0£xb fc)| + ie + ie . 
i = n o + l i = no + l i = 0 

The functions Ot(xh yt) are for all i continuous at the point (xh y) e M ® TM. 
Therefore for an arbitrarily chosen e > 0 there exists such a neighbourhood 0, of the 
point (xi? j7f) that the following implication holds: 

(xh yx) e Oi implies \0t(xt9 y\) - 0t(xh y)\ < 
2(n0 + 1) 

Let Oi be generated (in the sense of Tichonoff's topology on M ® TM) by the neigh-
_ _ _ " < > „ 

bourhoods 0^0 of the point x0 and 0Si of the point yt
 5). Let 0*0 = f) 0^0 and let OnQ 

i = 0 

be the neighbourhood of the point X e 9W. which is generated by the neighbourhoods 
0^ , Op. for i = 0, 1 , . . . , rc0. Then for K e Ono there is 

\W(X) - y(X) | < („0 + 1) — ^ — - + Je + ie = s q.e.d. 
2(n0 + 1) 

Further we shall assume in this paragraph that the function W(X) satisfies all 
the assumptions of Lemma 5 and furthermore that this function is the objective 
function of the automaton 9 = (M; TM). We define functions Wr(X),fr(x) for r = 
= 0, 1, 2, . . . as follows: 

Wr(X) = f 9i+r(xh yt) , / r(x0) = max Wr(X) ; 
i = 0 XeSXR(^o) 

here X = (x0, y0, yti ...) e 9JI, x0 e Mr. Let us note that W0(X) = ^(K) , /0(x0) = 

= /(*o). 

5) This may be supposed because for an arbitrary point X = (x0, yt,y2,...) e$Jl it is 
Oi(xhyi)=Si(yi_1(yi^2 ...(y0(x0) ..^.y^ and this is a continuous function on M® TM. 
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Analogously as in the preceding paragraph we can deduce that the functions 
fr(x) satisfy for x e Mr and r = 0, 1, 2, ... the following system of equations: 

(5) fr(x) = max [9r(x, y)+fr+1 (y(x))] r = 0, 1, 2, ... 
yeTM 

Lemma 8. Let & = (M; TM} be a contractive automaton with the stationary 
state x. Then y(x) = xfor all y e TM. 

Proof. Let y(x) = xi #- £ for some y e TM . M i s Hausdorff's space, therefore 
there exists such a neighbourhood O of the point x and such a neighbourhood 01 

of the point x1 that 0 n Ox = 0. The automaton _̂  is contractive, thus in accordance 
with Lemma 6 there exists such an index n0 that Mn c 0. From the definition of the 
set Mn it follows that x e M„o and y(x) e Mn +1 cz 0. On the other hand it is xi = 
= JJ(jc) e C! and thus J!(^) $ 0, which is a contradiction. This completes the proof. 

Lemma 9. Let 0* = (M; TM} be a contractive automaton with the stationary 
state x. Let the objective function W(X) of the automaton 0> satisfy all the assump
tions of Lemma 7. Let max 0r(x, y) = 0 for r = 0, 1, 2, . . . Then fr(x) = fr+i(x) 
for r = 0 , 1 , 2 , . . . 

Proof. For an arbitrary r it is: 

fr(x) = mzx[0r(x9y)+fr+1y(X)] 
yeTM 

fr(£) = max[0r(x,y)+fr+1(X)] 

fr(x) = max [0r(x, y)] + fr+1(x) 

fr(x) = fr+1(x) q.e.d. 

Lemma 10. Let {fr}, {(pr} be two continuous solutions of the system of equations 
(5). Let for some r0 be \frQ(x) ~ <Pro(x)| < sfor x G MrQ. Then it is \fr(x) - (pr(x)\ < e 
for x e Mr and for all r g r0. 

Proof. Let be x e Mr .. Then 

/ ,0_.(x) = max [0ro_x(x, y) + / r 0 W*)) ] • 

yeTM 

yeT M 

It follows from our assumptions that 
ILoM*)) - Vr0(j<*))l < 6 

for all y eTM and therefore also | L x(x) - <pro~1(x)\ < s (according to Assertion 
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2). Repeating this procedure r0-times we come to the conclusion that for x e Mr and 
for r = 0, 1, 2, ..., r0 it is 

\fr(x) - (pr(x)\ < e 

q.e.d. 

Theorem 3. Let 0> = {M; TM} be a contractive automaton with the stationary 
state x. Let the objective function W of the automaton 0* fulfil all the assumptions 
from Lemma 7 and let max 0r(x, y) = 0 for all r. Then there exists one and only 

yeT** 

one solution of the system (5) which is continuous and has the property fr(x) = c 
for all r (c is a given real number). 

Proof. First we prove the existence of such a solution of system (5). Since a con
tinuous function always assumes its maximum on a compact space, the existence 
of at least one solution {/r(x)} of (5) is clear. But this solution need not in general 
satisfy the condition that / r(x) = c for all r. Let us assume that fr(x) = c1 =# c for 
all r.6) Then the functions / r(x) = fr(x) + c — cx for r = 0, 1, 2, . . . represent also 
a solution of (5) and it is fr(x) = c for all r. This completes the proof of existence 
of at least one solution {/r} of (5) satisfying the condition that / r(x) = c for all r. 
Now we must prove the uniqueness of this solution of (5). Let {/-(*)}, {(pr(x)} be 
two continuous (on M) solutions of (5) and let them satisfy the condition, that 
fr(x) = c, cpr(x) = c for all r. It follows from the continuity at the point x that for 
an arbitrary e > 0 there exists such a neighbourhood Or of the point x that for each 
r and for x e Or n Mr there is 

\fr(x)-fr(x)\ = \fr(x)-c\<ie, 

Wr(x) ~ (pr(x)\ = \(Pr(x) - c\ < \t 

and therefore 
|/ r(x) - cpr(x)\ < e . 

Since the automaton 0 is contractive, there exists according to Lemma 6 such an 
index n0 that M„o cz Or. Thus for x eMn and for n _ n0 = max (n0; r) it is |/„(x) — 
— cpn(x)\ < e and thus in accordance with Lemma 10 for x e Mr it is |/r(x) — 
— <pr(x)\ < s for all r. Since s is an arbitrarily chosen real positive number, it follows 
from these relations that f(x) = <pr(x) for x e Mr and for all r, q.e.d. 

Theorem 4. Let all the assumptions of Theorem 3 be fulfilled. Let {/r(x)} be 
a continuous solution of the system (5) with the property fr(x) = c for all r (c is 
a given real number).1) For each r let be given a sequence of functions {/r(x)} 
constructed as follows: 

6 ) This may be assumed since according to Lemma 9 fr(x) = fr+ .(*) for all r. 
7) Such a solution exists and is unique according to Theorem 3. 
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(!) fr(x) are for all r arbitrary continuous functions defined on Mr and such that 
ff(x) = cfor all r; 

(2) fn+\x) = max [9r(x, y) + fn
+1(y(x))]for x e Mr and n = 0,1,2,... 

yeTM 

Then the sequence (fr"(x)} is uniformly convergent to the function fr(x) for all r. 

Proof. Let x be an arbitrary point from Mr for some fixed r. According to Asser
tion 2 it is 

\fr(x) - fr\x)\ = | max [9r(x, y) + fr+1(y(x))] - max [6r(x, y) +/ r + 1 ( j<*))]) S 
yeTM yeTM 

= max\fr+1(x)-fr
n
+1(x)\ 

xeMr + i 

and thus also 
max| f r + 1(x) - f r " + 1 (x ) | ^ max| f r + 2 (x ) - fr

w
+!(x)| 

xeMr + i xeMr + 2 

so that we have 

max \fr(x) - fn + \x)\ S max \fr + 2(x) - fn^(x)\ . 
xeMr xeMr + 2 

We diminish the index n in this way and estimate the differences 

j / r + I . ( x ) - L " + 7 + 1 ( x ) | for / = 2 , 3 , 4 , . . . 

until we come to the inequality 

max \fr(x) - fn+\x)\ ^ max \fr+n+1(x) - fr+n+1(x)\ . 
xeMr xeMr + n+1 

The functions fr + n+1(x), fr°+n + 1(x) are continuous for all r on Mr+n+l, thus they 
are continuous also at the point x. Therefore for an arbitrary s > 0 there exists such 
a neighbourhood Or+n+1 of the point x that if x e Or+n+l then it is 

\fr + n+l(x) * fr + n+ l ( * ) | = \fr + n+l{x) ~ c\ < \E 

and at the same time 

\fr°+n+1(x) -f?+n + 1(*)\ = \f,°+n+1(x) -c\<ie 

and thus 

|fr+„+i(x) - f r
0

+ n + 1(x) | < e . 

Since the automaton 0 is contractive there exists such an index*n0 that for k ^ n0 

there is Mk cz Or + n+l. We choose for our given fixed r such an index n that r 4- n + 
+ 1 ^ n0. Then 

max |fr(x) - fr"
 + 1(x)| ^ max | f r +„+ 1(x) - fr°+n + 1 (x ) | < e . 

xeMr xeMr + n + 1 
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Since the choice of the index n0 is independent of x, we have also proved the uniform 
convergence of the sequence {fr(x)} to the function fr(x) for all r. This completes the 
proof. 

N o t e 3. We have mentioned in Note 2 the possibility of extending the above 
described theory to the case of an automaton with a variable transformation set. 
The realization of this extension is a rather complicated task which we will not treat 
here. In this paper we shall consider only a special case of it, namely 

m = mn = M ® TM ® TM ® .. . ® TM ® {$} ® {$} ® . . . 

where {$} is a set consisting of the unique element $ which represents the identical 
transformation. Furthermore we shall assume in this special case that W(X) = 

« - i 

= Z ®k(xk> y*)> where 9k(xk, yk) are for all h continuous functions on M ® TM. 

Under the assumptions mentioned above in Note 3 9Jln is a compact topological 
Hausdorff's space, W(X) is continuous on 9Jt„ and Mn = {£}. Let X = (x0, j 0 , yi?... 
..., y„_ 1? $,$,...) be an arbitrary point of 9Rn. We define Xm for m = 0, 1, ..., n — 1 
as follows: 

Xm = PmX = P(P(..\PX)...)) = ym^{ym.2(...(y0(x0))...)),ym+u...,yn.1JJ,...) = 

= (xm, ym+i,.-.,y„-i, $,$,.-•) 

where xm e Mm. Further we define for i — 0, 1 , . . . , n — 1 

2K„,, = Mf ® TM ® .. . ® TM ® {j>} ® {$} ® . . . ® {$} ® . . . 

(n — i) factors 

Consequently 9Dln>0 = $f„. We put 

^ ! = { I ; I E 1 „ . , M = X } . 

Let us note that if it is X G 9Jl„ti, then it must be NX e M- for z = 0, 1, ..., n — 1. 
We define the functions Wm(Xm) andfm(x) for m = 0, 1 , . . . , n — 1 as follows 

^ ( * m ) = I »*(**> J>*) . /«(*) = niax Wm(Xm). 
k = m Xwe2fl<*>n,m 

Hence we have 

<F0(X°) = T(X), / 0 ( x ) = / ( x ) . 

Then *FOT(X
m) for all m are continuous on5R„m, thereforefOT(x) for all m are continuous 

on Mm and satisfy the following system of n functional equations 

fm(x) = m a X [em(X> y) + /m-f l ( y W ) ] , ™ -* 0, 1, . . . , n - 1 
yeT** 
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The method of solution of this system was suggested in [ i ] n j s the so called 

factorization method. We now describe its main idea. 

It is Mn = {x}, y(x) = x for all y e TM and fn(x) = const 0 n Mn. Further it is 

fn-i(x) = max [0„_ i(x, y) + /w(y(x))] for x e M„_ x 

y e T M 

or in general 

fn.k(x) = max [0n„k(x, y) + / „ _ , + i(y(x))] 
yeTM 

for x G M„_fc and for k = 1, 2, ..., n. 

By means of this procedure we obtain the functions f„~k(x) defined on M„. f c for 

k = 1, 2, ..., n and the transformations y„-i, yn-2, •••• yo a t which the maximum 

is reached in each equation. Now making use of these transformations we can obtain 

the corresponding states from the relations xt = yi_i(xf_i) for i = 1, 2, ..., n. 

Now we illustrate the theory just described by a short example. 

E x a m p l e 1. Let M be the closed interval <0; 1>, then TM is the set of all continu

ous transformations of the interval <0; 1> into itself and let TM be the set of trans

formations of the form 

yt(x) = atx + (1 — t) bx 

where a, b are fixed given constants such that 0 ^ a < l , 0 ^ ( ) < 1 , a _ i and 

and t is some real number of <0; 1>. Then it is TM c TM. We introduce the topology 

on TM by means of the following metric: 

Q(yu yi) = m a x \yi(x) - y2(x)\ for yl9 y2 e T м 
xєM 

Now we must prove that such a topology introduced on TM belongs to T M . It is 

known from the literature that each metric space is Hausdorff's space and that Q 

is a metric. Thus TM is Hausdorff's space. Now it is necessary to prove that the 

transformation <P(x, y) = y(x) of M ® TM into M is continuous on M ® TM (with 

regard to Tichonoff 's topology on M ® T M ) . Let (x0, j 0 ) be an arbitrarily chosen 

fixed point from M ® TM. We want to prove that to an arbitrary chosen s > 0 there 

exists a neighbourhood UE of (x0, j 0 ) e M ® !fM such that if (x, y) e Ue then there 

is |yo( xo) ~ y(x)\ < e- Let e > 0 be given. Then 

|yo(*o) ~ y(X)| = |yoC*o) - yo(x) + yoW - y(x)\ ^ 

S |yo(^o) - yoWl + \yo(x) - y(x)\. 

It follows from the continuity of y0 at the point x0 that for the given e > 0 there 

exists 3 > 0 such that if |x — x0\ < 3, then it is | y 0 ( x 0 ) — y0(x)\ < \E. Let us sup

pose that 

y G °yo = {-J7* ^(y> yo) < i£
5 y € ^ M } » x e 0XQ = {x; |x - x0 | < 3, x G M} 
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and let Ue be the neighbourhood of (x0, yo) e M ® TM generated by the neighbour
hoods 0XQ, OyQ. Then the following implication holds: 

(x, y) e UE implies \y0(x0) - y(x)\ < s . 

Thus we have just proved that the topology introduced on TM belongs to TM. 

Now we shall prove that TM is a compact topological subspace of TM. It suffices 
to prove that the set TM is uniformly bounded and equally continuous (in accordance 
with Arzela's theorem). For an arbitrary yt(x) e TM it is: 

\yt(x)\ = \atx 4- b(l - t) x\ = |(a - b) t + b\ _§ a < 1 . 

Thus the set TM is uniformly bounded. Further for arbitrary two functions ytl, yt2 e 
G TM we have: 

|yf_(x i) - yt2(*2)| = \ati*i + (1 - O k*i - 0*2*2 - (1 ™ '2) &*2| = 

_ |ax! — bx2| = K|xj — x2 | where K = max (a; b) = a . 

Now if it is \xt — x2\ < 5 = s/K for an arbitrarily chosen e > 0, then it is |y f l(xx) — 
— y,2(x2)| < e and thus the set TM is uniformly continuous. Therefore in accordance 
with Arzela's theorem TM is a compact topological subspace of fM. We put 

m = M ®TM ® ... ®TM ® ... 

We introduce now the following notation: 

yt(x) = attx + b(l — t,-) x for i = 0, 1, 2 , . . . ; 

*i = yi-i(xf-i) = a f f - 1 x l „ 1 + b(l - ti-1)xi^1 for j = 1,2, . . . ; 

-X" - (x0, y0, yi, • •.) , then l e i . 

Then it is 
i - i 

xi = x0Yl [atj + b(l - tj)] . 
i = o 

^ = {M; T M } is a contractive automaton with the stationary state x = 0. Let 
h(x), g(x) be two functions defined and continuous on <0; 1> and such that h(0) = 
= g(0) = 0 and that the series 

00 

W(X) = £ , 0 ( x , _ .).*._. + 6fc(*,_,)(l - *.-i) 
i = l 

is uniformly convergent. 

If *P(K) is an objective function of _̂  then the corresponding dynamic programming 
problem is the same as that about distribution of sources described in [4], Further 
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we shall assume that h(x) = x and g(x) = x for all x e <0; 1>. Then it is 

oo oo i = 1 

n*) = i* i = L,x0{nK +HI-o)]} 
i = 1 i - 1 / = 0 

and further 

I N = I *o n ( | ( « - b) h + H) = S *o'fl a = £ x0a' = x0 _ - - - . 
i - i i = i j = o i - i j = o i = i 1 — a 

oo 

Thus the series 2] |*,-| is uniformly convergent and according to Lemma 7 the function 
i = l 

T(X) is continuous on 501. Besides, the function W(X) satisfies the condition that 
T(X) - W(PX) = 6(x0, y0), because it is 

W(X) - W(PX) = (a -b) t0x0 + bx0 , 

so that 

^(xo* yo) = (a - b) t0x0 + bx0 . 

So we have shown that 0> = {M; TM} is a contractive automaton with the stationary 
00 

state £ = 0. Let W(X) = £ x* be the objective function of this automaton. It follows 
i = l 

from the relation a ^ b that it is 

00 

/(*o) = Z ^ = *o • 
i=i 1 — a 

Now we prove that f(x0) satisfies the functional equation 

f(x0) = max [0(xo, y0) + f(y0(x0))] 
yoeTM 

or 

f(x0) = max [(a - b) t0x0 + bx0 + f(y0(*0))] 
O ^ f o ^ l 

and the condition f(&) = 0. 

Indeed, 

/(yo(^o)) = a . y0(x0) . = — — [(a - b) t0x0 + bx0] ; 
1 — a 1 — a 

therefore 

max [0(xo, y0) + f(y0(x0))] = a . a . x0 + a . x0 = -—— = f(*o) 
o^t0^i 1 — a \ — a 

q.e.d. Moreover it is f(x) = f(0) = 0 . a/(l - a) = 0 q.e.d. 
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S o u h r n 

ZOBECNĚNÍ ÚLOHY DYNAMICKÉHO PROGRAMOVÁNÍ 

MILAN VLACH, KAREL ZlMMERMANN 

Článek obsahuje pokus o vytvoření exaktní teorie dynamického programování 
na dostatečně obecném základě. 

Nechť M je kompaktní topologický HausdorfTův prostor (dále zkráceně H~prostor), 
nechf TM je množina všech spojitých zobrazení tohoto prostoru do sebe. Nechť na 
množině TM je zavedena taková topologie, že TM je vzhledem k této topologii H-pros-
torem, a že zobrazení $(x, y) = y(x) prostoru M ® TM do M je spojité. Nechť TM 

je kompaktní podprostor prostoru TM a nechť 2R = M ® TM ® ... ® TM ® ..., 
přičemž na 9JI je zavedena Tichonovova topologie. Nechť X = (x0, y0, yt, ...) e 
e 90c. Definujeme zobrazení P a N na 9K takto: PX = (y 0 (x 0 ), yi, y2? • ••)> NX = x 0 ; 
nechť yjl(Xo) = {X; X e 2R, NX = x 0}, nechť V je spojitá funkce na ffl a nechť 
f(x0) = max *P(X). Úlohu dynamického programování lze nyní zformulovat 

Xe93|(^o> 

takto: Pro všechna x e M najít prvek (resp. prvky) X e d3lix), pro nějž (resp. pro něž) 
platí: W(X)=f(x). 

V článku se dokazuje existence a jednoznačnost řešení této úlchy a navrhuje se její 
řešení metodou postupných aproximací pro případ, že W(X) — W(PX) = 0(xo, y0). 

oo 

Dále se řeší úloha dynamického programování v případě, že *P(X) = ]T 0i(xi9 yt), 

kde Ofai, yt) jsou spojité funkce na M ® TM, xt = J V I ( X Í - I ) > J ~ -> 2 » ••••>a ^ a c^ a 

00 

Z |^/( xí ' y/)| stejnoměrně konverguje. Uvádí se malý ilustrativní příklad. 
i = 0 
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