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ON A SIMPLE ESTIMATE OF CORRELATIONS
OF STATIONARY RANDOM SEQUENCES

JAN HURT

(Received March 29, 1972)

This paper deals with a simple estimator for the correlation function of a stationary
Gaussian random sequence. In Section 1 the assumptions are formulated and a sta-
tistic based on signs of original values is proposed. The basic properties cf that statis-
tic such as its expectation and variance are given in Section 2. On the basis of these
properties, the proposed statistic can be used to estimate correlations of stationary
Gaussian random sequences. In Section 3 the asymptotic normality of the discussed
statistic is proved. The last section of the present paper contains some numerical
results for stationary Gaussian autoregressive series.

1. PRELIMINARIES

Suppose that {X,},r is a (weakly) stationary Gaussian discrete random process
where T'is the set of integers. Assume EX, = 0, te T. Let {0,}7_, be the correlation
function of {X,}.r, ie., ¢; = EX X,,;[6® where ¢® = EX;. Define the sequence

{ZI}IET by

(1) Z,=signX,, teT
and put
(2) T, =2Z7Z;, teT

for j natural. The quantities T; will be used to estimate the correlation function of
the process {X,}er-

2. BASIC PROPERTIES

From the normality of the marginal distributions of X,, te T, it follows that
P(Z,=0) =0, te T. Hence the event (Z, = 0) may be neglected in our consider-
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ations. Now we derive the distribution of the variable T,;. The quantity T,; assumes
only the values +1, —1 with nonzero probability. Thus

PT;=1)=PZ,=1,Z,;=0)+PZ =—-1,Z,;=-1).

Random variables X,. ..., X,;y-1 (N > j) have the simultaneous Gaussian distri-
bution with vanishing means and the covariance matrix G = (o)} =, where o, =
= 0i-k| o2. Therefore the joint distribution of X,, X,+; is Gaussian with the

covariance matrix
G. B 0-2 [Ql 1]
; .
1 o;
Integrating the joint density of X, X,,; over (0, ©) x (0, ), we can express the
probability P(Z, = 1, Z,, ; = 1) as follows:

(3) P(Z,=1,Z,,;=1) = (2n)" " (n — arccos ¢;) = (2n)~ " arccos (—g,) .

Similarly, we can obtain

4) P(Z,= —1,Z,,; = —1) = (2n)~ " arccos (—o,)
so that

(5) P(T,; = 1) = n~ " arccos (—¢;) .
Therefore

(6) P(T,; = —1)=1—P(T,; = 1) = n~"arccos g; .
Further,

(7) ET,; = n~' 2arccos (—g;) — 1 = n~ ' 2arcsin g;
and

(8) var T,; = 4 [n~ " arccos ¢; — (n~ " arccos 0,)*] .

If 4; is an estimator for ET,;, we can take the quantity

o

A M n A
©) 0j =sm <2 #1)

as an estimator for ¢;. We shall see below that

1 N-J
T.=—— Y T,
N —j P

is an estimator for ET,; which has some appropriate properties.

First of all we see that T is the unbiased estimator for ET,;. The exptession for
the variance of T; is rather complicated. To derive it we use the following lemmas.
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Lemma 1. Any Gaussian stationary discrete process is strictly stationary.

Proof. The assertion follows from the fact that the joint Gaussian distribution
is fully determined by the second order moments.

Lemma 2. The random process {Z,},eT is strictly stationary.
Proof. Let y,,, ..., y,, be an arbitrary sequence of numbers +1, —1. Let h be
integer and ¢, ..., t,,€ T. Then
P(Zi, = Yy oo Zoy = V4,)) = Py, X, >0,..., VinXe, > 0) =
= P(ythn‘f‘h >0,.., 9, X 48 > 0) = P(Znu. = Voo Lprn = }':,,.) .

tm

Lemma 3. Let j be a fixed natural number. Then the random process {T,;} .cr
is strictly stationary.

Proof. The proof is similar to that of Lemma 2.

In view of Lemma 3 the quantity cov (T,;, T;;) depends only on the difference t — s.
Denote

(10) Rjt = s) = cov (T, Ty)

for fixed natural j. After some computation it may be shown that

N—j N—-j—-1
(11) var 3 Ty = (N =) R(0) + 3 (N —j = k) Ry(k).
e

k=1

Let us evaluate the covariances R (k). Because of the stationarity,

(12) R(k) = ETy;Ty; — (ET;))* .
Obviously
(13) ETy; Ty = P(To;Tej = 1) = P(To,;Ti; = —1)

= 2P(Ty;T;; = 1) — 1.

Denote by A, the event (Z, = 1) = (X, > 0) and by 4, its complement.
Then
(14) P(Ty;Ti; = 1) = P(ZoZ;ZiZyy; = 1) =
= P(AgA;j A Avy ;) + P(AoA; A, AL ) +
+ P(Agd;AiAry ;) + P(AoA; 4 A1) +
+ P(AoA;A Ak ) + P(AgA;A Ay ) +
+ P(AoA;AAxsj) + P(AgA; A, A, )) -
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Using the well-known formula
(15) P(ABCD) = P(ABC) — P(ABCD) = P(AB) — P(ABC) —
— P(ABD) + P(ABCD)

which takes place for any random events A4, B, C, D, the formula (14) may be simpli-
fied and we obtain

(16) P(To; Ty = 1) = 8P(A™) + 2P(AyA}) + 2P(A,A,) +
+ 2P(AgAy+ ) + 2P(4;4,) +
+ 2P(A; Ay ) + 2P(44 A, ) —
— 4P(AgA;Ay) — 4P(A0A AL, ) —
— 4P(Ao Ay Ay 1) — 4P(A;4, 4,4 5) — 1
where A" = AgA;A A+ -

An explicit formula for calculating P(4™) is not known in general case. Plackett has
derived a reduction formula for normal multivariate integrals (see [6]). His procedure
may be used in order to calculate P(A+) numerically. In the case that the event E
is an intersection of at most three of the events Ay, 4;, Ay, Ay, the same author has
derived explicit formulas for P(E) (see again [6]).

The correlation matrix of (X, X, Xy, Xy ) is

(17) L o; o Oks+j
1 or—; ok
1 0;
1

From (3) it follows that
(18) P(A,A¢rs) = (2m)~ " arccos (—gy)
and Plackett’s formula for the three-dimensional normal integral on the range
(0, ) x (0, ) x (0, ©) gives
(19) P(AtAr+sAt+s+u) =
= (47I)_1 [arccos (—Qs) + arccos (_Qs+u) + arccos (_Qu) - ﬂ:] .
Using (13), (18), and (19) we get

(200 ETyT; = 16P(4*) — 2~ ' [2arccos (—e;) + 2 arccos (—gy) +

+ arccos (—@x+j) + arccos (—e-5)] +5.
Finalily,

(21) Rj(k) — 16P(A+) _2r ! [2 arccos (—Qk) + arccos (—~Qk+,-) +
+ arccos (— k)] — 4n” 2 arccos® (—g;) + 4.
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Sometimes, it will be more convenient to use the expression
(22) Rj(k) = 4[4P(A") — n~? arccos® (—g;) — n~ ! arcsin g, —
— (2m)™ ! arcsin gy, ; — (2m) ! arcsin g, ;]

which follows from (21) in view of arccos (—x) = 4 + arcsin x. Note that the for-
mulas hold for any integer k.

3. ASYMPTOTIC PROPERTIES

In this section we shall prove the asymptotic normality of TJ for a wide class of
random sequences and the law of large numbers for {T,;},.;. Our method is based
on some results of Ibragimov and Linnik ([3]).

We say that a strictly stationary random sequence {X,} ., satisfies the strong
mixing condition if
(23) ax(t) = sup |[P(4B) — P(A) P(B)| - 0

A€M (X), Be MX(X)

for t - 0, T > 0, where M[(X) is the minimal o-field generated by the class {4}
of sets in Q,

A={w:(X,(0),....X, (0)eB)}, BeB
b ty,....,t;eT.

sy AL <...<t

IIA

(B, denotes the o-field of Borel sets of R,.)

Lemma 4. If {X},.r is a random sequence satisfying the strong mixing condition
then {Zt}teT satisfies the strong mixing condition, too.

Proof. Suppose a < t; < ... < t, £ b, 1y, ..., t,e T. The mapping (X,,, ..., X,):
Q —> R, is M(X) — B-measurable. The function sign: R — R is measurable so that
the composite mapping sign X,: Q - R is MY(X) — B-measurable, a < 1 < b. In
view of Theorem II.5.3.b ([5]) the mapping
(sign X,,, ..., sign X, ): @ — R, is M(X) — B-measurable so that (Z,, ..., Z,) (B) e
e M(X) for each Be B,. Because of the minimality of MY(Z) it is MY(Z) <

cMY(X), particularly M (Z) = M (X), MZ(Z) = iIR"“(X) Therefore ay(t) =
2 ay(7) for all T > 0.

Lemma 5. If {Z,},.; is a random sequence satisfying the strong mixing condition
then {T,;},cr satisfies the strong mixing condition for any j natural.

Proof. Fora < t, < ... < t; £ b the mapping (T}, ..., T,.;): @— Ry is MY(T, )—
— B-measurable. Both Z;: Q- R and Z,,;: Q>R are smgﬂ(z)
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measurable so that Z,Z,, ;:  — R is M, J(Z) — B-measurable. Therefore (T;,;, ...
o T, ) Q@ = R, is M, *(Z) — B-measurable. This implies that My(T;) < ME(Z),
o, (7) < oyt — j) for t > jand 0 < aq (1) £ ay(t — j) - 0 for 7 - oo.

Note that the important inequalities

(24) ax(1) = ay(t) = ar (T +J)
for the strong mixing coefficients follow from the proofs of Lemmas 4,5.

Properties of the strong mixing coefficients play a crucial role in the central limit
theorems for dependent random variables. However, the investigation of the pro-
perties of the coefficient ay(7) is somewhat difficult, in general. Kolmogorov and
Rozanov (see e.g. [7]) have derived an important result concerning the behaviour
of ay(7) for Gaussian stationary random sequences. Let —o0 < a < b £ 0. Denote
by L!(X) the closed linear hull generated by X,, ..., X,. Here the convergence in the
mean is considered.

Define

(25) ox(t) = sup EUV
L

where L= {(U, V): Ue L’_ (X), Ve L7 (X), EU*> = EV? = 1}. Then for Gaussian
stationary random sequences {X,} .y the inequality
(26) ax(1) < 0x(t) < 2may(1)
holds. (See [7]).

Theorem 1. Suppose that {X,},er is a Gaussian stationary random sequence with
the zero mean and the spectral density f(1) > m > 0 where m is a constant. Suppose
that f is k-times differentiable and |f*®(1)] £ M, (k > 1).

Then
ofe + 1) S AMy T nem !, (c22)

where A is a constant which does not depend on f. Moreover, if f%(J) is a function
of bounded variation on [ —m, ] then

(27) ox(t+ 1) ™M m™ (r22).
Proof. The proof of the above assertion may be obtained by a slight modification
of the proof of Theorem 17.7.3 in Ibragimov’s and Linnik’s book ([3], see also [2]).
Theorem 2. Any Gaussian stationary autoregressive random sequence satisfies
the strong mixing condition.

Proof. Let us consider a Gaussian stationary autoregressive random sequence
{X}ier generated by

n
Z an—kXx—k = Yn te T’
k=0
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where {Y,},.; is a white noise with unit variance. The spectral density function of
such a sequence is
-2

n
Ya, e, de[-mn].

k=0

f(2) = 57;

The stationarity of {X,},r guarantees Y. a,_, e** = 0 so that f(2) is continuous on
[ ==, 7] and attains a minimum m > 0 on [ —x, n]. After the explicit evaluation of
f"(4) it may be shown that | f”(2)| is bounded. Therefore we can apply Theorem 1
t0 {X,},er. Further 1" In t — 0 for  — co which proves the theorem.

N
To prove the asymptotic normality of N™' Y T,; we make use of the following
t=1

formulation of the central limit theorem:

Theorem 3. Let {W,}.cr be a strictly stationary random sequence with the mean
zero. Suppose that {W,},er satisfies the strong mixing condition with a coefficient

ay(7). Suppose . ay(t) < co. Let W, be uniformly bounded with probability one.
=1
Then

(28) o = EWg +2Y EW,W, < .
t=1

If oy =% O then

. o .
(29) llmP{“ v YW, < z} =(27r)_1/2J‘ e~ 12 dx
=1

N-ow Ow -
Proof. See [3], Theorem 18.5.4.

Theorem 4. Let {X,},.r be a Gaussian stationary autoregressive random sequence.
Then

(30) a’,l.j =Rj(0) +2Y Ryk) < o
k=1
for fixed j natural and the limiting distribution of
JN(T; - ET,;) as N - oo is N(0, 07,) .

Proof. Put Ty; = T,; — ET,; for te T.
The random sequence {T,;} . is strictly stationary with the zero means and satisfies
the strong mixing condition with a coefficient ay(t) = oy (). Further |Tjj| < 1 +
+ ETo; with probability one. It follows from Theorem 1 that gx(t + 1) < const.
7% In ©. From (24) and (26) we obtain ar(t + 1+ j) < ex(r + 1) so that

ar (T + 1 +j) < const. ©72 In 7 for t = 2. The series Y 77 21n 7 converges, hence
t=2
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0

Y ar(t + 1+ j) < oo.Obviously o7, = o7+ Therefore, it follows from Theorem 3
=2

that 67, < . If 67, > 0 then the statistic

1 AR,

2T

UTJVNV‘=1

has an asymptotically normal distribution N(0,1). It remains to prove that if a%j =0

then the distribution of N~1/2 > T,’}: converges to a degenerate one with a saltus at
the point zero. It follows from (11) that

N—-1 N—-1

(31) var 3 T,y = NIR(0) + 2 3 Rk~ 2 T kR(K)

=1 k=1

Ibragimov and Linnik ([3], p. 388) have shown |R (k)| < 4a; (k) and thus
1

CHICICE

1

kR (k)| < 41 ZJNkoch(k) +4 Y kosz(k) =<

<k VN<k=N

<4 N ar(k) + 4N Y ar(k) = o(N).
1= =
N

Consequently a%j and var ) T,; are connected by

N
(33) var ). T,; = Noz (1 + o(1)).

t=1
Applying Chebyshev’s inequality we obtain

g

as N — oo for any ¢ > 0.

| A
— T*
\/ N xgl Y

<g}>1_ﬁj(_1i£(1_))61
> =
t

The following corollary may be obtained in the same manner as the second part of the
proof of Theorem 4 (case o7, = 0).

Corollary. If {X,},ET is a Gaussian stationary autoregressive sequence then
N
lim P{[N"' Y T,; — ETy;| < ¢} = 1 for any ¢ > 0.
N- o t=1
We give a somewhat more general formulation of Theorem 4 (without the assump-
tion of autoregressive model). Its proof is analogous to that of Theorem 4.

Theorem 4'. Let {X,},ET be a Gaussian stationary random sequence with the
spectral density f(2). Suppose f(1) > m > 0 and |f"(})| £ M, for Ae[—nn].
Then (for fixed j natural) the limiting distribution of \/N(T; — ET,;) as N - o
is N(0, o7)-
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4. NUMERICAL RESULTS

We have said that
¢; = sin (42 T))

may serve as an appropriate estimator for g;. It is clear that §; has the asymptotic
distribution
-1/2 .
¢ [N ale (— arcsin x — ETOj>]
w

where @ is the distribution function of N(0, 1).

The properties of the proposed statistic were investigated numerically for selected
stationary autoregressive sequences. Some of these series were simulated on a digital
computer. The results are summarized in Tables 1—5. Table 5 contains variances
of T; for selected autoregressive series. This table shows a favourable property of
var T, in the first order autoregressive series, namely, that var T, does not depend
practically on g.

Example 1. 100 series of the type X, = 0.6 X,_, + Y, were generated, each of
them of the length 20. Disturbances Y, are normal N(0, 1). Sample means and
sample variances of r;, T, 0; are given in Table 1. This table also contains the
theoretical values of ¢; to compare ¢; with ;.

TABLE 1
Sample means and variances of r;, T Z)j for the first order autoregression X, = 06 X,_, + Y,

I ] e

True value of Mean of Variance of Bias of i

j N [ T T e R R e
I R O B R R R R R R A S ’
| | . |
1 600 410 541 | 417 | -582 | -042 | -038 | 057 | —-059 | -007 | —-018 l
2 -360 234 325 | -245 | -355 | -062 | -047 | -091 | —-035| -009 | —.005 i
3 216 ‘138 [ 210 | 158 | 230 | 070 | -065 | -128 | —-006 | -020 014 |
Example 2. 50 series of the first order autoregression X, = —0.5 X,_, + Y, were

generated, each of them of the length 20. Disturbances Y, are N(0, 1). Characteristics,
the same as in Example 1, are given in Table 2.

Example 3. 20 series of the type X, = 0.9 X,_, + Y, were generated, each of them
of the length 100. Correlation characteristics are presented in Table 3.

Example 4. Let us study the behaviour of ¢; when the assumption of normality
i1s omitted. The selected series consists of the first 100 terms of Kendall’s artificial
series 5a ([4]) generated by X, = 1.1 X,_, — 05X,_, + Y,.
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TABLE 2

Sample means and variances of r; for the first order autoregression X, = —0-5 X,_ + Y,
True value of Mean of Vanance of Bias of
j . - I _ ~ [ T
QJ 777777 ETOJ l ’ L rJ ’ Tl I Qj rj J TJ ’ 0]
| |
i
1 |—-500| —-333 | — 489! — 359' —-501 ‘ -042 ‘ 050 {‘ -086 011 | I —-026 | —-001
2 250 | -lel | 247 191 | 2721 051 | 059 | -112 | —-003 | 030 022
3| 125 —079| —122| — 120' —-159 | -067 ‘ -064 ‘ ‘134 -003 | —-041 ‘ —-034
i - SN IR N N NS BN B
TABLE 3
Sample means and variances of r;, 7-, éi for the first order autoregression X, = 09 X,_, + Y,
True value of Mean of Vanance of Bias of
j e — . — ——— —
BRI AR AN A
| ] N
1 -900 713 870 | 706 l -882 | 002 | -010 | 006 | —-030 | —-007 | —-018
2 -810 -601 792 1 619 | -820 | -004 | -007 | 005 | —-018 018 | -010
3 -729 -520 -710 i -541 } -743 | -005 ‘ -009 ’ ‘008 | —-019 -021 -014
i | |
TABLE 4
Correlation characteristics of Kendall’s artificial series X, = 11 X,_; —0-5X,_, + Y,
S - - ) |
Y 0; g T; o
i i
1 733 | 787 -596 -805 |
2 -307 479 -347 ‘518
3 —-029 -188 155 -240
4 —-185 -055 -063 -098
5 —-189 -006 —-074 —-115
6 —-116 -005 —-064 —-100
7 —-033 -004 —-075 —-118
8 | 022 031 |~ -000 -000
9 041 | —017 | —011 | —-017
| |
10 ' -034 —-010 -044 070

The disturbances y, are rectangular with zero means and unit variances in this case.
The results are presented in Table 4. It may be seen that the non-normality of Y,
proved not to be significant.
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TABLE 5
Variances of 'Tj for selected autoregressive series

A white noise

B first order autoregression X, = 09 X,_; + Y,

C first order autoregression X, = 0-6 X,_ (Y

D first order autoregression X =—05X,_{+ Y,

E second order autoregression X, =11X,_,—-05X,_,+ Y,

’ Length A | B | E
\l of series N | var T var T, ‘ var T, ‘ var T var T
’ 5 -2500 -1750 3216 5009 ‘1375
1 10 1111 -0937 -1608 2290 ‘0559
| 15 ‘0714 <0652 -1098 1526 ‘0350
i 20 ‘0526 -0501 ‘0836 1149 ‘0255
E 25 ‘0417 | -0408 ‘0675 <0921 0201
\‘ 30 0345 | 0344 ‘0566 ‘0768 ‘0166
! 35 ‘0294 <0297 -0487 <0659 ‘0141
i 40 10256 <0262 ‘0427 -0576 ‘0123
45 <0227 ‘0234 +0381 ‘0512 ‘0109
50 10204 <0212 ‘0343 -0461 0098
55 0182 ‘0194 ‘0313 ‘0419 ‘0089
60 ‘0169 ‘0178 ‘0287 ‘0384 <0082
65 ‘0156 ‘0165 ‘0265 ‘0355 ‘0075
70 ‘0145 ‘0154 10247 ‘0329 -0070
75 ‘0135 ‘0144 10230 ‘0308 0065
80 ‘0127 ‘0136 ‘0216 10288 ‘0061
5 85 ‘0119 : ‘0128 10204 ‘0271 ‘0058
90 ‘0112 j‘ ‘0122 -0193 10256 <0055
95 -0106 ‘0116 ‘0183 10243 <0052
100 -0101 ‘0110 ‘0174 <0231 -0049

Length e ¢ R D

of series N var T var T, l var T var Ty
5 -2385 3798 !, 5680 2437

10 1102 | 1541 ‘ 1885 ' 1109

15 ‘0717 J ‘0966 ’ 1128 | 0718

20 ‘0531 | -0704 |  -0805 0531

25 0422 0554 0626 -0421

30 0351 ‘0456 0512 -0349

35 0300 -0389 -0433 -0298
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Souhrn

O JEDNODUCHEM ODHADU KORELACNI FUNKCE
STACIONARNICH NAHODNYCH POSLOUPNOSTI

JAN HURT

Necht {X },.; je stacionarni gaussovsky diskrétni proces, kde T je mnoZina celych
Cisel. Pfedpokladejme ET, = 0, te T, a ozname Z, = sign X, T,j=Z2Z;pro j
pfirozené. Ukazuje se, Ze ET,; = 2 arsin Qj/ﬂf, kde ¢; je korela¢ni koeficient X, a X, ;,
takZe veliCiny T,; mohou byt uZity k odhadu korelagni funkce ptivodniho procesu
{X }ier Dile j;cv ogvozen vzorec pro vypocet cov (Toj, T,). Asymptotické vlastnosti

_ —J
praméru T; = )" T,;/(N - j) jsou studovany za pfedpokladu, Ze spektralni hustota
t=1
procesu {X,},ET je nenulovd a ma ohranicenou druhou derivaci. Specialné odvozené
vysledky plati pro stacionarni gaussovské autoregresni posloupnosti, coZ je prakticky
nejdileZitejsi pripad. Je dokéazano, Ze T, je asymptoticky normélni, a Ze posloupnost
{T,;}er splituje zakon velkych &isel. Na zavér jsou uvedeny n&které numerické pii-
klady a Monte-Carlo studie navrhované statistiky.
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