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SVAZEK 17 (1972) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

INITIAL CONDITION IN THE THEORY O F NEUTRON TRANSPORT 

JAN KYNCL 

(Received January 22, 1970) 

INTRODUCTION 

The problem of finding the distribution of the density of neutrons as a function 
of the spatial and time coordinates, of the angle and the energy provided the initial 
density is known, frequently occurs in the theory of transport of neutrons in a medium. 

A good mathematical approximation of the problem is represented by 

(1) | ~ + y/(2E) co\ + V(2£) 2u(x, co, E, t)\ cp(x, o>, E, t) = 

= J dm j dE' J(2E) I(x, co' -> co, E - E, t) cp(x, ft)', E, t) + ^J(2E) S(x, ft), E, t) , 
J.Q Jo 

(p(x, co, E, t = 0) = i//(x, co, E). 

Here the following notation is used: 

x, co, E, t . . . coordinates of location, angle, energy and time, respectively 

Q . . . surface area of the unit sphere 

cp . . . neutron density 

\j/ . . . initial neutron density 

S . . . density of the source of neutrons 

I . . . macroscopic differential effective cross-section of the medium for 
neutron scattering 

Iu . . . total macroscopic effective cross-section of the medium for neutrons 

Problem (1) in the above formulation has not yet been solved generally. It has been 
discussed only in some particular cases. 
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For example, Mika [1] considers a bounded medium, zero source of neutrons, 
effective cross-sections independent of spatial, angular and time coordinates and, 
besides, the quadratic integrability of y/(2E) l(E' -> E). Under these assumptions 
he finds the solution of (l) and proves its uniqueness. Marti [2] solves the problem 
under the assumptions of a bounded medium whose characteristics I, Iu are indepen
dent of time and bounded. Unfortunately, the last assumption is rarely satisfied in 
concrete cases. Vidav [3] considers a bounded convex body, 5 = 0, dlfdt = 0. 

The time independence of the characteristics of the medium is a common feature 
of the above mentioned papers. Problem (1) is then usually transformed to an eigen
value problem for a certain operator in a Banach space. However, this method fails 
if we assume the effective cross-sections to be non-constant functions of time (e.g. 
when describing a transient state in the reactor — the time variation of the tempera
ture of the moderator etc.). 

Our paper deals with the last case in an infinite absorbing and non-multiplying 
medium. Existence and uniqueness of the solution of the initial value problem is 
proved by an iterative method. It should be mentioned that our method is well known 
in the theory of iterative processes [4]: actually, it is the method of successive appro
ximations. 

DEFINITION AND NOTATION 

The definition domain of the functions characterizing the medium and the neutron 
density will be assumed to be the set M of quadruplets (x, o), E, t): 

M = E3 x Q x (0, oo) x <0, oo) . 

We assume that the macroscopic differential effective cross-section satisfies the 
condition of detailed balance 

(2) Ee~E/(kT) I(x, 0)->0)',E-> E', t) = E'e~E'KkT) l(x, -o) -> -o)', E' -> E, t) 

on the set M x Q x (0, oo), T being the temperature of the medium and k the 
Boltzmann constant. 

Concerning the dependence on the angle, it is usual to put 

l(x, o) -> o)', E -> E', t) = I(x, o) . o)', E -> E', t) = 0 

which we shall follow in the sequel. 

The assumption of a non-multiplying medium implies 

j do' dE' I(x, o).o)',E -> E', t) = Iu(x, o), E, t) . 
J Q Jo 
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Further, denote by C{B; M} the set of functions <p such that 

f r °° 
gt(x, o), E, t) = I do)' dE' l(x, o). to', E' -* E9 t) . cp(x9 to'9 E'91) , 

J Q Jo 

dg1ldE9 dg^dcOi and dg^dxi (i = 1,2, 3) are continuous functions on the set M 
while the function 

g2(x, OJ, E,t)={ dco' f °°[l(x, to . o)', E - £ ' , f)/-Ttt(*, «>, E, t)] . [eE'KkT)\Ef] . 
JQ Jo 

. cp(x9 o)'9 E'9 t) dE' 

is bounded on M (B being a constant, T(t) ̂  Bjk for t e <0, oo)). 

EXISTENCE AND UNIQUENESS 

First of all we shall be interested in the number of possible solutions of Problem (l) . 

Theorem 1. Let the following assumptions be fulfilled: 

(a) Functions Iu(x9 co9 E91)9 dIujdE, dlujdxt and dlJdcOi (i = 1, 2, 3) are continuous 
on M. 

(b) To every quadruplet (x9 o)9 E, t) there is a non-degenerated neighbourhood U 
in M, (x, o), E,t)eU so that l(xl9 o)x . o)', Ex -» E', tx) as a function of variables 
xl9 0)l9 E1, tt is continuous on U for almost all pairs (o)', E') e Q x (0, oo). 

(c) Functions T(t)9 dT/dt are continuous on the interval <0, oo) and, moreover, 
kT — Bl9 dT/dt = 0 where B1 is a positive constant. 

(d) To every I e (0, oo) there are constants F ^ 0, K > 0, 1 > At = 0 so that 
m /»00 

dco' dE' I(x9 to . o)', E -> E', t) = Ax Iu(x, o)9 E9 t) 
J Q Jo 

on M1 = E3 x Q x (K, oo) x <0, /> , 

y/(2E) Iu(x, OJ, E,t)^F 

onM2 = E3 x Q x (0, K> x <0, />. 

Then there is at most one solution of Problem (1) in the set C{B1; M}. 

Before proceeding to the proof of Theorem 1, let us introduce the following 

Proposition 1. Let Iu(x, o), E, t), f(x, o), E, t)9 d!ujdE, dfjdE, ^ X M / ^ . ' ^//^X*> 

dlJdcOi and dfjdcOi (i = 1, 2, 3) be functions continuous on M, g(x, co, E), dgjdE, 
dgjdXi and dgjdcOi i} — 1>'2, 3) functions continuous on the set E3 x Q x (0, oo). 
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Then a) 

(la) cp(x, co, E, t) = f 'dt, V(2F) .f(x - J(2E). co(t - tl), co, E, t,) . 

• exp f f ldt2 y/(2E). rM(x - y/(2E) co(t - t2), co, E, t2)\ + 

+ g(x — y/(2E) cot, co, E). 

. exp (- ! dt! V(2E) Iu(x - V(2E) co(t - tO, co, E, tx)\ , 

dcp/dt, dcpjdE, dcpjdxi and dcpjdcOi (i = 1, 2, 3) being continuous functions on M; 

b) at the same time (p is the only solution of the problem 

(lb) H + V(2£) a>\ + v/(2£) l l 9 = V(2£)j 

cp(x, co, E, t = 0) = g(x, co, E) 

on M (in other words, relation (la) and problem (lb) are equivalent on M). 

The contents of Proposition 1 is a well known fact from the theory of partial 

differential equations and hence its proof is omitted (see [5]). 

P r o o f of Theorem 1. Let cpl9 cp2 e C{Bt; M} be two distinct solutions of Problem 
(l). Then the function x = <Pi — <P2 obviously solves the problem 

(3) {djdt + V(2JB) co . V + y/(2E) Iu} X = 

= f dco' f ^dF' V(2F) Z(x, co . ©', E' -> F, f) /(x, < -5\ f) 
Jfi Jo 

X(x, co, E, t = 0) = 0 

and belongs to the class C{Bt; M}. Assumption (a) of Theorem 1 guarantees that the 
assumptions of Proposition 1 are satisfied and hence Problem (3) is equivalent to the 
problem of solving the integral equation (for the function x) 

(3a) x(x, co, E, t) = 

= f dfx f dft>' f °°d£' k / ( 2 £ ) I(x - yJ(2E) co(t - tt), co . co', E' -> E, tt) x 
Jo JQ Jo L 

x exp ( J df2 V ( 2 £ ) *..(* - V ( 2 £ ) ®0 - h)> ">> £> '-0) » 

. Z(JC - V(2£) o>(t - *,), ft)', £ \ h) • 
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Let us take now an arbitrary fixed / e (0, oo) and restrict our consideration to the set 
M 3 = E3 x Q x (0, oo) x <0, I). With regard to (2), equation (3a) yields the inequa
lity 

(4) \X(x, co, E, t)\ ^ f dt. [ d o ' f °°d£' \x(x - V(2£) to(t - tA), co', £ ' , t,)\ E . 
Jo in Jo 

e(E>-EmkT(toi Z(x ~ V ( 2 £ ) «>(* ~ r0> CP . o ' , E -> Er, tx) x 

Iu(x - V(2F) io(t - tx), co, E, tt) . E' 

x A exp f f dt2 V(2£) Z„(x - V(2F) o>(* - t2), co, E, t2)\. 

Hence and from the assumptions (c), (d) of Theorem 1 we obtain on the set M 3 the 
estimate 

(5) \x(x, to, E, t)\ 5S A,Ee-Ein . C , 

C being a constant. 

Substituting (5) into the inequality (4), we obtain | / | <; A\Ee~EllkT^ . C and, after 
n steps \X(x, co, E, t)\ g A}[Ee~Elknt). C . 

This proves Theorem 1 for the set M 3 instead of M. However, since / was chosen 
arbitrarily, the assertion of Theorem 1 is true on the whole set M. 

Let us now proceed to the problem of existence of solutions of Problem (l) . For 
the sake of brevity, let us introduce the following notation: 

F(x, co, E, t) = i \J/(x - yJ(2E) cot, co, E) + 

+ dt! J(2E) S(x - yJ(2E) co(t - tx), co, E, fA) x 
Jo 

x exp M *dt2 V(2E) Iu(x - y/(2E) co(t - t2), co, E, t2) j | x 

x exp ( f dt! V(2E) Su(x - yJ(2E) co(t - tt), to, E, tM , 

K(x, co, E, t, co', E', ti) = yJ(2E) l(x - yJ(2E) co(t - tx), co . cof, E' -> E, tj) x 

x exp M dt2 V(2E) Iu(x - y](2E) co(t - t2), co, E, t2)\ . 

Theorem 2. Let the following assumptions be fulfilled: 

(a) All assumptions of Theorem 1 are fulfilled. 
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(b) To every quadruplet (x, co, E, t)e M there is a non-degenerate neighbourhood U 

in M, (x, co, E, t)eU so that l(xu coxo>', Fi -> E', ti), dlJdEl, dljdxu, dlJdcou 

and K(x, COU EU t u co', E', t'), dKjdEl, dKjdxu, dKjdcou (i = 1, 2, 3) as func

tions of variables xu cou Eu tt are continuous on U for almost all pairs 

(co', E')e Q x (0, co) and triples (co', E', t') e Q x (0, co) x <0, co), respec

tively. Furthermore, they have integrable majorants on Q x (0, co) and 

Q x (0, oo) x <0, co), respectively. 

(c) F(x,co,E,t)eC{Bl;M} 

(d) Functions 

— dti dco' dE'K(x, co, E, t, co', E', tx) F(x - yJ(2E) co(t - tx), co', E', tt) . 
VXi Jo J Q Jo 

f* C f00 d E'e 
Kt(x, co, E,t) = \ dli dco' dE' — K(x, co, E, t, co', E', tx) — 

Jo J Q Jo SX( 

(i = 1, 2, 3) are bounded on M. 

00 

Then the series ]T cpm(x, co, E, t) where cp0 = F, 
m = 0 

(6) cpm(x, co, E, t) = 

= j d*i [dco' dE' K(x, co, E, t, to', E', rx) <pm_1(jc - yJ(2E) co(t - t^, to', E', rx) 
Jo JQJ Jo 

is uniformly convergent and solves Problem (1) in the class C{Bi; M}. 

Proof. Let us again restrict our attention to the set M 3 = F3 x Q = (0, oo) x 

x <0,1), I being an arbitrary but fixed number from the interval (0, oo). First of all, 

it is apparent from the assumption (c) that Fe C{BU M 3 } . This together with the 

assumptions (a) and (c) implies the existence of positive constants Ax < 1, A2, A3, A4 

such that 

,t /• Лoo 

dřj dco' d Ғ K(x, co, E, t, co', E', ti) 
Jo JQ J 0 

ғ , (E-E')/feT(ři) 
^ Є < Л 

^ Лl 9 

\ęA й A2Ee'EllkTWÌ , 

K.I ѓ A3, 
ôę, 

^ A4Ee-£/[fcr(,)] ( / = 1,2,3). 
|3x ; | 

By mathematical induction, it is easy to prove 
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Proposition 2. For any positive integer m, functions cpm, dcpJdXi (i = 1, 2, 3) 
are continuous on the set M3 and 

(7) \<pm(x9 co, E, t)\ = ATlA2Ee~ElkT 

dcp„ 
(8) 

ÕXІ 
S {ATlAt + (m - 1) A^2A2A3} e~mT . E 

Indeed, let m = 1. Then the inequalities (7) and (8) are obvious and it can be seen 

that cpl9 d(p1jdxi are continuous functions on M3 for i = 1, 2, 3. 

Let now fc > 1 be integer and assume that Proposition 2 holds for m = fc. The 

recursive formula (6) yields 

/»f /• /»00 

\(pk + 1(x9 co9 E91)\ = dt ! &<*>' dEfK(x9 co9 E9 t9 co'9 E', tj) A\~1A2E'e 
Jo J Q Jo 

5£ A, . A\-lA2Ee~EllkT™ = A\A2Ee-El*T™ , 

d<pk + i 

ÔXi 
й A ^ - ^ A ^ 1 " . ) + AxEe~Elkт\A\-xAь + (fc - 1) AГ2A2A3] = 

= Ee-ElkT(A\At + kAţ-tAzAi) . 

An immediate consequence of these inequalities is that also <pfc+i, S(pk+ljdxi are 
continuous functions on M3. Hence Proposition 2 is true also for m = fc + 1 and, 
consequently, for any positive integer m. 

Consider now the integral equation for the function cp of the form 

/•r /* poo 

(9) (p(x, co, E,t)=\ dti dco' dE' K(x, co, E, t9 co', E', t x) . 
Jo J Q Jo 

. <p(x — y/(2E) co(t - t^), co', E', li) + F(x, co, E, t). 

Every solution of this equation which is of the class C{Bt; M] is at the same time 
a solution of Problem (1), as it is easy to verify. Hence we shall consider equation 

00 

(9). Obviously, the function cp = £ <pm(x9 co9 E9 t) is a solution of this equation, since 
m = 0 

according to Proposition 2, it is a uniformly convergent series of successive appro
ximations of the solution of (9). 

It remains to prove that cp e C{BX; M). 

Let 
x(x9 co, E,t) = Jjcpm. 

m = l 

According to Proposition 2, functions 

eElkTJE.X, eE'kTlE.dxldXi ( . - . 1 , 2 , 3 ) 
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are continuous and bounded on the set M 3 . Therefore (with regard to the assumptions 
of Theorem 2) the functions 

(10) dcof dEf Z(x, co . co', E' -> E, t) x(x, to', E', t) , 
J Q Jo 

— dcof dEf Z(x, to . to', Ef -* F5 t) x(x, co', E', t) 
Sxt JQ Jo 

(i = 1, 2, 3) are also continuous on M3 . Now it is easy to see that 

*S f* /* 00 

(11) — dcof dEf Z(x, co . co', E' -> E, t) x(x, to', E', t) = 
ScOiJa Jo 

C C°° d 
= \ dco' \ dEf — Z(x, co . co', E' -» E, t) x(x, cof, Ef, t) , 

}n Jo 8cot 

d C f °° 
— dco' dEf Z(x, co . tof, Ef -» E, t) x(x, co', £ ' , t) = 
d£j*2 Jo 

C f °° d 
= dco' dF' — Z(x, co . to', E' -> E, t) x(x, to', E', t) 

h JO dE 
(i = 1, 2, 3). Condition (c) together with the relation (11) and the fact that / is chosen 
arbitrarily implies that cp e C{BX; M} which completes the proof of Theorem 2. 

N o t e : It is easy to see that cp ^ 0 for F = 0 on M. 

CONCLUDING REMARKS 

The class C{B; M} was defined in such a way to enable us to work with generalized 
functions. Hence Theorems 1 and 2 hold in a more general form. 

The necessary explanation is given by the following examples: 

1. Consider the case with no sources (S = 0) and let ij/ = Ee~ElkT\j/1 where the 
functions \j/1, dty^dE, d^/^dXi and d\l/1ldcoi (i = 1, 2, 3) are continuous and bounded 
on the set M. Furthermore, let assumptions (a) and (b) of Theorem 2 be satisfied, 
the functions Kt- being bounded on M for all i. Then evidently all assumptions of 
Theorem 2 are satisfied and Problem (1) has consequently only one solution in the class 
C{Bt;M}. 

2. Assume now \\J = 0, S = St5(E — E0), where the functions Sx(x, co, E, t), 
dS^dE, dS1)dxi and dS1ldcoi (i = 1, 2, 3) are continuous and bounded on M, E0 e 
e (0, co) (e.g., an external source of photoneutrons). Let again conditions (a), (b) of 
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Theorem 2 be satisfied and, moreover, let i) functions I, dljdE, dljdxi and dljdcoi 

(i = 1, 2, 3b be continuous o n M x f l x ( 0 , oo), ii)Kj (i = 1, 2, 3) be bounded on M. 

Then the majority of concrete models of effective cross-sections satisfy assumptions 

(c) and (d) of Theorem 2 as well. The method of successive approximations presented 

above yields then the solution of Problem (1) (which is unique in the set C{Bi; M}). 

In practical computations, bounded material media are involved in most cases. 

On the boundary between the body and the vacuum, or even inside the body, dis

continuities of the effective cross-sections, sources etc. may occur. 

However, it is apparent that almost always it is possible to replace the discontinuous 

transition of the corresponding functions by a convenient continuous transition and 

hence to approximate, with an arbitrary accuracy, the given problem by a problem 

to which both Theorems apply. 

The vacuum temperature is considered to be equal to that of the material body. 

Regarding more in detail equations (3a) and (9) we find that the contributions to the 

integrals on the right hand sides due to the vacuum are zero and hence the vacuum 

temperature introduced above has only formal character. 
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S o u h r n 

POČÁTEČNÍ PODMÍNKA V TEORII TRANSPORTU NEUTRONŮ 

JAN KYNCL 

V článku je diskutována transportní rovnice pro funkci hustoty neutronů v nená-
sobícím prostředí při zadaném počátečním rozložení. Makroskopické účinné prů
řezy a zdroje jsou uvažovány obecně jako funkce prostorových, úhlových, energetic
kých a časových souřadnic. Výsledky týkající se existence a jednoznačnosti řešení 
jsou shrnuty do dvou základních vět. 
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