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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

ON THE EXISTENCE AND UNIQUENESS OF SOLUTION 
OF THE CAUCHY PROBLEM FOR LINEAR INTEGRO-DIFFERENTIAL 

EQUATIONS WITH OPERATOR COEFFICIENTS 

IVAN HLAVACEK 

(Received May 7, 1970) 

INTRODUCTION 

In the theory of neutron fields some problems arise, which may be described by 
means of integro-differential equations with initial conditions. The aim of the present 
paper is to state a class of problems, covering the above-mentioned physical example, 
and to prove the existence, uniqueness and continuous dependence of their solutions 
on the given data. A variational approach (see [1]) is used to establish the definition 
of a generalized (weak) solution of the Cauchy problem, which is an extension of the 
concept of generalized solutions in case of differential equations (compare [2]). 
Following the work of Lions [2], the proof of existence is based on a special projection 
theorem and that of uniqueness on a method, originated from Jla/itDKeHCKaii [3]. 

1. NOTATION. STATEMENT OF THE PROBLEM 

Let a bounded interval I = <0, T> and a basic Hilbert space H be given, with the 
scalar product (u, v) and the associated norm |w| = (u, u)l/2. 

Vwill denote a Hilbert space with the scalar product ((«, v)) and the norm ||M|| = 

= ((" ,«)) 1 / 2 -
L2(1, H) and L2(L V) will denote the spaces of functions u(t), mapping the interval I 

into H and V, respectively, and such that 

Í \u(t)\2 dt < oo and | |M(0I | 2 ^t < oo , 
i o 

respectively. 
if(X, Y) denotes the space of linear continuous mappings of a Hilbert space X 

into a Hilbert space Y 
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Let use denote u'(t) = du/dt, u"(t) = d2ujdt2. Suppose that 

(1) V a H , Hull _ c\u\ for every ueV and 

(2) (ueV, |u | - 0)=> ||u|| - 0 . 

Let three real bilinear forms a0, at, a2, be given, depending on parameters t 
and t, T, respectively, such that 

(3) a0(t; u, v) and a±(t; u, v) are continuous on V x Vfor t e I, a2(r, T; u, v) is con­
tinuous on H x H for t, T e l . 

(4) Moreover, let the operators B(t) e if(V, H) and C(r) e JSf(if, H) for t e I be 
given and let there exist positive constants a, X, cu c2, c3 such that 

(5) a0(t; u, v) = a0(t, v, u) , 

(6) a0(t;v,v) + X\v\2
 = a||v||2 

holds for every u, v E Vand t E I, 

(7) a0(t; u, v) E C(1)(I), (continuously differentiable function of t EI) for any fixed 
u, v E V, 

(8) a i ( t ; u , v ) e C ( 1 ) ( I ) , 

\ax(t; u, v)| _ ci||u|| . |v| for t eI , u, v eV , 

(9) ( t , ,B(0t>)^c2 | t> |2 , 

(10) (/, B(t) D) e C (1)(/) for every feH, VEV, tel, 

(11) (C(f) «, t>) = (u, C(<) i>) , 

(C(t) v, v) ^ c3|u|2 , for t el, u,ve H , 

(12) (C(t)u,v)eC{l)(l) for every u, v e H , 

j I a2(t, T; M(T), V) dx\ ^ c4\v\ ( | |M(T)|2 dT ) (13) 

for every v e H, u e L2(I, H) and almost all t e I. 
Furthermore, let 

(14) fEL2(l,H), V0EH 

be given. 

Definition 1. (Weak solution of the Cauchy problem.) 

D(I) will denote the linear manifold of functions cp e L2(I, V), for which cp' e 
e L2(I, H) and cp(T) = 0. 
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We say that a function u is a solution of the Cauchy problem ^(0, v0,f), if 
u G L2(I, V), u' e L2(I, H), ti(0) = 0 and 

(15) f j - (C(t) u'(t), cp'(t)) + (u'(t), B(t) <p(t)) + a0(f; u(t), cp(t)) + 

+ a t(t; u(t), cp(t)) + a2(r, T; u(x), cp(t)) dx I dt = 

= T(f(0^(0)d^ + W°)^<p(o)) 
J o 

holds for every <p e D(l). 

Remark 1. The problem 3?(6, v0,f) may be formally interpreted by an integro-
differential equation 

(16) Lu = - (C(t) u'(t)) + B*(t) u'(t) + A(t) u(t) + f K(t, T) U(T) 6T = f(t) 
& Jo 

with initial conditions u(0) = 0, u'(0) = v0, if u" e L2(I, H), A(t) means the (un­
bounded) operator, to which the bilinear form a0 + ax is associated, B(r) e 5£(H, H), 
B*(t) is the operator adjoint of B(t) and K(t, T) G if(H, H), 

}>(,. T) r dT < co for almost all tel . 

Remark 2. Let us suppose the "convolution symmetry" of operators occuring 
in (16), i.e., let 

f (A(t) u(t) + f K(t, T) U(T) dT , v(T - t)) dt = 
Jo Jo 

= f (A(t) v(t) + f K(t, T) v(T) dT, u(T - t)) d t , 
Jo Jo 

(ß*(ŕ) u(t), v(T - í))dř 

Г(ß*WФ)^(t--))d4 = r = ^ 
dí d/ 

(ß*(/) v(t), u(T - t)) àt, 

(BҢr)v(т),u(t-т))dz\l = т, 

í (C(t) u(t), v(T - t)) d/ = (C(t) v(t), u(T - t)) åt JT' 
Then (15) means the condition of the stationary value of the following functional 
(see [I]) 

F(u) = j (L u(t) - 2f(t), u(T - /)) d/ + (u'(0) - 2v0, C(0) u(T)) , 
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if we set 5u(T — t) = cp(t). Hence the Definition 1 extends the variational formulation 
of the problem to the equations with non-symmetric operators. 

E x a m p l e . In the theory of neutron fields the following integro-differential equa­
tion occurs for the unknown function u(x, t) on Q = (0, l) x (0, T) 

d 2 

C — 
dř 

и , õu õ " £ ґ - ; « - t ) / ч • £ „ -д.« 

<Эt <Эx j = i J 0 ; = i 

where a, b, c, ocj, fij, lj (j = 1,2,..., m) are given constants. Let us choose H = 

= L2(0, l), W2

1}(0, l) c V c W{

2\0, I) in accordance with the kind of the boundary 

conditions and 

i \ V( dudv\j 
a0(t; u, v) = [ uuv H — I dx , 

J 0 \ dx dxj 
uj(t; u, v) = 0 , 

i 

*x 
m ňl 

a2(t, т; и(т), P) = 2 «je~XAt~x) и(т) t> d 
J'= 1 Jo 

Then all the suppositions (l) till (14) can be easily verified. The problem is even 
"potential" in the sense of Remark 2, because all the operators are "symmetrical in 
convolutions". 

2 EXISTENCE AND UNIQUENESS THEOREM FOR THE PROBLEM £"(0, v0, f) 

The main object of the present section is the 

Theorem 1. Assume that (l) till (14) hold. Then there exists one and only one 

solution u of the problem .^(0, v0,f) and 

(17) £(Ht)| |2 + Kt)|2) dt ^ [Jjf(t)|2 dt + ko|2} • 

First we shall prove some auxiliary lemmas. 

Lemma 1. Let H, and H2 be two Hilbert spaces with the scalar products (u, v)l 

and (u, v)2, respectively. Suppose that a(t; u, v) is a bilinear form continuous on 
Hi x II2 for every t el and a(t; u, v) is bounded on I for any fixed u e H{ and 
v e H2. 

Then there exists a constant M, independent of t, u, v, such that 

\a(t, u, v)\ = Mju |j |v|2 

holds for every t el\, u eHx and v e H2. 
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Proof . For any tel we may write 

a(t; u, v) = (A(t) u, v)2 , 

where A(t) e ^(Hu H2). Then the norms \\A(t)\\ are bounded on I. Indeed, if the 
contrary is true, there exists a sequence {tn} c I, such that 

IWOII = »-
Using the well-known approach (see e.g. the proof of Banach's theorem on the 
boundedness of norms of linear continuous operators [4] § 19), we can prove the 
existence of an element u e H1 and of a subsequence {tk} c [tn}, such that 

\A(tk) u\2 ^ k . 

Let us set A(tk) u = wk. The supposition of our Lemma implies 

| K v ) 2 | = \(A(tk)u,v)2\ <M(v) 

for every v e H2, k = 1,2, ... Then also the norms of the functionals (wh, v)2, i.e. 
\wk\i> are bounded (see e.g. [5] § 23), which is a contradiction. Finally, it suffices to 
write 

\a(t; u, v)\ = \(A(t) u, v)2\ = \\A(t)\\ \u\t \v\2 

and to restrict the norms of A(t) by a number M. 

Lemma 2. The problem £?(6,v0,f) is equivalent to the problem 2?(B, v0, e~ktf) 
with the bilinear forms dt (i = 0, 1, 2) and the operators B(t), C(t), satisfying (3) 
till (13) and such that 

(18) a0(t;v,v)^a1||v||2, 

(19) a0(t; v, v) + 2dl(t; v, v) ^ a j v l ] 2 

holds for every t el, v e V, with o^ > 0 independent of t, v. 

Proof. Let us introduce a transformation V 

(20) u(t) = w(t) ekt, (k real constant) . 

The corresponding transformation of the trial functions in Definition 1 is 

(21) cp(i) = f(t) e-M 

according to Remark 2. Indeed, 

<p(t) = Su(T ~t) = ek<T-%w(T -t) = ekTdw(T - i) e " 4 ' . 
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Inserting (20) and (21) into (15), the result can be arranged in the original form, if 
we set 

(22) a0(t; w, ij/) = a0(t; w, ij/) + k2(Cw, I/J) , 

at(t; w, i/>) = a±(t; w, \j/) + k(w, B^) + k(C'w, i/f) , 

a2(?, T; W(T), i/y) = cfc(T_f) a2(t, T; W(T), I^) , 

B(i) = B(t) + 2k C(t), f(0 = c-*<f(0, 

where C — d C(t)/dt. We can verify without difficulties that the new bilinear forms, 
operator S(t) and / satisfy (3) till (14). 

Using (7), (9), (12) and Lemma 1 (with Ht = II2 = H, M" = c'), we derive 

(23) at(t; v, v) < ct\v\ \v\ + k c2|v|2 + k c'jv|2 . 

Let 0 < ax < a. Then according to (22), (6), (11) and (23) 

d0(t; v, v) + 2cll(t; v, v) - a j v l 2 ^ 
:> (a - ax) ||v||2 - A|v|2 + k2 c3|v]2 - 2c1||t7J| )v| - 2k(c2 + c') |v |2 = 

= (a - ax) Ivll2 - 2c1||v|| |vl + (k2c3 - 2kc2 - 2kc' - X) \v\2 ^ 0 

holds for sufficiently great k2. If 

fe2c3 

at the same time, we obtain (18) and (19). 

k2c. - X > 0 

Convention. Henceforth we shall use the inequalities (18) and (19) instead of (6), 
which is justified by Lemma 2. 

The proof of existence of Theorem 1 will be based on the following projection 

Theorem 2. (Lions [2], chpt. 3.) Let F denote a Hilbert space with the norm \u\F 

and <P its linear subset with the norm \(p\&. (<P need not to be complete with this norm.) 
Let a constant c > 0 exists such that 

(24) \(p\F ^ c\(p\0 for every (p e $ . 

Let E(w, (p) be a bilinear form on F x <P such that 

(25) E(u, (p) represents a continuous functional on F for every (p e <& and a constant 
a > 0 exists such that 

(26) \E((p, (p)\ ^ oc\(p\^ for every cp e 0 . 
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Moreover, let L(<p) be a linear continuous functional on <£. Then there exists 
u e F such that 

(2 7) E(u, <p) = L(<p) for every <p e <P and 

(28) |M|F = c o r 1 ||L|| , 

where 

||L|| = sup \L(<p)\ on the set <p e <2> , \<p\0 = 1 . 

Lemma 3. Let <p satisfy the following conditions 

(29) <peL2(l,V), cp'eL2(l,V), <p"eL2(l,H), 

(30) cp(0) = 6 , cp'(T) = 9 . 

Then the inequality 

(31) f la0(t; e-ytq>, e~yt<p') + a,(t; e~yt<p, e~ytcp') + 

+ J a2(t, T; e~yt (p(x), e~yt q>'(t)) dx + (e~ V , B(t) e~'"(P') -

- (C(t) <p', («"- V) ' )} dt = c6|<p|2, 

where 

(32) |<p|2 = p l O V l 2 + k" V | 2 } dt + [<p'(0)|2 , 

holds for sufficiently great y > 0. 

Proof. We shall estimate separate terms gradually. Using (5), (7), (30), (18) and 
the inequality 

\a'o(t; <f>> <P)\ ^ c5\W\\2 > 

which is a consequence of (3), (7) and Lemma 1, we may write 

2 J a0(t; <TyV, e ~ V ) df = J e~2y ' |— a0(f; <p, <p) - a0(f; <p, <p)l dt = 

= f e-2^{2ya0(t; <p, <p) - a0 (t; <p, <p)} dt + c"2yTa0(T; <p(T), <p(T) 

> > 2 ^(2y a i | |<p ( t ) | | 2 -c 5 | |<p( t ) | | 2 )d t . 
Jo 
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Next we derive on the base of (13) 

• T pt 

(зз) \ rT c i 
2 df a2(t,x;e~y'(p(x), e~yt <p'(t))dx g 

I Jo Jo I 

^ c 4 f 2 | e ' " q>'(t)\ ( ['\e-y' <p(x)\2 dx\ ' df ^ 

^ c 4 f |e-".p'(f) | 2 df + c 4 f df f ' | e " r ' <f(t)|2 dx . 

Jo J O J 0 

In the last integral it is possible to change the order of integration to obtain 

(34) Vdx f V 2 " | P ( T ) | 2 df = 1 f \ e - 2 " - e~2' r)| <*>(T)|2 dt = 

-sf [VyXOI2dt. 
27 Jo 

Using also (8) and (l), we may write 
2 f ( f l , ( f ; e - V e " V ) + [ «2('. x> e ' n (p(t), e"" <p'(t)) dx\ df | S 

S f {2c1 | |e-"<p|| | e _ V | + c 4 |e-"<p'(t) | 2 + \cAy'xc'2\e-
n cp(t)\2} dt. 

According to (9), (30), (11) and (12), we have 

2 f (e" V , B(f) e" V ) df! ^ 2c2 f | e ~ " <p'(t)\2 df 
|Jo Jo 

and 

- 2 f T ( C ( t ) < P ' . ( ^ 2 V ) ' ) d f = - f r { ( C ( f V , ( e - 2 V Y ) + 
Jo Jo 

+ ((e"2>>')', C(t) <p')} df = (C(0) <p'(0), cp'(0)) + 2y f V 2 " (C ( f ) q>', <p') df 
Jo 

+ f c- 2"(C(0<p',<p')df ^ c3 |</(0)|2 + f (2yc3 - c') | e->>'( f ) | 2 df. 
Jo Jo 

Altogether, the left-hand side of (31) is greater or equal to the expression 

f {(""I - i c s - i c 4 c - V ) | | e - " <p(t)\\2 - c . l e - " <p(t)|| | e " " <p'(t)| + 

+ (K3 - i c ' - c 2 - | c 4 ) | e - " <p'(f)|2} df + i c 3 | </>'(0)|2 . 
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Substituting for the product in the second term the sum of quadrates, we obtain the 
assertion to be proved. 

Proo f of Theorem 1. Existence. Let us choose in Theorem 2 

F :{ue L2(I, V), u' e L2(I, H), u(0) = 9} 
with the norm 

\u\F= fT(\\e-ytu(t)\\2 + \e~y'u'(t)\2)dt 
J 0 

and let <P be the set of functions, satisfying (29), (30) and possessing the norm (32). 
Obviously (24) holds with c = 1. Let us define for u e F, (p e <P 

E(u, <p) = f {a0(t; e-yt u(t), e~yt <p'(i)) + a,(t; e~yt u(t), e"yt q>'(t)) + 

+ I a2(t, T; e~yt W(T), e~yt <p'(t)) dr + (e"" u'(t), B(t) e~yt q>'(i)) -

-(C(t)u'(t),(e-2ytcp'(t))')dt. 

We shall show, that the functional E(u, (p) is continuous on F for every cp e <P. 
Indeed, using (3), (7), Lemma V (1), (8), (13), further (4), (10), (12) and again Lemma 
1, we obtain 

\E(u,cp)\ ^ f J M | | e ~ V | | \\e'ytu\\ + clc-1\\e-yt(P
,\\ \\e~ytu\\ + 

+ c4\e~ V | ( [ \e~yt u(x)\2 dx) + c7 |e">V| ||e" V | | + 

+ 2yc8\e-ytuf\ l e ' V l + c8\e~ytuf\ \e~yY\r dt g 

= f (\\e~ytu\\2 + \e~7tu'\2 + [\e-yt U(T)\2 dx\ G(cp, q>'9 <B") dt, 

where G(cp, <p\ cp") is a square-integrable function on I. Applying the Cauchy-Bunia-
kovski inequality, we derive 

\E(u, <p)\ ^ ( f r ( | | e -"M | | 2 + \e-ytuf + 

ft \ l / 2 / fT \ l / 2 

+ \e-yt u(x) 2dx)dt\ M G2(<p, <p', <p") dt) . 

Fubini's theorem yields, like in (34), that 

Vd/ !'\e-yt U(T)\2 dr rg iy'1 !T\e-yt u(t)\2 dt ^ i-y^c"2 f \\e-
yt u(t)\\2 dt, 

Jo Jo Jo Jo 
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consequently 

\E(u, cp)\ = | H | F ( 1 + h-'c-J1'2 ( f 0 ^ <P'> <P")dt)1/2-

According to Lemma 3, we can choose a positive y such that (26) will be satisfied. 
Furthermore, let us set 

L(cp) = j" V » / ( 0 . e'yt <PV)) dt + (C(°) »o, <p'(o)). 

L(cp) is continuous on <P, because 

(340 \ m \ = ( | y - y t m \ 2 d ( ) 1 / 2 ( { V " ^'(f)i2 d f ) 1 / 2 + «c(°)i w K°) i = 

^H*(joV
v'/(t)|2dt + ||c(o)fK ^1/2 

^o|2 

Theorem 2 yields the existence of an element u e F, which satisfies (27) and (28). We 
shall prove, that this element represents a solution of the problem &(0, v0,f) ac­
cording to Definition 1. It suffices to verify (15). Let us consider an arbitrary (p e D(l) 
and set 

(35) cp0(t) = j e2yx <P(T) dt for tel, 
Jo 

consequently 

cp(t) = e~2yt cp'0(t) , cp0(0) = <p'0(T) = 6 , cp0e<P. 

Then 

E(u, <p0) = L(cp0) 

follows from (27) and inserting (35) into this equation, we obtain 

f la0(t; e~yt u(t), eyt cp(t)) + ax(t; e~yt u(t), eyt cp(t)) + 

+ f a2(t, T; e~yt U(T), eyt <p(t)) di + (e~yt u'(t), B(t) eyt cp(t)) -

- (C(t) u'(t), cp'(t))\ dt = C(e~ytf(t), eyt cp(t)) dt + (C(0) v0? (p(0)) . 

The exponential functions may be cancelled out and we conclude that (15) holds. 
Thus the proof of existence is complete. 
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Uniqueness. It suffices to prove, that the problem @>(Q, 0, 0) has only trivial solu­

tion. Let u be a solution of ^(0, 0, 0). Choose 0 < s < Tand define 

(36) <p(t) = ~ U(T) dT for t <L s, 

cp(t) = 0 for r ^ s . 

We can easily verify, that cp e D(l). Inserting / = 0, v0 = 0 and (36) into (15), we 

obtain 

2 J \a0(t; <p'(t), <p(t)) + ax(t; <p'(t), <p(t)) + a2(t, T; U(T), <p(t)) dT + 

+ (u'(t), B(t) <p(t)) - (C(t) u'(t), u(t))\ dt = 0 . 

Making use of (5), (7) and (11), we may write 

"d 

Д a0(t; ę(t), ę(t)) - a'0(t; ę(t), <p(t)) + lax(t; ę'(t), ę(t)) + 
o(at 

+ 2(a'(t), B(t) ę(t)) - y (C(t) u(t), u(t)) + (C(t) u(t), u(t)) + 
át 

\ a2(t, T; U(T), (p(t)) áA át = 0 + 2 

and therefore 

(37) Oo(0; <p(0), <p(0)) + (C(s) u(s), u(s)) = 

= hat(t; cp', cp) - a0(t; cp, cp) + 2(u'(r), B(t) <p(t)) + 

+ (C'(t) u(t), u(t)) + 2 J a2(t, T; U(T), <p(t)) dA dt. 

Using the identities 

f*s I* s 

a,(t; cp', <p) dt = -ai(0; <p(0), <p(0)) - {ax(t; cp, <p') + a[(t; <p, cp)} dt 
Jo Jo 

(u\ B(t) cp) dt = - J (u, B(t) uj dr - (u, B'(t) cp) dt , 
Jo Jo Jo 

the relation (37) may be rewritten as follows 

(38) a 0(0; cp(0), <p(0)) + 2ax(0; <p(0), <p(0)) + (C(s) u(s), u(s)) = 

= ) ~2ax(t; cp, cp') — 2a\(t; cp, cp) — a'0(t; cp, cp) ~- 2(u, B(t) u) — 

- 2(u, B'(t) cp) + (C'(t) u, u) + 2 J a2(t, T; U(T), cp(t)) dT\ d t . 
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The left-hand side of (38) can be estimated from below by means of Lemma 2, (19) 

and (11), the right-hand side from above by means of (8), (7), (3), (9), (4), (10), (12), 

Lemma 1 and the inequality 

I P 2 At Ta 2 ( t , T; II(T), cp(t)) dx = c 4 f 2|</>(t)| ( [\u(x)\2 drV At H 

= cA%{t)\2 + f V ( T ) | 2 d t | d t = cA\\cp(t)\2 + S\u(t)\2)dt. 

Thus we obtain 

jV.IH M 
a1 | | (D(0)||2 + c 3 | t / ( s ) | 2 ^ 

+ 2c'1||</>||2 + c5\\cp\\2 + 2c 2 |u | 2 + 2c 2 |u | \\cp\\ + c' |u |2 + 

+ cAcp\2 + c 4 T |w | 2 }dt, 

which yields 

Let us introduce 

Wo)||2 + к ^ l 2 = ̂ Г(lk(t)lľ + Kt)ľ)dř. 
Jo 

v(t) = u(т) dт , 
Jo 

so that cp(t) = v(t) - v(s). Then 

(39) |Ks)P + |«(,)|- g c9 £ {2 | |K t ) | 2 + K t) |2} dr + 2c9S||.(S)||2 

In case that 1 — 2c9T > 0, we have 

(40) IK.s-)||2 + K^)|2 = fc£{IKOI2 + Kt)l2}dt 

for all s e (0, T), (k = const.). We shall need the following 

Lemma 4. Let co(s) e L2(0, s0) be a real function such that 

(41) co2(s) g k J co2(t)dt 

holds (almost everywhere) in (0, s0). T/zcn cO(s) = 0 almost everywhere. 

Proof. Let us set 

Í: 2(í) dř = v . 
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From (41) it follows gradually 

(o2(s) S kv , 

<Ù2 

in general 

Consequently 

(s)ûk\ kv dí = k2vs , 

(s)^vk"+l — , n = 0 , 1 , 2 , . . . 

ю2(s) й vk"+1 -^, 

which converges to zero for n -> oo, hence OJ(S) = 0. 

By virtue of Lemma 4 (for s0 = T) and (40), in case that 1 — 2c 9 T > 0, we have 

f 
Jo 

|u(t)|2 dt = 0 
J o 

and using also (2), we obtain 

(42) JJK » | | 2 d ŕ = 0. 

Next suppose that 1 — 2c 9 T ^ 0. Then there exists 0 < s0 < T such that 1 — 
— 2c 9s 0 = \, Lemma 4 yields that \u(t)\ = 0 almost everywhere in (0, s0). The 
function u(t) is equal, however, to a continuous mapping of I into H almost every­
where in I (a consequence of Definition l). Therefore we may set \u(t)\ = 0 for all 
t e <0, s0>. The above-described procedure, starting from definition (36), can be now 
repeated on the interval <s0, T> or <s0, 2s0>, respectively, until the conclusion (42) 
is reached. 

Continuous dependence on the given data. According to (28) and Lemma 3, it 
holds 

l " | f = C 6 2 | W | 2 -

Making use of (34') and the definition of F, we derive 

| |L| | 2 ^ p (F\f(t)\2 d. + H 2 ) , (P = const.), 

(43) | « | 2 ^ e - 2 ^ | o
r ( | | U ( 0 | 2 + K t ) | 2 ) d ( . 

Thus we are to the inequality (17), if c = Pe2yTc^2. 
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3. EXISTENCE AND UNIQUENESS THEOREM FOR THE PROBLEM ^(u0 , v0,f) 

Up to this time we have dealt only with the homogeneous initial condition u(0) = 
= 0. In the present section we shall introduce the complete non-homogeneous Cauchy 
problem and prove the existence and uniqueness of its solution. 

Definition 2. Assume (I) till (14), furthermore let B(t) e S£(H, H) and u0eV be 
given. We say that a function u is a solution of the Cauchy problem ^(u0, v0,f), if 

(44) u e L2(I, V), u' e L2(l, H) , u(0) = u0 

and (15) holds for any cp e D(l). 

R e m a r k 3. In case of the "convolution symmetry" from Remark 2, Definition 2 
expresses the condition of the stationary value of the functional [ l ] (assuming 
moreover C'(T) = 0) 

JFi(w) = f ((Lu - If) (t) , u(T - t)) dt + (u'(0) - 2v0, C(0) u(T)) -

- (u0, B*(T) u(T) + C(T) u'(T)) , 

which is defined on the set of functions satisfying (44). 

Let us set 

K<) = « o ( l - ^ ) 

Obviously, w satisfies (44). Defining U(t) = u(t) — w(t), we are led to the equivalent 

problem 0*i(O9 v0,f^) for U(t). A function U will be called a solution of the Cauchy 

problem ^ \ ( 0 , ^0 ,fi), if 

U e L2(I, V), U' e L2(I, H), U(0) = 0 

a2(t, т; U(т), cp(t)) dт + 
o 

and 

(45) i \a0(t;U,<p) + ax{t;U,<p) + 

+ (U'(í), B(t) <p(t)) - (C(t) U'(t), <p'(t))\ dř = 

= J t ("o' B(t) cp(t)) - I (C(t) u0, <p'(t)) - a0(f, w{t), (p{t)) -

- a,(ř; w(t), <p(t)) - | a2(t, T; W(T), <?(.)) d i + (f(t), <p(t))l dř + (C(0) v0, <p(0)) 
Jo J 

for every (p e D(l). 
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Theorem3. Assume (l) till (14), u0eV and B(t)e ^(H,H). Then the problem 
0*{uo, v0,f) has precisely one solution u and 

(46) j / K o i i 2 + K O I 1 ) * ^ c (i«0ir + M 2 + £ ij(oi2 d<) 
1lO/dS. 

Proof. Existence. We may proceed in the same way as in the proof of Theorem 1, 
choosing the same spaces F and <P in Theorem 2. The only change will be in the defini­
tion of the functional L(cp) which is now in accordance with (45), 

(47) L(cp) = £ j i (e-"u09 B(t) <r V ) - ~ (C(t) u0, ( e " 2 V ) ' ) -

- a0(t; e~ytw, e~ V ) - aA(t; e~ytw, e"~ V ) -

- [ a2(f, T; e~yt W(T), <T" <p'(f)) dT 4- (e'y% e'ytcpf)\ dt + (C(0) v0, q>'(0)) . 

We can show that the new functional L(cp) is continuous on <£. First let us integrate 
several terms by parts, using (12) and (30) 

(48) f (C(t) u0, (e~2V)') dt = - f (C'(0 u0, e~2 V ) df - (C(0) ii0, <p'(0)) , 
Jo Jo 

(49) f a0(t; e" V e" V ) df = | a0(t; e~2 V </>') dt = 
Jo Jo 

{a0(t; (e-2y'w)', <p) + a'0(t; e~2y'w, q>)} dt = 

J i e _ ) " a 0 ( t ; - u 0 + 2yw, e~y'q>\ - a'0(t; e~y'w, e~y,q>)\ dt. 

- Г . 
Í: 

Estimating L(<p) by means of (48), (49) and some inequalities, which have been 
used in the preceding sections, we obtain 

(so) |ÍV)| ^ n, 

+ Aíe~ 

c 7 i | e -" t i 0 | | e " V | + C l- \e-y'u0\ | e ~ V | + 

u0 + 2yw e " V + cs\\e-y'w\\ e ~ V + 
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+ c je -^ 'w l | e " V | + c i . | e - V | ( | ' | e " r ' w ( " ) | - d T ) + 

+ \e-»f\ | c - V | J d t + ||C(0)|| (|Mo| |«p'(0)| + |t>0| k'(O)l) ?k 

= l3. ( [ ( IK V | | 2 + | e " V | - ) d t Y / 2 ( r | | - u0 + 2yw \ 

+ ||e-y 'wj|2 + j e - V , | 2 + \e~"f\2 + |e~ >'wj2| drV ^+-

+ |C(0) | (|u0| + |r0 |) k ( 0 ) | ^ p(ho\\2 + \v0\
2 + f V W I 2 d ' Y ' V k 

where /? is independent of (p. 

Theorem 2 says, that there exists u e F such that (27) and (28) holds. Choosing 
again any cp e D(I) and cp0 according to (35), the relation (27) can be rewritten in the 
form of (45); consequently u is a solution of the problem ^{(9, v0,f{). Then u + 
+ w = u represents a solution of the problem ^(i /0 , tfo>/)-

Uniqueness. The difference of any two solutions of the problem &(u0, v0,f) is 
a solution of the problem ^(0 , 0, 0). From Theorem 1 it follows, that the latter 
problem has only trivial solution. 

Continuous dependence on the given data. By virtue of (28), Lemma 3 and (50), 
we may write 

|u|2 g c6-2||L||2 ^ Pc-b
2(\\u0\\

2 + H " + [ V ( 0 | 2 d t ) . 

Using also (43), the inequality (46) can be obtained. 
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Výtah 

EXISTENCE A JEDNOZNAČNOST ŘEŠENÍ CAUCHYOVY ÚLOHY 
PRO LINEÁRNÍ INTEGRO-DIFERENCÍÁLNÍ ROVNICE 

S OPERÁTOROVÝMI KOEFICIENTY 

IVAN HLAVÁČEK 

V teorii neutronových polí vznikají úlohy, které lze popsat integro-diferenciálními 
rovnicemi s počátečními podmínkami. Cílem tohoto článku je definovat určitou 
třídu problémů zahrnující zmíněný fyzikální příklad, a dokázat korektnost těchto 
úloh. 
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