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INVERSION OF QUASI-TRIANGULAR MATRICES
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1. INTRODUCTION

In the paper [4] the following results were proved:

Let A be a square matrix of order n = r over a field of characteristic zero, divided
into blocks «a; ; of the type (n; x n),
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Let further be
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Let us define matrices Z,fi_) fori, k, p = 1, ..., rin the following way:
1
1. Zl(',k) = %k

(1,2) 2.2 = ZH  Ze Nzt Zm

i,p—1 p—1,k
— W (p) _
for p = 2,...,r, where pr’P =2Z,
For matrices Z, we have

Theorem 1,1. The matrices A, are regular iff Z, are reqular for p = 1,2, ..., r.
(For the proof, see [4].)

Let us introduce V(% as the set of subsequences of the sequence (i, + I....
cop—=Lpp—1,..k+1, k) which have the following properties:
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. The first element is i, the last is k.
Each two neighboring elements in any of the subsequences are different.

Theorem 1,2. Let the matrices (1,1) be regular; let A~" = [B;,] be a partitioned
matrix conformal to A. Then we have

ﬁi.k — Z(_ 1)1+m(.ix Js) Z- ‘lz(qx) z~ L Z@s-0 7 .

J J1,J2 Js=1,Js Js
(i=J1dasemds=k) eV,.‘,;{
go=min(j,j,4q), t=1,...,5—1

where m(j,, ..., j,) is the number of the elements of the sequence (i = jy, ..., j, = k).

(For the proof, see [4].)
In this paper, formulas for the blocks of the inverse matrix to a quasi-triangular
matrix A = [o; ] where o;, = 0 for i > k, are showed. M. FIEDLER achieved in [2]

the same results.

2. RESULTS

Theorem 2,1. Let the matrices(1,1) be regular; leta; = 0 fori > k. Then we have

(2.1) Z{ =y forizp kzp pz2.
Proof. By induction
l.p=2
Z2) = z() - ZWZ7Z(
By the assumption itis i = 2, thus Z{") = o; ; = 0and Z{3) = Z{}) = o, .
2. Let us suppose that (2,1) is true for p.
Then Z(p+1) Z(p) zZnz- lz(p)
LpTp
By the assumption it is i = p + 1, thus Z{") = =0and ZH'D = ZR) = o,

Note. By lemma 2,1 in [4] we have Z) = O for i < p, Z{) = 0 for k < p.
Theorem 2,2. The matrices A, are regular iff a, , are regular for p = 1,2, ...,y

Proof. The assertion is a corollary of Theorems 1,1 and 2,1.

Theorem 2,3. Let the matrices (1,1) be regular, let a; , = 0 for i > k. Let A~ =
= [B;x] be a partitioned matrix conformal to A. Then we have

(2.2) Bia = 2 (=1 05 595, 5%+ Y12

(l =j1’j25 ""js = k)e Vi(,’;c)
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for i £ k where m is the number of terms of the sequence (i = jy, j,, ..., j, = k)

(2,3) Bir =0 for i >k.

Proof. We prove the assertion (2,2). Let i < k. By Theorem 1,2 it is

Bix=3(-D)"1Z;t ... Z .
From Theorem 2,1 we get

(2.4) Bix= Y (=0 Taj by 00t gl

VMg

From the definition of V{% it is obvious that V% = V{7 for r 2 k. Since a;, ;,,, = 0
for j, > j,+1, the only non-zero terms of the sum (2,4) correspond to the increasing
sequences. Thus, it is sufficient to summarize over all sequences from V%),
To prove (2.,3) it is sufficient to note that no sequence from V7 is increasing; thus

ﬂi‘k = 0.
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Souhrn

INVERZE KVAZITRIANGULARNICH MATIC

HaNA KAMASOVA, ANTONIN SIMEK

V ¢lanku je uvedena metoda inverze kvazitrianguldrnich matic, rozdélenych na
r x r bloka.

Véta. Nechr matice (1,1) jsou reguldrni, necht a;, = 0 pro i > k. Necht A™" =
= [Bi.+] je blokovd matice konformni s A. Potom plati (2,2), (2,3).

Author’s address: Hana Kamasovd, Ing. Antonin Simek: Vysoka $kola chemicko-technologicka,
katedra matematiky, Technicka 1905, Praha 6.
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