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SVAZEK 18 (1973) APLIKACE MATEMATIKY ČÍSLO 3 

ON A SIMPLE ESTIMATE O F CORRELATIONS 
OF STATIONARY RANDOM SEQUENCES 

J AN HURT 

(Received March 29, 1972) 

This paper deals with a simple estimator for the correlation function of a stationary 
Gaussian random sequence. In Section 1 the assumptions are formulated and a sta­
tistic based on signs of original values is proposed. The basic properties of that statis­
tic such as its expectation and variance are given in Section 2. On the basis of these 
properties, the proposed statistic can be used to estimate correlations of stationary 
Gaussian random sequences. In Section 3 the asymptotic normality of the discussed 
statistic is proved. The last section of the present paper contains some numerical 
results for stationary Gaussian autoregressive series. 

1. PRELIMINARIES 

Suppose that {Xt}teT is a (weakly) stationary Gaussian discrete random process 
where Tis the set of integers. Assume EXt = 0, t e T. Let {Oy}JL0 be the correlation 
function of {Xt}teT, i.e., Qj = EXtXt+j\o2 where o2 = FX0. Define the sequence 
{Zt}teT b y 
(1) Z, = signX,, teT 

and put 

(2) Ttj = ZtZt+j, teT 

for j natural. The quantities Ttj will be used to estimate the correlation function of 
the process {Xt}teT. 

2. BASIC PROPERTIES 

From the normality of the marginal distributions of Xt, teT, it follows that 
P(Zt — 0) = 0, teT Hence the event (Zt = 0) may be neglected in our consider-
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ations. Now we derive the distribution of the variable TtJ. The quantity Ttj assumes 

only the values + 1 , - 1 with nonzero probability. Thus 

P(TtJ = 1) = P(Z, = 1, Zt+J = 1) + P(Z, = - \,Zt+j = - 1) • 

Random variables Xt9..., Xt+N-t (N > j) have the simultaneous Gaussian distri­

bution with vanishing means and the covariance matrix G = (cx,fc)f>fc = 1 where oik = 

= Q\i-k\ °2' Therefore the joint distribution of Xt, Xt+j is Gaussian with the 

covariance matrix 

* - [ ? : ] • 
Integrating the joint density of Xt9 Xt+j over (0, oo) x (0, oo), we can express the 

probability P(Zt = \,Zt+j = 1) as follows: 

(3) P(Zt = 1, Zt + j = 1) = (27r)_1 (n — arccos Q3) = (2n)~l arccos ( — gj) . 

Similarly, we can obtain 

P(Z, = - V Zt+j = - 1 ) = (27T)-1 arccos (-Qj) (4) 

so that 

(5) 

Therefore 

(6) 

Further, 

C) 
and 

(8) 

P(T0. = 1) = я - 1 arccos^-O^.) . 

p(Ttj = - 1 ) = 1 - P(Ttj = 1) = n'1 arccos Qj. 

ETtJ = 7i_ 1 2 arccos ( —Oy) — 1 = тr - 1 2 arcsin O7-

var Ttj = A[n l arccos Qj — (n 1 arccos O7)
2] 

If flj is an estimator for ETtj, we can take the quantity 

(9) ř . - S I П I - |Z,. 

as an estimator for O7-. We shall see below that 

1 
P, = . Z ^ j 

/V - j ř = i 

is an estimator for FF0j which has some appropriate properties. 

First of all we see that Tj is the unbiased estimator for ETtj. The expression for 
the variance of T.- is rather complicated. To derive it we use the following lemmas. 
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Lemma 1. Any Gaussian stationary discrete process is strictly stationary. 

Proof. The assertion follows from the fact that the joint Gaussian distribution 
is fully determined by the second order moments. 

Lemma 2. The random process {Zt}teT is strictly stationary. 

Proof. Let yti, ..., ytn be an arbitrary sequence of numbers + 1 , —1. Let h be 
integer and tJ? . . . , tmeT Then 

P(Ztl = yti,..., Ztm = ytm) = P(ytiXtl > 0, ..., ytmXtm > 0) = 

= P(ytlXtl+h > 0, ..., ytmXtm+h > 0) = P(Z,1+/l = y,l? ..., Z,w+/J = y J . 

Lemma 3. Let j be a fixed natural number. Then the random process {Ttj}teT 

is strictly stationary. 

Proof. The proof is similar to that of Lemma 2. 

In view of Lemma 3 the quantity cov (Ttj, Tsj) depends only on the difference t — s. 
Denote 

(10) * , ( t - s ) = cov(T„,T s ,) 

for fixed natural j . After some computation it may be shown that 

(11) va / i f r* _. (JV _ ;) K.(O) +" £ '(JV _ ; - fc) R.(fe). 
r = l fc=l 

Let us evaluate the covariances Rj(k). Because of the stationarity, 

(12) Rj(k) = ET0iTfc7. - (ET0j)
2 . 

Obviously 

(13) ET0JTkJ = P(T0,T», = 1) - P(T0j.Tt, = - 1 ) 

= 2P(To;T^ = 1) - 1 . 

Denote by At the event (Z, = 1) = (Xt > 0) and by A, its complement. 

Then 

(14) P(T0JTkJ = 1) = P(Z0ZjZkZk+J = 1) = 

= P(A0AjAkAk+j) + P(A0AjAkAk+j) + 

+ P(A0AjAkAk+j) + P(A0AjAkAk+J) + 

+ P(A0AjAkAk+j) + P(A0AjAkAk+J) + 

+ P(A0AjAkAk+J) + P(A0AjAkAk+j) . 
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Using the well-known formula 

(15) P(ABCD) = P(ABC) - P(ABCD) - P(AB) - P(ABC) -

- P(ABD) + P(ABCD) 

which takes place for any random events A, B, C, D, the formula (14) may be simpli­
fied and we obtain 

(16) P(T0jTkJ =1) = 8P(A+) + 2P(A0Aj) + 2P(A0Afc) + 

+ 2P(A0A ,+ i) + 2P(AjAk) + 

+ 2P(AjAk+J) + 2P(AfcAfc+i) -

- 4P(A0AyAk) - 4P(A0A iAk + i) -

- 4P(A0AkAfc+/) - 4P(AjAkAk+J) - 1 

where A+ = A0AjAkAk+j . 

An explicit formula for calculating P(A+) is not known in general case. Plackett has 
derived a reduction formula for normal multivariate integrals (see [6]). His procedure 
may be used in order to calculate P(A+) numerically. In the case that the event E 
is an intersection of at most three of the events A0, Aj9 Ak, Ak+j, the same author has 
derived explicit formulas for P(F) (see again [6]). 
The correlation matrix of (X0, Xj9 Xk, Xk+J) is 

(17) 1 Qj Qk Qk+j 
1 Qk-j Qk 

1 Qj 
1 

From (3) it follows that 

(18) P(A,At+s) = (2K)-1 arccos ( - £ s ) 

and Plackett's formula for the three-dimensional normal integral on the range 

(0, oo) x (0, oo) x (0, oo) gives 

(19) P(A,At+sAt+s+u) = 

= (47t)_1 [arccos (-<?s) + arccos (-<?,+„) + arccos (-<?„) - TT] . 

Using (13), (18), and (19) we get 

(20) ET0JTkj = 16P(A+) - 27I -1 [2 arccos (-Qj) + 2 arccos ( - & ) + 

+ arccos (~Qk+j) + arccos (-Qk-j)] + 5 • 
Finally, 

(21) Rj(k) = 16P(A+) - 2TT X [2 arccos ( - & ) + arccos (-Qk+J) + 

+ arccos ( -£* - ; ) ] - 4TT"2 arccos2 ( - C . ) + 4 . 
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Sometimes, it will be more convenient to use the expression 

(22) Rj(k) = 4[4P(A+) - n"2 arccos2 (~Qj) - n'1 arcsin Qk -

— (2n)~x arcsin Qh+j — (In)"1 arcsin Qk-j"] 

which follows from (21) in view of arccos (•— x) = ^n + arcsin x. Note that the for­
mulas hold for any integer k. 

3. ASYMPTOTIC PROPERTIES 

In this section we shall prove the asymptotic normality of T. for a wide class of 
random sequences and the law of large numbers for {TtJ}teT. Our method is based 
on some results of Ibragimov and Linnik ([3]). 

We say that a strictly stationary random sequence {Xt}teT satisfies the strong 
mixing condition if 

(23) OLX(T) = sup \P(AB) - P(A) P(B)\ -> 0 

Aem^^X^Bem^X) 

for T -> oo, T > 0, where Wlb(X) is the minimal cr-field generated by the class {A} 
of sets in Q, 

A = {co:(Xtl(co), ...,Xts((o))eBs}, Bse%s, a £ tx < ... < ts ^ 

S b9tl9...,tseT. 

(93s denotes the cr-field of Borel sets of Rs.) 

Lemma 4. If {Xt}teT is a random sequence satisfying the strong mixing condition 
then {Zt}teT satisfies the strong mixing condition, too. 

Proof. Suppose a g t1 < . . . < ts ^ b, tl9..., tse T. The mapping (Xtl, . . . , X J : 
Q —> Rs is Wlb(X) — 33s-measurable. The function sign: R —> K is measurable so that 
the composite mapping sign Xt: Q -> R is Wlb(X) — ^-measurable, a g t g b. In 
view of Theorem II.5.3.b ([5]) the mapping 

(signX f i , . . . , sign XJ: Q -> Ks is 9Jt*(X) - ^-measurable so that (Z f l , . . . , ZJ _ 1(J5) e 
e Wlb

a(X) for each B e 23s. Because of the minimality of 9M*(Z) it is hlb(Z) c 
c=2Rj(.X), particularly $R° ^(Z) c SR° ^(X), aRr°°(Z) c 9KT°°(K). Therefore ax(T, ^ 
^ az(T) f ° r 1̂1 T > 0. 

Lemma 5. If {Zt}teT is a random sequence satisfying the strong mixing condition 
then {Ttj}JeT satisfies the strong mixing condition for any j natural. 

Proof. For a g tx < . . . < ts £ b the mapping (T,u-, . . . , Ttsj): Q -> Rs is SK*(T,) -
- ©.-measurable. Both Zt: Q-> R and Zt+j: Q -> K are 9^ + i (Z) - ®-
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measurable so that ZtZt+J: Q -» R is Mb
a
+J(Z) — ©-measurable. Therefore (Ttlj9 . . . 

..., Ttsj): Q -> Rs is ^ + i ( Z ) - 93,-measurable. This implies that WbJjj) c 9H*+y(Z), 
aTj(T) ^ az(T — j) for T > j and 0 :g a r (T) 5̂  az(T — j) —> 0 for T -> oo. 

Note that the important inequalities 

(24) <XX(T) = az(T) ^ a r .(T + j) 

for the strong mixing coefficients follow from the proofs of Lemmas 4,5. 

Properties of the strong mixing coefficients play a crucial role in the central limit 
theorems for dependent random variables. However, the investigation of the pro­
perties of the coefficient OLX(T) is somewhat difficult, in general. Kolmogorov and 
Rozanov (see e.g. [7]) have derived an important result concerning the behaviour 
of aA(T) for Gaussian stationary random sequences. Let - o o ^ a ^ f c ^ o o . Denote 
by Lb

a(X) the closed linear hull generated by Xa9 ..., Xb. Here the convergence in the 
mean is considered. 
Define 

(25) QX(T) = sup EUV 
L 

where L= {(17, V): UeI?_JX), VeU°x(X)9 EU2 = EV2 = 1}. Then for Gaussian 
stationary random sequences {Xt}teT the inequality 

(26) CCX(T) ^ QX(T) ^ 2nax(T) 

holds. (See [7]). 

Theorem 1. Suppose that {Xt}teT is a Gaussian stationary random sequence with 
the zero mean and the spectral density f(X) > m > 0 where m is a constant. Suppose 
that f is k-times differentiate and \f{k)())\ ^ Mk (k > 1). 
Then 

Qx(* + 1) = AMk T~k In T m" 1 , (T ^ 2) 

where A is a constant which does not depend on f. Moreover, if f(fc)(X) is a function 
of bounded variation on [ — n9 n\ then 

(27) QX(T + 1) ^T~kVkm-1 ( T ^ 2 ) . 

Proof. The proof of the above assertion may be obtained by a slight modification 
of the proof of Theorem 17.7.3 in Ibragimov's and Linnik's book ([3], see also [2]). 

Theorem 2. Any Gaussian stationary autoregressive random sequence satisfies 
the strong mixing condition. 

Proof. Let us consider a Gaussian stationary autoregressive random sequence 
{Xt}teT generated by 

n 

l_j an-k^t-k = *t9 t e T , 
fc = 0 
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where {Yt}teT is a white noise with unit variance. The spectral density function of 
such a sequence is 

/(A) = 1 
271 

Z a«-fee řJfcA 
- 2 

ÂЄ [ — 7Г, 7l] . 

The stationarity of {KJreT guarantees V an_k eikX + 0 so thatf(X) is continuous on 
[ —7i, 7i] and attains a minimum m > 0 on [ — n, n~\. After the explicit evaluation of 

f"(X) it may be shown that |f"(A)| is bounded. Therefore we can apply Theorem 1 

to {Xt}teT. Further T " 1 In T -> 0 for T —> oo which proves the theorem. 
N 

To prove the asymptotic normality of N"1 £ TfJ- we make use of the following 
t=i 

formulation of the central limit theorem: 

Theorem 3. Let {Wt}teT be a strictly stationary random sequence with the mean 
zero. Suppose that {Wt}teT satisfies the strong mixing condition with a coefficient 

CO 

(XW(T). Suppose YJ aW(T) < oo. Let Wt be uniformly bounded with probability one. 
T = l 

Then 
00 

(28) aw = EW0
2 + 2 £ FJVoJVt < oo . 

t = i 

If aw + 0 then 

(29) l i m P I — ~ Y Wt < z\ =-= (2TT)- 1 / 2 f e~*2/2 dx . 
N-oo ( a ^ N ,= i J J „ c o 

Proof. See [3], Theorem 18.5.4. 

Theorem 4. Lef {Xt}teT be a Gaussian stationary autoregressive random sequence. 
Then 

(30) <JTj = Rj(0) + 2fjRj(k)< oo 
k = l 

fOr fxed j natural and the limiting distribution of 

JN (Tj - EToj) as N -> oo is N(0, a2.) . 

Proof. Put T*j = Ttj - EToj for t e T. 

The random sequence {Ttj}teT is strictly stationary with the zero means and satisfies 

the strong mixing condition with a coefficient ar.,(T) = OCTJ(T). Further |T*| < 1 + 

+ ET0j with probability one. It follows from Theorem l ' that QX(T + 1) ^ const. 

T~ 2 In T. From (24) and (26) we obtain a r /T + 1 + j) ^ DX(T + 1) so that 
00 

CCTJJT + 1 + j) <; const. T~ 2 In T for T ^ 2. The series £ T~2ln T converges, hence 
T = 2 
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X a T ( T + 1 + J) < °°- Obviously a r j. = o-^*. Therefore, it follows from Theorem 3 
t = 2 

that oTj < oo. If o~rj > 0 then the statistic 

i w 

Zт?j oTj^N t=i 

has an asymptotically normal distribution N(0,l). It remains to prove that if oT. = 0 
then the distribution of N~1/2 ]T Tr* converges to a degenerate one with a saltus at 
the point zero. It follows from (11) that 

(31) var £ TtJ = JV[R,(0) + 2 X * / * ) ] - 2 I kR/fc). 
ř = l fc=l fc=l 

Ibragimov and Linnik ([3], p. 388) have shown |JR/(fc)| < 4ar.(fc) and thus 

(32) \N^kRj(k)\<Yk\Rj(k)\<4 £ fcar,(fc) + 4 £ kar,(fc) g 
fc=l fc=l l ^ f c ^ V l V JN<k<zN 

<4jN £ a r,(k) + 4N X f-r/fe) = <>(*) • 

Consequently a r . and var £ TfJ- are connected by 
* = i 

(33) var £ Tr, = JV<rr,(l + o(l)) . 
t=l 

Applying Chebyshev's inequality we obtain 

VJV & ,J j -

as N -> oo for any e > 0. 

The following corollary may be obtained in the same manner as the second part of the 
proof of Theorem 4 (case oT. = 0). 

Corollary. If {Xt}teT is a Gaussian stationary autoregressive sequence then 
N 

lim PdN™1 £ Ttj - FT0;| < e} = 1 for any e > 0. 
N~>00 f = l 

We give a somewhat more general formulation of Theorem 4 (without the assump­
tion of autoregressive model). Its proof is analogous to that of Theorem 4. 

Theorem 4'. Let {Xt}teT be a Gaussian stationary random sequence with the 
spectral density f(X). Suppose f(X) > m > 0 and \f"(X)\ g M2 for X e [— n,7i]. 
Then (for fixed j natural) the limiting distribution of >/N(T} — ET0j) as N -> oo 
is N(0, o2

Tj). 
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4. NUMERICAL RESULTS 

We have said that 

Ùj = si" (inTj) 

may serve as an appropriate estimator for Qj. It is clear that Qj has the asymptotic 
distribution 

<P N Ojj I — arcsin x — EToj 

where <P is the distribution function of N(0, 1). 

The properties of the proposed statistic were investigated numerically for selected 
stationary autoregressive sequences. Some of these series were simulated on a digital 
computer. The results are summarized in Tables 1 — 5. Table 5 contains variances 
of Tj for selected autoregressive series. This table shows a favourable property of 
var T1 in the first order autoregressive series, namely, that var Tl does not depend 
practically on O. 

E x a m p l e 1. 100 series of the type Xt = 0.6Xt_t + Yt were generated, each of 
them of the length 20. Disturbances Yt are normal N(0, 1). Sample means and 
sample variances of r., 7}, Qj are given in Table 1. This table also contains the 
theoretical values of Q. to compare Qj with Qj. 

TABLE 1 

Sample means and variances of r •, T.-, Qj for the first order autoregression Xt = 0-6 Xt_t + Yt 

J 
True value of Mean of Variance of Bias of 

J 
Qj ET0j rJ Tj Һ rJ Tj Һ rJ Tj | Qj 

1 
2 
3 

•600 
•360 
•216 

•410 
•234 
•138 

•541 
•325 
•210 

•417 
•245 
•158 

•582 
•355 
•230 

•042 
•062 
•070 

•038 
•047 
•065 

•057 
091 
•128 

- 0 5 9 
-•035 
- 006 

•007 
•009 
•020 

- 0 1 8 
- . 005 

014 

E x a m p l e 2. 50 series of the first order autoregression Xt = — 0.5 Xt_x + Yt were 
generated, each of them of the length 20. Disturbances Yt are N(0, 1). Characteristics, 
the same as in Example 1, are given in Table 2. 

Example 3. 20 series of the type Xt = 0.9 X,_i + Yt were generated, each of them 
of the length 100. Correlation characteristics are presented in Table 3. 

Examp le 4. Let us study the behaviour of Q- when the assumption of normality 
is omitted. The selected series consists of the first 100 terms of Kendall's artificial 
series 5a ([4]) generated by Xt = 1.1 Xt.1 - 0.5 X,_2 + Yt. 

184 



TABLE 2 

Sample means and variances of r p Tp Qj for the first order autoregression Xt = —0-5 Xt^i f Yt 

J 
True value of Mean of Variance of Bias of 

J 

вj 
EToj ГJ 

TJ Һ rJ TJ Һ rJ TJ Һ 

1 

2 

3 

-•500 

•250 

-•125 

-•333 

•161 

- -079 

- -489 

•247 

-•122 

-•359 

•191 

- 1 2 0 

-•501 

•272 

-•159 

•042 

•051 

•067 

•050 

•059 

•064 

•086 

112 

•134 

•011 

- 003 

•003 

- 0 2 6 

030 

- 0 4 1 

- 0 0 1 

•022 

- -034 

TABLE 3 

Sample means and variances of r-, T-, o • for the first order autoregression Xt ~ 0-9 Xt _ « + Yr 

J 
Тrue value of M e a n of Variance of Bias of 

J 

* I 
ET0j rJ TJ Һ rJ TJ 51 rJ TJ Һ' 

1 

2 

3 

•900 

•810 

•729 

•713 

•601 

•520 

•870 

•792 

•710 

•706 

•619 

•541 

•882 

•820 

•743 

•002 

•004 

•005 

•010 

•007 

•009 

•006 

•005 

•008 

- • 0 3 0 

- • 0 1 8 

- 0 1 9 

- 0 0 7 

018 

021 

- 0 1 8 

010 

•014 

TABLE 4 

Correlation characteristics of Kendall's artificial series Xt = IT Ar
/_1 — 0-5 Xt_2 -f- Yf 

J ^ rJ TJ Һ 

1 •733 •787 •596 •805 

2 •307 •479 •347 •518 

3 - 0 2 9 •188 •155 •240 

4 - • 1 8 5 055 •063 098 

5 - • 1 8 9 006 - • 0 7 4 - • 1 1 5 

6 - 1 1 6 005 - • 0 6 4 - • 1 0 0 

7 - 0 3 3 004 - 0 7 5 - • 1 1 8 

8 •022 031 000 •000 

9 •041 - 0 1 7 - 0 1 1 - • 0 1 7 

10 •034 - 0 1 0 •044 •070 

The disturbances yt are rectangular with zero means and unit variances in this case. 

The results are presented in Table 4. It may be seen that the non-normality of Yt 

proved not to be significant. 
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TABLE 5 

Variances of T- for selected autoregressive series 

A white noise 

B first order autoregression Xt = 0-9 Xt_1 + Yt 

C first order autoregression Xt = 0-6 Xt_± + Yt 
D first order autoregression X, = —0-5 X,_ i + Yt 

E second order autoregression Xt — 1-1 X,_i —0-5 Xt_2 + Ff 

Length 

of series IV 

A 

var Ti 

B 
E 

var Ti 

Length 

of series IV 

A 

var Ti var Ti var T2 var T3 

E 

var Ti 

5 •2500 •1750 •3216 •5009 •1375 

10 •1111 •0937 •1608 •2290 •0559 

15 •0714 0652 •1098 •1526 •0350 

20 •0526 0501 •0836 •1149 •0255 

25 •0417 •0408 •0675 •0921 •0201 

30 •0345 •0344 •0566 •0768 •0166 

35 •0294 •0297 •0487 •0659 •0141 

40 •0256 •0262 •0427 •0576 0123 

45 •0227 •0234 •0381 •0512 •0109 

50 •0204 •0212 •0343 •0461 •0098 

55 •0182 •0194 •0313 •0419 •0089 

60 0169 •0178 •0287 •0384 •0082 

65 0156 •0165 •0265 •0355 •0075 

70 •0145 •0154 •0247 •0329 0070 

75 •0135 •0144 0230 0308 •0065 

80 0127 •0136 •0216 •0288 •0061 

85 0119 •0128 •0204 0271 •0058 

90 0112 •0122 0193 •0256 •0055 

95 •0106 0116 •0183 •0243 •0052 

100 •0101 0110 •0174 •0231 •0049 

TABLE 5 (continued) 

Length 

of series jV 

c 
D 

var Ti 

Length 

of series jV var T! var T2 var T3 

D 

var Ti 

5 •2385 •3798 •5680 •2437 

10 •1102 •1541 •1885 •1109 

15 •0717 •0966 •1128 •0718 

20 •0531 •0704 •0805 •0531 

25 •0422 •0554 •0626 •0421 

30 •0351 •0456 •0512 •0349 

35 •0300 •0389 •0433 •0298 
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S o u h r n 

O JEDNODUCHÉM ODHADU KORELAČNÍ FUNKCE 
STACIONÁRNÍCH NÁHODNÝCH POSLOUPNOSTÍ 

JAN HURT 

Nechť {Xt}teT je stacionární gaussovský diskrétní proces, kde Tje množina celých 
čísel. Předpokládejme ETt = 0, t e T, a označme Zt = sign Xv Ttj = ZtZt+j pro j 
přirozené. Ukazuje se, že ETtj = 2 arsin Qjjn, kde Oy je korelační koeficient Xt a Xí+j, 
takže veličiny Ttj mohou být užity k odhadu korelační funkce původního procesu 
{Xt}teT< Dále je odvozen vzorec pro výpočet cov (T0j, Tkj). Asymptotické vlastnosti 

- N~j 

průměru Tj = ]T Ttjj(N — j) jsou studovány za předpokladu, že spektrální hustota 
t - 1 

procesu {Xt}teT je nenulová a má ohraničenou druhou derivaci. Speciálně odvozené 
výsledky platí pro stacionární gaussovské autoregresní posloupnosti, což je prakticky 
nejdůležitější případ. Je dokázáno, že Tyje asymptoticky normální, a že posloupnost 
{Ttj}teT splňuje zákon velkých čísel. Na závěr jsou uvedeny některé numerické pří­
klady a Monte-Carlo studie navrhované statistiky. 

Authoťs address: RNDr. Jan Hurt, Matematicko-fyzikální fakulta University Karlovy, Soko­
lovská 83, 186 00 Praha 8. 
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