Aplikace matematiky

Pavla Holasová

Algorithms. 27. AULEY. Finding zeros of a polynomial by the extended Mc Auley's method

Aplikace matematiky, Vol. 17 (1972), No. 5, 403-407

Persistent URL: http://dml.cz/dmlcz/103431

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

27. AULEY

FINDING ZEROS OF A POLYNOMIAL BY THE EXTENDED MC AULEY'S METHOD

Pavla Holasová, Matematicko-fysikální fakulta KU, Praha

Procedure $\operatorname{AULEY}(a, n$, eps1, eps2, mO, nO, L) zeros: (x, y);
comment a is a field of the real coefficients of a polynomial, n being its degree, eps1, eps 2 the admissible inaccuracies, $m 0, n 0$ the initial approximations for the coefficients m, n of the quadratic factor $Q(x)=x^{2}+m x+n, x$ and y are respectively the fields of real, and imaginary parts of the zeros;
value n, eps1, eps $2, m 0, n 0$;
integer n;
real eps1, eps2, m0, $n 0$;
array a, x, y; label L;
begin integer i, niter, npol, k;
real $m k, n k, r 1, r 2, r 3, r 4, r 5, r 6, d r 1 m, d r 2 m, d r 1 n, d r 2 n, d m, d n, d 2 r 1 n$, $d 2 r 2 n, d 21 m n, d 22 m n, d 2 r 1 m, d 2 r 2 m, s, s 1, s 2, m k 1, n k 1, t m, t n$;
array $m a[-2: 30], m b, m c[-2: 30]$;
if $a b s(a[n])-1.0 \leqq e p s 1$ then go to $A L$;
for $i:=0$ step 1 until $n-1$ do
$a[i]:=a[i] / a[n]$;
$a[n]:=1.0$;
AL: npol $:=0$;
AF: niter $:=0$;
$m k:=m 0 ;$
$n k:=n 0$;
AF1: $m a[-2]:=0 ; m a[-1]:=0$;
for $i=0$ step 1 until $n-3$ do
$m a[i]:=(a[i]-m k \times m a[i-1]-m a[i-2]) / n k ;$
$m a[n-2]:=1$;
$r 1:=a[n-1]-(m k+m a[n-3])$;
$r 2:=a[n-2)-(n k+m k \times m a[n-3]+m a[n-4]) ;$

```
\(m b[-2]:=0\);
\(m b[-1]:=0\);
for \(i:=0\) step 1 until \(n-3\) do
\(m b[i]:=(m a[i]-m k \times m b[i-1]-m b[i-2)] / n k ;\)
\(d r 1 m:=m b[n-4]-1.0\);
\(d r 2 m:=m k \times m b[n-4]+m b[n-5]-m a[n-3] ;\)
\(d r 1 n:=m b[n-3]\);
\(d r 2 n:=m k \times m b[n-3]+m b[n-4]-1.0 ;\)
\(r 3:=-d r 1 n ; r 4:=-d r 2 n\);
\(d n:=(d r 2 m \times r 1-d r 1 m \times r 2) /(d r 2 n \times d r 1 m-d r 1 n \times d r 2 m)\);
\(d m:=(d r 2 n \times r 1-d r 1 n \times r 2) /(d r 1 n \times d r 2 m-d r 1 m \times d r 2 n)\);
```

comment the end of the first step of the method, the second step follows which makes $d m$ and $d n$ more exact, this step is repeated twice;
$m c[-2]:=0$;
$m c[-1]:=0$;
for $i:=0$ step 1 until $n-3$ do
$m c[i]:=(2 \times m b[i]-m k \times m c[i-1]-m c[i-2]) / n k ;$
$r 5:=-m c[n-3] ; d 2 r 1 n:=r 5$;
$r 6:=-(m c[n-4]+m k \times m c[n-3]) ;$
$d 2 r 2 n:=r 6$;
$d 21 m n:=r 6-r 5 \times m k ;$
d22mn $:=r 3-r 5 \times n k$;
$d 2 r 1 m:=-r 5 \times n k-r 6 \times m k+2 \times r 3+r 5 \times m k \uparrow 2$;
$d 2 r 2 m:=n k \times(-r 6+r 5 \times m k)$;
$k:=1$;
$A K: s:=r 1+0.5 \times d 2 r 1 m \times d m \uparrow 2+d 21 m n \times d m \times d n+0.5 \times d 2 r 1 n$
$\times d n \uparrow 2$;
$s 1:=r 2+0.5 \times d 2 r 2 m \times d m \uparrow 2+d 22 m n \times d m \times d n+0.5 \times d 2 r 2 n$ $\times d n \uparrow 2$;
$d n:=(d r 2 m \times s-d r 1 m \times s 1) /(d r 2 n \times d r 1 m-d r 1 n \times d r 2 m) ;$
$d m:=(d r 2 n \times s-d r 1 n \times s 1) /(d r 1 n \times d r 2 m-d r 1 m \times d r 2 n)$;
comment the end of the second step;
$k:=k+1$;
if $k=2$ then go to $A K$;
$m k 1:=m k+d m ;$
$n k 1:=n k+d n ;$
$t m:=a b s((m k 1-m k) / m k 1) ;$
$t n:=a b s((n k 1-n k) / n k 1)$;
if $\mathrm{tm} \geqq \mathrm{eps} 1$ then go to $J E$;
if $t n \geqq e p s 1$ then go to $J E$;
RYC: niter $:=$ niter +1 ;
comment computation of the polynomial zeros follows;
$B F: s 2:=-m k 1 / 2$;
$s:=s 2 \uparrow 2-n k 1 ;$
if $s \geqq 0$ then go to $R E A$;
$s 1:=\operatorname{sqrt}(-s)$;
$x[2 \times$ npol +1$]:=s 2$;
$y[2 \times n p o l+1]:=s 1$;
$x[2 \times n \mathrm{nol}+2]:=s 2$;
$y[2 \times n p o l+2]:=-s 1$;
go to $D A$;
REA: s1:= sqrt(s);
$s:=s 2+s 1 ;$
$x[2 \times n p o l+1]:=s$;
$y[2 \times$ npol +1$]:=0.0 ;$
$s:=s 2-s 1$;
$x[2 \times n p o l+2]:=s$;
$y[2 \times n p o l+2]:=0.0$;
DA: npol:=npol +1 ;
$n:=n-2$;
if $n \leqq 0$ then go to $K O$;
if $n<3$ then go to NM2;
comment division of the polynomial by the quadratic factor follows;
for $i:=0$ step 1 until n do
$a[i]:=m a[i]$;
comment the installation of the computed values $m k, n k$ for the initial values of the coefficients m, n of the next quadratic factor follows;
$m 0:=m k ;$
$n 0:=n k ;$
go to $A F$;
NM2: if $n=2$ then
begin niter $:=0$;
$m k 1:=m a[1] ;$
$n k 1:=m a[0]$;
go to $B F$
end;
$s:=-m a[0]$;
$x[2 \times n p o l+1]:=s$;
$y[2 \times$ npol +1$]:=0.0$;
go to KO ;
$J E$: if $a b s(r 1)>e p s 2$ then go to $P R Y$;
if $a b s(r 2)<e p s 2$ then go to $R Y C$;
PRY: niter $:=$ niter +1 ;
$m k:=m k 1 ;$
$n k:=n k 1$;
if niter <500 then go to $A F 1$;
comment if the number of the iterations is 500 , the computation will continue at the label L;
go to L;
$K O$: end;

The above procedure isolates successively the quadratic factors

$$
Q(x)=x^{2}+m x+n
$$

of the polynomial

$$
f(x)=a_{0} x^{N}+a_{1} x^{N-1}+\ldots+a_{N} \quad\left(a_{i} \ldots \text { real numbers }\right)
$$

by means of the extended Mc Auley's Method described in [1]. The convergency criteria used:

$$
\left|\frac{m_{k+1}-m_{k}}{m_{k}}\right| \leqq e p s 1 \quad \text { and } \quad\left|\frac{n_{k+1}-n_{k}}{n_{k}}\right| \leqq e p s 1
$$

or

$$
\left|r_{1}\right| \leqq e p s 2 \quad \text { and } \quad\left|r_{2}\right| \leqq e p s 2
$$

where

$$
\lim _{k \rightarrow \infty} m_{k}=m, \quad \lim _{k \rightarrow \infty} n_{k}=n
$$

and r_{1}, r_{2} are the coefficients of the remainder,

$$
r(x)=r_{1} x+r_{2}
$$

and

$$
\frac{f(x)}{x^{2}+m_{k} x+n_{k}}=r_{1} x+r_{2} \quad \text { holds }
$$

The values eps1, eps2 depend on the accuracy of the computer. On the computer MINSK 22, it was taken

$$
\begin{aligned}
& e p s 1=10^{-6} \\
& e p s 2=10^{-6}
\end{aligned}
$$

For $m 0, n 0$ it usually suffices to choose

$$
\begin{aligned}
m 0 & =1 \\
n 0 & =1
\end{aligned}
$$

If the method with the above mentioned initial values does not converge, the choice

$$
\begin{aligned}
& n 0=\max _{i=1 \ldots N}\left|a_{i}\right| \\
& m 0=n 0 / 2
\end{aligned}
$$

may help in some cases.
The program has been made up according to [1] for the computer MINSK 22 in Fe1 Algol. It has been verified in fifteen examples (for polynomials of degrees $6-9)$. The results show that this method is a rapid and exact one, and at the same time its algorithm appears to be relatively short. Solving a non-trivial polynomial of degree 9 takes 2.2 minutes, with the accuracy of five decade figures. The program occupies 1127 memory cells. One can see the advantages of this method also from the tables in the paper [1]. However, it is necessary to remark that the results of these tables were obtained on a highly accurate computer by means of double precision (48 bit numbers in single-precision, 96 bit number in double-precision).

Example

$$
\begin{array}{ll}
& f(x)=x^{6}-1 \\
\text { Zeros: } & -0.5 \pm 0.866025 \\
& +0.5 \pm 0.866025 \\
& +1 \\
& -1 \tag{0}
\end{array}
$$

(The number of iterations is stated in brackets).

Literature

[1] John L. Smallwood: A comparison of five numerical methods for solving polynomial equations with real coefficients, TNN-88, Jan. 1969.

