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SVAZEK 15 (1970) APLIKACE MATEMATIKY CisLo 2

ONE GENERALIZATION OF THE DYNAMIC
PROGRAMMING PROBLEM

MiLAN VLACH and KAREL ZIMMERMANN

(Received July 26, 1968)
PART 1.
1. INTRODUCTION

The main purpose of this article is to provide an exact theory of the dynamic
programming on a sufficiently general basis. One attempt to carry out this task was
made in [1]. However, in the theory of [1] there are some inaccuracies in intreducing
the topology on the set of transformations and in some proofs. We hope that the
theory described in this article will be a contribution to the various attempts to give
a dynamic programming theory which is both sufficiently general and exact.

2. SOME INTRODUCTORY CONCEPTS

Let M be a compact topological Hausdorff’s space (further the abbreviation H-space
will be used), let T™ be the set of all continuous transformations of the space M into
itself and let @ be the trasformation of the Cartesian product M ® T™ into the space
M which is defined by

@(x, y) = y(x) forall xe M, ye T .

Here y(x) means the point from the space M which represents the result of applying
the transformation y to the point x.

3. INTRODUCING THE TOPOLOGY ON THE SET 7TM
Let us denote by T the set of topologies, which can be introduced on T™ and
which have the following two properties: If 9 € TY and J is introduced on T™,

then
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(1) T™ is a topological H-space;

(2) @ is a continuous transformation of the topological product M ® T™ into the
space M (the definition of the topological product see [2]).

Note 1. The dynamic programming theory described below needs introducing
on T™ some topology from the set T™. The problem of introducing on T some
topology from the set T* is solved in [5]. In [5] a set of topologies V™ is found such
that V¥ < T™. The set V™ is defined in such a way that its definition provides one
rather general prodedure of introducing on T™ topologies from T, Moreover the
set Y™ contains most of usually used topologies (for example the metric space topo-
logy, discrete topology).

4, FORMULATION OF THE DYNAMIC PROGRAMMING PROBLEM

Further we shall assume that on T some topology from T™ is introduced.

Let T be a compact subspace of the space T". A pair # = {M; T} is called,
the automaton 2 with the set of states M and the set of transformations T™. Let
us note that the topology on T is the topology induced on T™ by the topology on T
and thus T™ with regard to this topology is an H-space.

Let M=MTY®...® T ® ... (The set of factors T in this product is
a countable set.) Let on M Tichonoff’s topology be introduced (the definition of
Tichonoff’s topology see [2], [5]). Then M with regard to this topology is a compact
topological H-space (see [2], [5]).

Two following assertions may be proved (see [5]).

Assertion 1. Let E be a topological H-space. Let N « E, let N be a ccmpact set
let f(x), g(x) be continuous functions defined on N. Then

max |f(x) — g(x)| = [maxf(x) — max g(x)| ")

Assertion 2. Let M, be a topological H-space, let M, be a compact topological
H-space, let M be the topological product of the spaces M, and M,, let ¥(x, y) be
a function defined and continuous on M and let

f(x) = max ¥(x, y).

yeM2

Then the function f(x) is continuous on M.

1) Note that the continuous function on a compact set assumes on this set its supremum

(see [3]).

80



Let X = (xg, Yo» Y15 -+» Y ---) be an arbitrary point from IR. Then x,e M,
y; € T™ i =0,1,... We define the transformations P and N by the following two
relations:

PX = (yo(X0)s Y1s eevs Vs +-+) »

NX = xq .

Then P is a transformation of the space I into itself and N is a transformation of the
space M into the space M.

Lemma 1. The transformation P is continuous on M with regard to Tichonoff’s
topology introduced on IN.

Proof. Let X = (X, Jo, 71, ...) be an arbitrary fixed point in M. Then PX =
= (¥o(Xo), F15 ¥2, -.-)- We need to prove the continuity of transformation P at the
point X, i.e. that for an arbitrary neighbourhood U of the point PX there exists
such a neighbourhood U of the point X that the following implication holds: X € U =
= PX e U. Let us introduce the following notation:

PX = (Zy, %y, Z3, Z4, ...) so that Z; = Jo(X) e M,

Z, = y;_,€ T™ for all i = g. Let the neighbourhood U be generated (in the sense
of Tichonoff’s topology, see [2], [5]) by the neighbourhoods U, (i = 1, ..., k) of the
points Z,, (i = 1, ..., k). We can assume that U, are opened. To this neighbourhood U
we shall now construct the corresponding neighbourhood U of the point X. We
introduce the notation X = (21, 20y Z3y cnes Zpy ) Let us note that Z, = X, € M,
Z,=5,€T", 2, =%,y = §;_, e TM for all i > 2. At first we suppose that n; + 1
fori = 1,..., k. Then the neighbourhood U can be constructed as a neighbourhood
which is generated (in Tichonoff’s sense) by the neighbourhoods U, (i = 1,..., k)
of the points Z,,,, = Z,, (i = 1, ..., k). Let now n;, = 1 where 1 < iy < k. Without
any loss of generality we can assume that i, = 1. So we have the following situation:
there is given a neighbourhood U, of the point j,(X,) and we must construct such
neighbourhoods O, of the point X, € M and O, of the point j, € TM that the fol-
lowing implication holds:

X0€0;, yo€0, :YO(XO)EUr

On T (and thus also on T) a topology from T is introduced and therefore the
transformation @ is continuous on M ® T™. Thus for the neighbourhood U, of
the point Jo(xo) = @(X,, Jo) there exists such a neighbourhood 0,, of the point
(J—CO, )70) which is generated (in Tichonoff’s sense) by the neighbourhoods O, of X,
and 0, of j, that the following implication holds: (x, y) € 0, = &(x, y) = y(x) € U,.
The neighbourhood U will be now in this case generated by the neighbourhoods
0,, 0,,and U, (i = 2, 3, ..., k) of the poinis Z,,,, (i = 2,3, ..., k).
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In the both cases described above the neighbourhood U is constructed in such
a way that if X e U, then PX e U. This completes, the proof of continuity of the
transformation P on IN.

Let x be an arbitrary point of M. We define the set M™ as follows:

M = {X; X e M NX = x}.

Lemma 2. MM is a topological subspace of M with Tichonoff’s topology induced
on M by the topology of M. M™ is with regard to this topology a compact
topological H-space.

Proof. Let us denote by {x} the set containing only the element x € M. Then
MO ={x}@T"RT"®...0 T ...

(The set of factors T in this product is countable.) Thus M is a subspace of M
with Tichonoff’s topology induced on 9IR™ by Tichonoff’s topology on M. {x} is
a compact topological H-space and the same holds for the space T*. Thus M is
also a compact topological H-space (see [2], [5]).

Lemma 3. Let ¥(X) be a real function defined and continuous on 9. Let us
define on M a realfunctionf(x) by:

f(x) = max ¥Y(X) forall xeM .
XeMx)

Then f(x) is continuous on M (with regard to the topology introduced on M).

Proof. Let X = (xo, Y0» Vi» -+ Vs --.) be an arbitrary point of M. The function
¥(X) can also be regarded as a function of two variables which is defined on the
topological product of two compact topological H-spaces, namely of the space M
and of the space M =TV @ TY ® ... ® TY ® ... We denote this furrction of two
variables by the symbol ¥(x, Y) so that ¥(X) = ¥(x,, Y,) where x, € M, Y, € Rt and
further

f(x) = max ¥(X) = max P(x,Y) forall xeM.
XeM YeNR

Thus according to Assertion 2 the function f(x) is continuous on M.

We shall further assume that a real continuous function 'P(X) is given on M.
This function will be called the objective function of the automaton 2. Now we can
formulate the dynamic programming problem as follows:

Find for all x € M the element (or elements) X = (X, Jo. V1, ...) € M™ such that
Y(X) = f(x).
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5. EXISTENCE AND UNIQUENESS OF THE DYNAMIC PROGRAMMING
PROBLEM SOLUTION

Let us assume that the function ¥(X) is continuous on 9 and such that for all
X = (x0, Yo» V1s -.-) €M,

P(X) — Y(PX) = 0(xo, yo) -

Let us note that 6(x,, yo) is a continuous function of its variables because it is a dif-
ference of two continuous functious of X (namely of the function ¥(X) and of the
composed function W(PX)) and such a difference must be continuous with regard
to Tichonoff’s topology on M. Then

Y(X) = Y(X) — Y(PX) + ¥(PX)
‘I‘(X) = H(XO, yo) + l1’(PX) .

We pass on the both sides of this equation to the maximum. On the left hand side
we have f(x,). On the right hand side, this procedure will be carried out in two steps.
At first we take the maximum over all such X € 9 that N(PX) = y,(x,) for some
yo € TM and then we take the maximum of these expressions over all y, € T™. The
maximum on the left hand side exists because it is the maximum of a continuous
function on a compact set. Thus the maximum on the right hand side exists too and
it holds:

max Y(X) = max [H(xo, Vo) + max ¥(PX)]

XeM(xg) XeM,N(PX)=yo(xo0)
(,\O) = max [0(x0, yo) + max P(X)]
KeMo(x0))
or
(1) f(xo) = max [0(xo, yo) + f(yo(x0))] -
yoeTM

We have just deduced a functional equation satisfied by f(x). From the existence
of the maximal values both on the left and on the right hand sides of this equation
the existence of the solution of the equation (1) follows. Now we shall solve the ques-
tion of the uniqueness of this solution.

We define the sets M; for i = 0, 1, ... as follows:
My,=M
M; = {y(x);yeT", xeM,;_} for i=12,...

Itis M; « M;_, for all i. If M, = M, for some index r then M, = M, for an
arbitrary integer k = 2.
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Lemmad4. M, is a compact subset of M for an arbitrary i.

Proof. We prove the lemma by induction M, = M is a compact (and thus
closed?)) set. Let us assume that M;__, is compact for some i = 1. We want to prove
that M; is compact. We know that

M; = {y(x),ye T, xeM,_,} = {D(x,y); ye T", xe M;_,}

or M; = &(M,_, ® T™).

Thus M, is the image of the compact space M;_; ® T™ obtained by the continuous
transformation @. Thus M, is compact (see [3]). Note that the continuity of @ follows
from the assumption that on T™ a topology from T is introduced.

According to the definition of M;, Lemma 4 and the footnote 2) the sets M; form
a sequence of sets which are closed and have the property that M; =« M;_, for all i.
Since M is a compact topological space, it holds (see [3])

NM;+0.
i=0

foo
Definition 1. The automaton 2 = {M; T™} is called contractive if (Y M, = {&}.
The point % is then called the stationary state of the automaton 2. *‘=°

Lemma 5. Let f(x), ¢(x) be two solutions of the equation (1), let for all x € M,
be
[f(x) = o(x)| <e.

Then |f(x) — @(x)| < & for all x e M.

Proof. The functions f(x), ¢(x) satisfy the equation (1), thus

2 f(x) = max [0(x, y) + f(x(9)]
®) o(x) = max [0(x, y) + o(()] . -

Let us assume that x € M,. Then y(x) € M, and according to our assumption

[f () = ()] <e.

Using Lemma 1 we obtain for x e M,

() = o (3)] = | max [0(x. y) + S(y(x)] ~ max [0(x, ) + ()] =
= max [F(1(x)) = o(y(x))]

z) Note that every compact set in an H-space is closed. Thus we prove here that M; is also
a closed subset of M for an arbitrary i.
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and further it is

ax [f(x) — o(x)| < &.

m
XeMpn+1

max [f(4(x)) = e(x()] =

So we have obtained that |f(x) — ¢(x)| < & for all x € M,. The procedure applied,
n-times yields that |f(x) — ¢(x)| < & for all x e M q.e.d.

Lemma 6. Let 2 = {M; TM} be a contractive automaton and let % be its stationary
state. Then for an arbitrary neighbourhood U of the point £ there is an index n,
such that for n = ng there is M, < U.

Proof. Let us introduce the notation

G,=M—-M, for n=12,...
Then

1Cs

G, =M — {%}.

1

Thus the sets G, for n = 1, 2, ... and the set U form an opened cover of the compact
space M. There exists a finite subcover of this cover which covers M as well. Let this
finite subcover be formed by the sets G,,, G, .» G,,, U where ny, n,, ..., n, and let

nys Mngy

e e

ng =n, Then UG, wU =M and further G,,=UG, oM — U and thus
k=1 k=1
M, =U. For M, oM, ., M, ., > ... there holds:

M,cU for n=n,=ng,-
g.e.d.

Theorem 1. Let # = {M; TM} be a contractive automaton and let % be its stationary
state. Then there exists one and only one solution f(x) of the functional equation (1),
which is continuous on M and satisfies the condition f(£) = ¢ where c is an arbitrary
given real number.

Proof. First we shall prove the existence of such a solution of the equation (1).
We know that there exists at least one solution of this equation (see the considerations
when deducing equation (1)). We denote this solution by f(x). For this solution need
not be f(£) = c. Let us assume that f(£) = ¢, # ¢. The function f(x) = f(x) + ¢ —
— ¢, represents also a solution of (1) and moreover it is f(&) = c. Thus we have
proved the existence of the solution f(x) of (1) for which f(&) = c. Now we prove
the uniqueness of such a solution. We use here the proof by contradiction. Let us
assume that there are two solutions of (1) f(x), ¢(x) such that f(x) % ¢(x), f(%) =
= (%) = c and that f(x), ¢(x) are continuous on M. Thus f(x), ¢(X) are continuous
also at the point £. Thus for an arbitrary ¢ > 0 there exists such a neighbourhood U,
of the point £ that forall xe U,

If(x) = £(2)| <3e and |o(x) — @(R)] < 4
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or
[f(x) — ¢| < te and |o(x) — ¢| < 1.
Then for x e U, it is
[f(x) = oM = [f(x) = ¢ + ¢ = o(3)| = |[f(x) = ¢ + [olx) = ¢] <e.
According to Lemma 6 there exists such an index nq that for n > ng thereis M,, < U,.
Thus |f(x) — @(x)| < & for x € M, ;. Then following Lemma 5, | f(x) — ¢(x)| < ¢
holds for all x e M. Taking into account that ¢ is an arbitrary positive real number

we come to the conclusion that f(x) = ¢(x) for all x ¢ M. But this is a contradiction
with the assumpton that f(x) = ¢(x). This contradiction proves our Theorem.

Theorem 2. Let 2 = {M; TM} be a contractive automaton with the stationary
state £. Let f(x) be the solution of (1), continuous on M and such that f(&) = ¢
where ¢ is an arbitrary given real number. Let be given a functional sequence
{f"(x)} which is constructed as follows:

(1) f°(x) is an arbitrary function continuous on M and such that f°(%) = ¢;
(2) " (x) = max [0(x, y) + f"(¥(x))] for n =0,1,2, ...
yeTM
Then this sequence is uniformly convergent to the solution f(x) of the equation (1)*).

Proof. According to Lemma 1 itis for all x e M
G =771 (9] = [ max [0(x, y) + ()] = max [0(x, ») + "OCN] =
< max /() — (3]

This inequality holds for all x € M, thus it must hold also for those x where the func-
tion on the left hand side of this inequality assumes its maximum, i.e.:

max |f(x) = /"7 (x)] = max [£(x) ~ f(3)] -
Analogously we obtain

mehilx If(x) = f'(x)] = m:}x [f(x) = " 1(x)]
and thus 1 ’

max |f(x) = f*'(x)| = max [f(x) = /"' (x)] -

Now we shall this successively diminish the index n in this way and estimate the
differences |f(x) — f¥(x)| for k = n — 2, n — 3, ... until we come to the difference
|f(x) — f°(x)| and to the relation:
(4) mizc [f(x) = f"'(x)] £ max |f(x) — f°(x)| -

X€E. X

€EMn+1

3) Such a solution exists according to Theorem 1.
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The functions f(x), f°(x) are continuous on M and thus they must be continuous also

at the point £. Therefore for an arbitrary ¢ > 0 there exists a neighbourhood U of the
point £ such that for all x e U

[£°00) = 720 = [7°(x) = ¢] < 2e
and
) = 1] = (%) = ¢ < de.
Thus
() = fO) = [7() = o + [£°%(x) — o] <e.
Now we choose such an index nq that for n = n, itis M, = U *). From the rela-
tion (4) it follows
max [f(x) — f"*'(x)] <& for n=n,.
xeM

Since the choice of the index n, depends only on ¢ and does not depend on x, we
have just proved that the sequence {f"(x)} is uniformly convergent to the solution
f(x) of the equation (1) g.e.d.

Note 2. Further, this theory can be developed in the following two directions:
The first one consists in giving the objective function more concrete forms and keeping
all its other properties which are necessary for the validity of the above described
theory. The second one consists in further generalization of the above described
theory to a larger set of objective functions (for instance we can require that the
relation  ¥(X) — W(PX) = 0(xo, Yo» V1» ---» Yax—2) holds instead of W(X) —
— Y(PX) = 0(x,, yo)), or to the case of an automaton whose set of transformations
depends on the state of the automaton. These further generalizations can be found
in [5] and some of them will be the subject of some other publication.

PART II.

6. SPECIAL FORM OF THE FUNCTION ¥(X)

o]
Lemma 7. Let W(X) =Y 0(x;, y;) where x; = y;_y(x;—y) for i =1,2,..., let
© i=0
the series Y. |0(x;, y;)| be uniformly convergent and let the functions 0(x; y;)
i=0

be continuous on M ® T for all i. Then the function ¥(X) is continuous on M.

Proof. Let X = (X, J, 1, ...) be an arbitrary but fixed point of the space I.
We must prove that for an arbitrary ¢ > 0 there exists such a neighbourhood O of

4) This can be done according to Lemma 6.
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the point X that if X e O then |¥(X) — ¥(X)| < e or
I Z Oi(xia y,-) - .200,-()?.', }_’,)l < €.
i=0 i=

Let be given an ¢ > 0. The series Z |0.(x;, y;)| is uniformly convergent thus for this
e > 0 there exists %uch an index n, that for n > nq there is Z |0.(x:. y:)| < e and

at the same time Z |0(%;, ¥:)| < e. Further
"P(X) - l[l(X')] = 20‘0 (xi’ yi) - 0:‘(55:‘» J_’z)t = :iolai(xb )'i) - Oi()_(ia ?I)I +

+ Z |0 (o )| + Z 16 (%0 73)| < Zlo (X1, yi) — 0(%5 7)| + de + de.

i=not+ i=no+

The functions 0(x;, y;) are for all i continuous at the point (%, )e M @ T".
Therefore for an arbitrarily chosen & > 0 there exists such a neighbourhood O; of the
point (X;, ¥;) that the following implication holds:

— &
(x5 yi) € O; implies |0x;, y)) — 0%, 7)) < ———.
) | ) <
Let O; be generated (in the sense of Tichonoff’s topology on M ® T™) by the neigh-
bourhoods 0%, of the point X, and Oj, of the point ¥, °). Let Og, = {% 0%, andlet O,

i=0
be the neighbourhood of the point X € M. which is generated by the neighbourhoods
Ofo, Oy, fori =0,1,...,ny. Then for X € O, there is

|P(X) — P(X)| < (no + 1) ———— 2( Y +ie+le=¢ qed.

Further we shall assume in this paragraph that the function ¥(X) satisfies all
the assumptions of Lemma 5 and furthermore that this function is the objective

function of the automaton 2 = {M; T}. We define functions ¥ (X), f,(x) for r =
=0,1,2,...asfollows:

?,(X) = Z 0iii(xi ), filxo) = Jnax ?,(X);

R xg)

here X = (xo, Vo, ¥1,+--) € M, Xo € M,. Let us note that ¥o(X) = ¥(X), fo(xo) =
=f(xo)-

5) This may be supposed because for an arbitrary point X = (X0, Y1> V2, .. ) €M it is
Ox;, ¥ =0,(y;_1(¥;i_5 ... (¥(xp) ...), ¥)) and this is a continuous function on M @ TM.
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Analogously as in the preceding paragraph we can deduce that the functions
f(x) satisfy for x e M, and r = 0, 1, 2, ... the following system of equations:

(5 fix) = max [0(x. y) + frsOGN] 7= 0,12
ye
Lemma 8. Let 2 = {M; T} be a contractive automaton with the stationary
state %. Then y(R) = % for all y e T™.

Proof. Let j(£) = x, + £ for some ye T .M is Hausdorff’s space, therefore
there exists such a neighbourhood O of the point £ and such a neighbourhood O,
of the point x, that O n O, = 0. The automaton £ is contractive, thus in accordance
with Lemma 6 there exists such an index n, that M, < O. From the definition of the
set M,, it follows that £ € M, and (%) e M, ., < 0. On the other hand it is X, =
= y(ﬁ) € 0, and thus j(%) ¢ 0 which is a contradiction. This completes the proof.

Lemma 9. Let # = {M; TM} be a contractive automaton with the stationary
state %. Let the objective function ¥(X) of the automaton P satisfy all the assump-
tions of Lemma 7. Let max 0%, y) =0 for r =0,1,2,... Then f(%) = f,, (%)
forr=20,1,2,...

Proof. For an arbitrary r it is:

f(%) = max [0:(%, ) + fre ()]
yeT™

£(£) = max [0,(%, y) + f,.(%)]
yeT™M

f(%) = max [6,(%, y)] + fr+:(%)
yeTM

f(2) = fir4(8) qed.

Lemma 10. Let {f,}, {¢,} be two continuous solutions of the system of equations
(5). Let for some rq be |f, (x) — ¢,o(x)| < efor x e M, . Theniitis [f,(x) — ¢,(x)| < ¢
for x € M, and for all r < r,.

Proof. Let be xe M, _,. Then

Jrg-i(x) = max [0r,-10x, ) + fr(W(x))] s
yeT™
@ry-1(x) = max [0,,-1(x, ¥) + @, (¥(x))] -
yeT™M
It follows from our assumptions that

[fro(x)) = @r ()] < &

for all y e T and therefore also |f, _,(x) — <p,o_1(x)] < ¢ (according to Assertion
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2). Repeating this procedure r,-times we come to the conclusion that for x € M, and
forr=20,1,2,...,ryitis

/(%) = o(x)] < &
q.e.d.

Theorem 3. Let 2 = {M; TM} be a contractive automaton with the stationary
state %. Let the objective function ¥ of the automaton 2 fulfil all the assumptions

from Lemma 7 and let max 0%, y) = O for all r. Then there exists one and only
yeTM

one solution of the system (5) which is continuous and has the property f (%) = ¢
for all r (¢ is a given real number).

Proof. First we prove the existence of such a solution of system (5). Since a con-
tinuous function always assumes its maximum on a compact space, the existence
of at least one solution {f,(x)} of (5) is clear. But this solution need not in general
satisfy the condition that f,(£) = ¢ for all r. Let us assume that f,() = ¢; = ¢ for
all r.°) Then the functions f,(x) = f,(x) + ¢ — ¢, for r = 0, 1,2, ... represent also
a solution of (5) and it is f,(£) = ¢ for all . This completes the proof of existence
of at least one solution {f,} of (5) satisfying the condition that f,(£) = ¢ for all r.
Now we must prove the uniqueness of this solution of (5). Let {f,(x)}, {¢,(x)} be
two continuous (on M) solutions of (5) and let them satisfy the condition, that
(&) = ¢, ¢ (%) = c for all r. It follows from the continuity at the point £ that for
an arbitrary ¢ > 0 there exists such a neighbourhood O, of the point £ that for each
r and for x € 0, N M, there is

[£,(x) = LR = 1£(x) = ¢ < de,
0:(x) = @B)] = [o,(x) = ¢| < e

1) — o(x)| <.

Since the automaton £ is contractive, there exists according to Lemma 6 such an
index 7, that M < O,. Thus for x € M, and for n 2 n, = max (fio; r)itis |f(x) —
— ¢,(x)] < & and thus in accordance with Lemma 10 for x € M, it is [f,(x) —
— ¢,(x)| < &for all r. Since ¢ is an arbitrarily chosen real positive number, it follows
from these relations that f,(x) = ¢,(x) for x € M, and for all r, g.e.d.

and therefore

Theorem 4. Let all the assumptions of Theorem 3 be fulfilled. Let {f/(x)} be
a continuous solution of the system (5) with the property f,(,?f) =c for all r (¢ is
a given real number).”) For each r let be given a sequence of functions {f(x)}
constructed as follows:

6) This may be assumed since according to Lemma 9 f,(x) = fr41(X) for all r.
7) Such a solution exists and is unique according to Theorem 3.
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(1) fA(x) are for all r arbitrary continuous functions defined on M, and such that
fAR) = cforallr; ’
(2) f7*(x) = max [0,(x, y) + fl1(¥(x))] for xe M, and n = 0, 1,2, ...
yeTM

Then the sequence {f(x)} is uniformly convergent to the function f,(x) for all r.
Proof. Let x be an arbitrary point from M, for some fixed r. According to Asser-
tion 2 it is
I1() = 1771 = | max [0,(x, y) + fras Q)] = max [6,(x, y) + 150D <
ye yeTM

< max |f,1(x) = f741(x)|

xeMy 41
and thus also
max ’fr+1(x) fr+1(x)l = max ’fr+2(x) fr" V)l

so that we have

max [f(x) = f7*1(x)] < max [f.,(x) — f155(x)].

xeM, XeEMr+2

We diminish the index n in this way and estimate the differences
[frsi(x) — fi5iT (%) for i=2,3,4,...
until we come to the inequality

maxlf,(x) f"+](x)|< max |fr+n+1(x) fr+n+1(x)l'

xeMprin+1

The functions f,,41(x), fra+1(x) are continuous for all r on M,,,,,, thus they
are continuous also at the point £. Therefore for an arbitrary ¢ > 0 there exists such
a neighbourhood O, ., of the point £ that if x € O, ,,, then it is

Ifr+n+l(x) fr+n+l(x)l =

and at the same time

lfr+n+1(x) r+n+1 )l = ,fr0+n+1(x) - Cl < fe

. 1,
r+n+1( "LI<7("

and thus

frimst(X) = fnei(x)] < &

Since the automaton 2 is contractive there exists such an index.n, that for k = n,
thereis M, < O,,,,. We choose for our given fixed r such an index »n that r + n +
+ 1| = ny. Then

- :+l('x), é max lfr+n+1(x) r+n+1(x), <e.

XEMr4n+1

max
xeM,
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Since the choice of the index n, is independent of x, we have also proved the uniform
convergence of the sequence {f7(x)} to the function f,(x) for all r. This completes the
proof.

Note 3. We have mentioned in Note 2 the possibility of extending the above
described theory to the case of an automaton with a variable transformation set.
The realization of this extension is a rather complicated task which we will not treat
here. In this paper we shall consider only a special case of it, namely

M=M,=MOT"RT"®..T"'®@ )@y} ®...

where {§} is a set consisting of the unique element $ which represents the identical
transformation. Furthermore we shall assume in this special case that ¥(X) =

n—1

=Y 0,(xs» Y1), where 0,(x;, y;) are for all k continuous functions on M @ T™.
¥=o

Under the assumptions mentioned above in Note 3 9, is a compact topological
HausdorfI’s space, ¥(X) is continuous on M, and M, = {&}. Let X = (Xo, Yo, ¥y, -
eets Yu=15 9 9, ...) be an arbitrary point of M,. We define X™form = 0,1,...,n — 1
as follows:

X" =P"X =P(P(...(PX)-..)) = Y- 1(Vm=2( - (6(X0)) - ))s Yms 15+ s V=159, $5..) =
= ~(xma VYm+1s o005 Yn—1> .95 f, '-')
where x,, € M,,,. Further we define fori =0,1,...,n — 1

M, =M,T"®..T"'Q ®{INR..0 5y ®...

(n — i) factors

Consequently M, , = M,. We put
M) = {X; X eM, , NX = x}.

Let us note that if it is X € M, ;, then it must be NX e M; for i =0,1,...,n — 1.
We define the functions ¥,(X™) and f,,(x) form = 0,1,..., n — 1 as follows

'}I’"(Xm) = Z::_Ok(xb yk) 5 fm(x) = max Tm(Xm) .

XmeM*)p ny

Hence we have
Po(X°) = Y(X), folx)=f(x).

Then ¥,,(X™) for all m are continuous on M, ,,, therefore f,(x) for all m are continuous
on M,, and satisfy the following system of n functional equations

Iu(x) = max [0,(x, ¥) + fur1(¥(x)], m=0,1,..,n -1
yeT™M
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The method of solution of this system was suggested in [1] It is the so called
factorization method. We now describe its main idea.
It is M, = {£}, »(%) = % forall ye T™ and f,(x) = const on M,. Further it is

foo1(x) = max [0,_4(x, y) + f(¥(x))] for xeMm,_,
yeTM

or in general

fn—k(x) = ilej?"): [On—k(-x: J’) + focks 1(y(x))]

forxeM,_,andfork =1,2,...,n.
By means of this procedure we obtain the functions f,- k(x) defined on M, _, for
k =1,2,..., n and the transformations y,_q, Yu—2, .-+» Yo at which the maximum
is reached in each equation. Now making use of these transformations we can obtain
the corresponding states from the relations x; = yi_l(x,-_l) fori=1,2,...,n.
Now we illustrate the theory just described by a short example.

Example 1. Let M be the closed interval <0; 1, then T is the set of all continu-
ous transformations of the interval <0; 1) into itself and let T be the set of trans-
formations of the form

ydx) = atx + (1 — 1) bx

where a, b are fixed given constants such that 0 £ a<1,0<b <1, a = b and
and t is some real number of {0; 1>. Then it is T¥ < T™. We introduce the topology
on T™ by means of the following metric:

o(y1> y2) = max |yi(x) = ya(x)] for yy, y,eT™.
XE.

Now we must prove that such a topology introduced on T belongs to T™. It is
known from the literature that each metric space is Hausdorff’s space and that ¢
is a metric. Thus T™ is Hausdorff’s space. Now it is necessary to prove that the
transformation ®(x, y) = y(x) of M ® T™ into M is continuous on M ® T (with
regard to Tichonoff’s topology on M ® T™). Let (xo, ¥o) be an arbitrarily chosen
fixed point from M ® T™. We want to prove that to an arbitrary chosen & > 0 there
exists a neighbourhood U, of (xo, yo) € M ® T such that if (x, y) € U, then there
is |yo(xo) — ¥(x)| < e. Let & > 0 be given. Then .

I\

[7o(x0) = ¥(9)] = [yo(xe) = ¥o(x) + yo(x) — ¥(¥)|
< |vo(x0) = yo(x)] + |po(x) = ¥(x)| .

It follows from the continuity of y, at the point x, that for the given ¢ > 0 there
exists & > 0 such that if [x — x,| < &, then it is |yo(Xo) — yo(x)| < e. Let us sup-
pose that

ye 0, ={y. 00 y0) <3e,yeT}, xe0, ={x|x — x| <5, xeM}
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and let U, be the neighbourhood of (xo, ¥o) € M ® T™ generated by the neighbour-
hoods O, O, . Then the following implication holds:
(x, ) eU, implies |yo(xo) — ¥(x)| <.

Thus we have just proved that the topology introduced on T belongs to T™.

Now we shall prove that T™ is a compact topological subspace of T™. It suffices
to prove that the set T™ is uniformly bounded and equally continuous (in accordance
with Arzela’s theorem). For an arbitrary y(x) e T it is:

|pdx)| = |atx + b(1 = ) x| < |(a—b)t+ b Sa<1.

Thus the set T is uniformly bounded. Further for arbitrary two functions y,,, y,, €
€ T™ we have:

[Pe(x1) = ye(x2)| = latixy + (1 = 1)) bx; — atyx; — (1 = 1) bxy| <
< |ax, — bx,| = K|x, — x,| where K = max(a;b)=a.
Now if it is lxl — x2| < & = ¢/K for an arbitrarily chosen ¢ > 0, then it is Iy,l(xl) -

— yi,(x2)| < € and thus the set T is uniformly continuous. Therefore in accordance
with Arzela’s theorem T™ is a compact topological subspace of T™. We put

M=MAT"®R..T"® ...

We introduce now the following notation:
ydx) =atx + b(1 —1;)x for i=0,12..
x;=yiq(xic)) =atioyx;y + b(1 —t,-)x;oy for i=1,2,...;

X = (Xg» Yo» V1»---), then X eM.
Then it is

i—1
x; = xo [[ [at; + b(1 — 1,)].
i=0

# = {M; T"} is a contractive automaton with the stationary state £ = 0. Let

h(x), g(x) be two functions defined and continuous on <0; 1) and such that h(0) =
= ¢(0) = 0 and that the series

@

‘I’(X) = Zag(xi_l) iy + bh(x,-_,)(l - ti_l)
i=1
is uniformly convergent.
If ¥(X) is an objective function of 2 then the corresponding dynamic programming
problem is the same as that about distribution of sources described in [4]. Further
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we shall assume that h(x) = x and g(x) = x for all x € {0; 1. Then it is

8

90 = 3 = ol Tl ot + 801 - 1))

=0

and further
© © i=1 © i=1 0 a
Yl = Y xo[1(ll@a=b)t; + b)) = Y xo[Ta = ¥ xoa' = xo
i— i= ji=0 -

0
Thus the series ). |x,l is uniformly convergent and according to Lemma 7 the function
i=1

P(X) is continuous on 9. Besides, the function ¥(X) satisfies the condition that

Y(X) — Y(PX) = 0(x,, yo), because it is

Y(X) — Y(PX) = (a — b) toxo + bxo,
so that

0(xo, ¥o) = (@ — b) toxo + bx, .

So we have shown that 2 = {M; T™} is a contractive automaton with the stationary

£}
state £ = 0. Let P(X) = Y x; be the objective function of this automaton. It follows

i=1

from the relation a = b that it is

f(xo) = ixoai = Xo 2

i=1 1 -

Now we prove that f(x,) satisfies the functional equation

f(xo) = yrorl;li [G(XOs )’o) + f()’o(xo))]
f(xo) = max [(a - b) toXo + bxg + f(yo(xo»]

0stos1

and the condition f(&) = 0.
Indeed,

F(vo(x0)) = a . yo(xo) - I—_}:*a- = i—g—; [(a = b) toxo + bxo] ;

therefore

max [0(xo, ¥o) + f(yo(x0))] = a.a. xo ! +a.xy = s = f(xo)
0<to=s1 1—a 1—a

q.e.d. Moreover it is f(£) = f(0) = 0. a/(1 — a) = 0 q.e.d.
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Souhrn
ZOBECNENI ULOHY DYNAMICKEHO PROGRAMOVANI

MILAN VLACH, KAREL ZIMMERMANN

Cldnek obsahuje pokus o vytvofeni exaktni teorie dynamického programovéni
na dostateCn€ obecném zdkladé.

Necht M je kompaktni topologicky HausdorfTv prostor (ddle zkrdceng H-prostor),
necht T je mnoZina vsech spojitych zobrazeni tohoto prostoru do sebe. Nechf na
mnoziné T™ je zavedena takové topologie, Ze Ty je vzhledem k této topologii H-pros-
torem, a Ze zobrazeni ®(x, y) = y(x) prostoru M @ T do M je spojité. Necht T
je kompaktni podprostor prostoru T” a necht M=M QT ®... TV ®
pticemZz na M je zavedena Tichonovova topologie. Necht X = (xo, Yos Vis «- )e
€ M. Definujeme zobrazeni P a N na M takto: PX = (yo(Xe), V1» Vas ---) NX =xg;
necht M = {X; X e M, NX = x,}, necht ¥ je spojitd funkce na M a necht

f(xo) = max 'P(X). Ulohu dynamického programovdni Ize nyni zformulovat
XeMxg)

takto: Pro viechna x € M najit prvek (resp. prvky) X e M, pro n&jz (resp. pro néz)
plati: ¥(X) = f(x).

V ¢ldnku se dokazuje existence a jedncznaénost feseni této tlchy a navrhuje se jeji
feSeni metodou postupnych aproximaci pro pfipad, Ze ¥(X) — Y(PX) = 0(xo, ¥o).

Didle se fesi uloha dynamického programovdni v piipadg, Ze ¥(X) = Z 0(x,7 ¥i)s
kde 0,(x;, y;) jsou spojité funkce na M ® T, x; = y,_4(x;-y), i = 1, 2 ..,a fada

|0 (xi )| stejnomérné konverguje. Uvddi se maly ilustrativni pfiklad.
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