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SVAZEK 20 (1975) A PLI K A C E M A T E M A T I KY ČÍSLO 1 

ON THE SOLVABILITY OF VON KÁRMÁN EQUATIONS 

OLDŘICH JOHN and JINDŘICH NEČAS 

(Received April 24, 1974) 

The nonlinear operator equation connected with general boundary value problem 
for von Karman equation is studied. In the paper there is proved the coerciveness 
of corresponding operator and the properties which are sufficient for the existence 
of the solution. The main idea is due to Knightly [3] who used it in case of Dirichlet 
problem. The different approach to the same boundary value problem based on 
Berger's idea [ l ] is developed in the paper [2] of Hlavacek and Naumann. Using 
the technique of Knightly we are able to weaken in some way the restrictions put 
on the behavior of boundary functions. 

To avoid technical difficulties we restrict ourselves to consider the domains with 
infinitely smooth boundary. 

1. NOTATION AND PRELIMINARIES 

Let w : 0 -» Eu 0 c E2. Denote wx = dw/dx, wy = dwjdy. Let Q be a simply 
connected bounded domain in E2 with its boundary dQ infinitely smooth. (See 
section 4.) Let dQ be divided into three pairwise disjoint subsets Fl5F2,F3, so that 
dQ = FxuF2 uF 3 . 

Denote 

(1.1) wn = wxnx + wyny 

the outward normal derivative, 

(1.2) wx = ~wxny + wynx 

the tangential derivative at the generic point of boundary dQ. 

Denote further 

(1.3) A2W = Wxxxx + 2WXXyy + Wyyyy 

(1«4) [ W , ^ = Wxjyy + WyyfXX ~ 2WXyfXy 
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The boundary operators M, Fare defined by 

(1.5) Mvv = v Aw + (1 — v) (wxxnx + 2wxynxny + w3̂ r/2) 

(1.6) Tw = -(ziw),. + (1 - v)(wxxnxny - wxy(n2

x - n2

y) - Wyynxny)z 

where v (the Poisson constant) is from the interval <0, ^-). 

We deal with the bilinear forms 

(1.7) (U, v)Жo2,2 = (uxxvxx + 2uxyvxy + UyyVyy) áx áy , 

(1.8) (u, v)v = (w, vV02,2+ v 

and with the expression 

[u, v] áx ày 

(1.9) B(v;u, <p) = OЪy w * Фy + ^ Л ^ * - vxxUy(py - v^u^) dx dj; 

If v, u e W2'2, <p G W0

2'2 we obtain (using the integration by parts) 

(1.10) B(v; u, (p) = B(v; cp, u) = B(<B; u, v) 

Let the functions k2, k31, k32 have the following properties (with p-an arbitrary 

real number bigger than one): 

( i . i i ) 

(1.12) 

(1.13) 

k2 є Lp(Г2), k2 ^ 0 on Г2 a.e. 

kзlєLp(Г3), / c 3 1 ^ 0 on Г 3 a.e. 

k32 є L^Eз) , k32 ^ 0 on Г3 a.e. 

The right-hand sides of the equations and the boundary conditions of the problem 

formulated in Section 2 are submitted to the conditions 

(1.14) m2eLp(r2)9 m3eLp(r2), r3eLx(r3), p>\ 

(1.15) PeLp(Q), p> 1, 

(1.16) <f>0 e W3-1^'^) , <2>! G W2_1/^^iQ) for some q > 2 , 

(1.16a) <2>0 = 01 = 0 on F3 . 

We enlist here two assertions used in the following 

Proposition 1. (Hardy's inequality.) Let oc > 0, p > 1, f e C^O, a>), f(0) = 0. 
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Then 

(1.17) f{> dxѓ{yzV I Ш"dx-
(This is a corollary of a more general inequality due to Hardy — see e.g. [4], 

Chapitre 2, Lemma 5.1). 

To prove the existence of solution for the operator equation formulated in Section 3 

we use the following result: 

Proposition 2. Let B be a reflexive separable Banach space. Let the mapping 
<T : B -> B* be 

(1.18) demicontinuous(i.e., \\xm — x| |B -> 0 => &~xm —* £Tx , 

(1A9) bounded (i.e., £T maps bounded sets in B onto bounded sets in B*) 

iSTx x> 
(1.20) coercive (i.e., lim ' = + oo) 

| |x| |-co | |x| | 

(1.21) satisfying condition S i.e., xm —- x and 

( J x m — 3Tx, xm — x> —> 0 implies \\xm — x||B -> 0. 

Then 3~(B) = B* andZT~l (which is in general multivalued mapping) is bounded. 
(Here we denote by --> the weak convergence in B, by <!, •> the pairing between 

B and B*.) 
This proposition follows immediately from [5], Theorem 2A , which is due to 

F. E. Browder. 

2. CLASSICAL AND VARIATIONAL FORMULATIONS OF THE PROBLEM 

Definition 1. The couple \w, &j of functions from C4(0) is said to be a classical 

solution of the problem if 

(2A) A2w = [w, 0] + P on Q, 

(2.2) A2$ = - [ w , w] on Q, 

(2.3) w = w„ = 0 on F! , 

(2.4) vv = 0 , Mw + k2wn = m2 on F2 , 

(2.5) Mw + k3lwn = m3 , Tw + (wx<~yx - wy<Pxx) + k32w = r3 on F3
 : ) 

(2.6) <P = <P0 , &n = &! on cQ . 

l) We write here the nonlinear part wx<P — wy&nv obtained in course of the deduction of von 
Karman equations. To get our existence result we must formulate further the conditions on <P 
under which wx0 t — wy<Pnx = 0. (See condition (5.3)). 
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Let us denote 

(2.7) 1T = {u e C*(Q); u = un = 0 on Fl5 u = 0 on F2} . 

If /w, $l is a classical solution of the problem and (p e f , i/> e C^(.Q) we can 
obtain — using the standard procedure of integration by parts and the relation 
(1.16a) — the identities 

(2.8) (w, (p)v + a(w, cp) = B(w; 0, cp) + Pep dx dy + 
J Q 

+ (r3cp + m3cpn) dS + m2cpn dS , 
J T3 J T2 

(2.9) ( * , ^ V o . , 2 = -B (w;w, i / t ) , 

where 

(2A0) a(w, (?) = k2wncpn dS + (k32w^ + k31wncpn) dS . 
J T2 J T3 

Definition 2. Let us denote by V the closure of the set "T in the norm of W2,2(Q). 

Definitions. Let (l,14)-(1,16a) be satisfied. The couple \w, #/ e V x W2>2(Q) 
is said to be a variational solution of the problem if 

(i) for each cp e V, (2.8) holds, 

(ii) for each i> e W^'2(Q), (2.9) holds, 

(in) # satisfies (2.6) in the sense of traces. 

3. THE IDEA OF KNIGHTLY 

Let F be a function from C2(Q) which satisfies the conditions 

(3.1) F = <2>0 , Fn = <2>! on dQ . 

(The assumptions on $ 0 , ^>1 and dQ formulated in Section 1 are sufficient for the 
existence of such a function — see e.g. [4], Chapitre 2 Theoreme 5.8 and Theoreme 
3.8. In fact we could demand immediately that <P0, <Pt be such functions that there 
exists a function F e C2(Q) satisfying (3.1)). 

Instead of the variational solution /w, $/ in sense of Definition 2 we consider the 
couple of functions jw, g\ where g and <P are connected by the relation 

(3.2) g = $ - (F . 
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Here ( is an auxiliary function of CC0(.Q) chosen in such a way that 

(3.3) C = 1 on GQ, Cn. = 0 on cvQ 

(hence g e W0
2,2(.(2)) and that the "unpleasant" nonlinear term B(w; (F, w) is sup

pressed. (See formula (6.1).) 

Substituting for <£ from (3.2) to (2.8), (2.9) we get 

(3.4) (w, <p)v + a(w, <p) = B(w; g, q>) + B(w; CF. q>) + 

Pep dx Ay + (r3(p + m3(pn) dS + m2cpndS, 

(3-5) (g, il/)Wo2,2 = -(CF, \1/)WQ2,2 - B(w; w, xjj) . 

Definition3, £}) The couple \w, g/e V x W0
2'2 is said to be a solution of the problem 

K(0 >f 

(i) for cac/i (p e V, (3.4) ho/ds 

(ii) fOr each if, e W^2(Q), (3.5) hOWs. 

Remark . Let there exist a solution of the problem K(Q for some C e C°°(.Q) 
for which (3.3) holds. Then, thanks to (3.2), there exists a variational solution of the 
problem in sense of Definition 3. 

Proposition 3. (See [2], Lemma 3,1) Let the following implication hold: 

(3.8) w e V, (w, w)F + a(w, w) = 0 => w = 0 . 

Then [(w, w)v + a(w, w)]1 / 2 is an equivalent norm to || • \\w2,2 in V. 

R e m a r k . In the following we suppose that (3.8) holds. A wide class of conditions 
concerning k2, k31, k32 and the geometry of F1?F2, F3 which are reasonable from 
the point of view of mechanics and which guarantee the validity of (3.8) is deduced 
in [2]. 

Definition 4. Let H be the Hilbert space V x WQ,2(Q) with the norm generated 
by the scalar product (( , )) defined by 

(3.9) U = / w , a / , <P = lv,iltl, 

((U, V)) = (w, <p)r + a(w, <p) + (g, \I/)WQ2,2 . 

1) Let (1.14)—(1.16a) be satisfied. 
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Adding now the relations (3.4), (3.5) and denoting 

(з.io) ß[>] = 

(3.11) 

P(p dx d v (r3(p + m3ęn) áS + m2(pn dS 
г2 

ЄГ^J) [7] = ((17, 7)) - B(w; g, q>) + 

+ B(w; w, i» - B(w £F, ę) + (CF, i//)Жo2,2 

we can write J^C(U) [«P] = Q[7~\. 

It is easy to see that Q is a continuous linear functional on H given by the 

functions P, m2, m 3 and r3, and for each fixed U e H, « "̂r(U) is a continuous linear 

functional depending upon £, too. (See e.g. (5.17)). 

Hence the solvability of the problem K(£) is equivalent to the solvability of the 
operator equation 

(3.12) 

in the space H. 

zrÁfS) = o 

4. DEFINITION OF Q 6 C00. THE AUXILIARY FUNCTION £ 

Definition 5. Let Q a E2 be a simply connected bounded domain with its boundary 

dQ being a simple curve with a parametrization 0. O is a one-to-one mapping 

of <0, R} onto dQ defined by 

(4.1) 6>:th-> (oj^t), oj2(t)) 

with the properties 

(4.2) (Dt 6 C°°«0, R)), i = 1,2, 

(4.3) 0 ^ ( 0 ) = lim co(.fc)(t) , i = 1, 2, k = 0, 1, . . . 
t->R-

TAe parameter t is the length of arc so that 

(4.4) K ( t ) ) 2 + (co'2(t))
2 = 1 , * e <0, R). 

Let the orientation be such that ( — (o2(t), of^t)) is the unit vector of the inner 

normal to dQ. 

Then we say that Q is of the class C00. 

Definition 6. Let 3 > 0. L£t the mapping 

(4.5) (x, y) : <0, R) x <0, 5} -+ E2 
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be defined by 

(4.6) x : (t,s) i-> co^t) - sco2(t) , 

y : (t, s) i—• oj2(t) + scoi(t) . 

Denote by Qd the image of <0, R) x (0, <5) in this mapping. 

Lemma 1. Let Q e C°°. Then there exists <50 > 0 such that the mapping (x, y) 
has the following properties: 

(4.7) Qd0 c Q , 

(4.8) (x, y) is a one-to-one mapping of <0, R) x <0, <50> onto Qdo. 

(4.9) There exist two positive constants Kl9 K2 so that 

K! g ^ 4 ^ K2 on <0, K) x (0, <50), 
d(t, s) 

(4.10) dQ corresponds to s = 0, d(̂ <50) \ dQ corresponds to s = S0}) 

P r o o f follows from the properties formulated in Definitions 5 and 6. 

R e m a r k . It is obvious that for each <5 e (0, <50> (4.7) —(4A0) hold with the same 
constants Kl9 K2 in (4.9). 

Lemma 2. LetQeC00, let <50 be the number defined in Lemma 1. Then for 
each 3 e (0, <50> and each e > 0 there exists a function C e ^^(Q^for which 

(4.11) suppC c: Q3KJ dQ, 

(4A2) C = 1 on dQ , C* = Cy = 0 on dQ, 

(4.13) |C| ^ 1 on Q, 

(4.14) C*('? s) = C(*(t, s), y(t, s)) depends only on s , 

(4-15) |CS*M| = --2) 
s 

Proof . Choose <5 e (0, <50>, 8 > 0. Fix d e (0, min {l, <5}) and define the function 
Z : F! -* El by 

Z(s) = 1 for s e ( - o o , d<T2/e), 

(4.16) Z(s) = 8/2 log d/s for s e <^~ 2 / e , d> , 

Z(s) = 0 for s e (d, + 00) . 

*) From lemma 1 follows immediately that the inverse to the mapping (x, y) is infinitely 
smooth. 

2) Here as well as in the following Cs = ^C/ds, £t = d£/dt. 
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For an arbitrary fixed number h e (0, min {3 — d, de 2/eJ2}) define 

(4.17) z : <0, + oo) -> El9 z(s) = Zh(s) 

(the regularized function Z restricted to <0, -f oo) — for the definition see e.g. [4]). 

Function z has the following properties: 

(i) supp z <= <0, 5), 

(4.18) (ii) z(0) = 1 , z'(0) = 0 , 

(iii) \z\ = 1 on <0, +oo ) , 

(iv) |z'(s)| = ejs on <0, + o o ) . 

Defining now 

(4.19) C(x, y) = z(s(x, y)) on Qd u diQ 

f(x, y) = 0 on O \ 0 5 

we can see easily that this function satisfies (4.11) —(4.15). 

5. THE MAIN RESULT 

Let 

(5.1) .QeC00 

and let the sets Fl5 F2, F3 of (2.3) —(2.5) be expressed as 

(5.2) rt = e(yi)9 i = V2,3 

where 0 is the mapping from Definition 5 and yh i = 1 , 2 , 3 are pairwise disjoint 
measurable subsets of <0, R). (The situation that some yr or a pair of them are empty 
is not excluded provided the condition (3,8) still holds). 

Theorem. Let (5.1), (5.2) hold. Let 

(5.3) <!>! = <£0 = 0 on F3 (i.e. (1.16a) holds) 

(5.4) sxx(sy)
2 + syy(sx)

2 - 2sxysxsy = 0 on F2 . 

Then there exists ( e C°°(.Q) satisfying (3.3) such that the equation (3.12) has 
a solution. 

Proof. Lemmas 3 — 7 assert that there exists a function £ e C00^) satisfying (3.3) 
such that the operator ZT^ satisfies the assumptions (1.18) — (1.21). Hence the existence 
of a solution of (3.12) follows from Proposition 2. 
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Lemma 3. For each L, E 0^(0) the operator £T\ is demicontinuous. 

Proof. Denote 

(5.5) U" = /w", g"/ e H , n = 1, 2, 3, . . . , 

U = jw,gl eH , W = l<p,\jjj EH , 

and suppose 

(5.6) U" -> U in H . 

It is obvious from (5.6) that 

(5.7) ((Un - U, T)) -» 0 , B(w"; CF, (p) - B(w; £F, 9) -> 0 . 

Thus, to establish the relation 

(5.8) lim {<TC(UW) [T] - ^ ( U ) [*P]} = 0 , W e H 
n-» 00 

we need to prove 

(5.9) lim [B(w"; g", cp) - B(w; g, cpj] = 0 , \/q> e V 
n~* oo 

(5.10) lim [B(w"; w", i» - B(w; w, i» ] = 0 , Vi> e W0
2'2(f2). 

/.-» oo 

It follows from the inequality |B(w", g", <p) - B(w; #, <p)| ^ |B(w"; g", <p) -
- B(wn; g,cp)\ + jB(w"; a, <p) - B(w; g, <p)| and the definition (1.9) that we must 
estimate eight expressions of the type 

(5.11) 1 1 = f K , | . |(a" - g),\ . \<px\ dx dy 
J Q 

J"2= f \(w"-w)xy\.\gy\.\<px\dxdy. 
J Q 

Using the Sobolev immersion theorem (see e.g. [4], Chapitre 2, Theoreme 3.8) 
we have 

(5.12) (g» - g)y e L,(Q) , \\(g" - g),\u ^ c\g" - g \ ^ 

and the same estimate for cpx. Hence 

(5-13) 1\ ^ c,\w"\^a \\g" - g\\w2,2 |j<?>||^,2 S 

Sc2\\U"\H\U"-U\\H\(p\^. 
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The integral l\ from (5.11) can be estimated analogously. (5.6), (5.13) imply 
limF; = limI"2 = 0. 

I I - * 00 n-+ 00 

Thus we get (5.9). The proof of (5.10) is quite similar. 

Lemma 4. For each £ e C°(Q) the operator 3~\ is bounded on H. The following 

estimation holds 

| 2 Л • (5.14) \9~&U)\a. S c{| |Cr | |c 2 + (llCrlc + 1) | | t ! |U + WU\\2H} 

Proof . From (1.7) Definition 4 and Proposition 3 we obtain immediately 

(5-15) \((U,¥))\^\\U\\H\\V\\H, 

(5.16) |(CE, <AVv.,| gc |CF | | C I | | y [ | H . 

According to (1.9) all estimations of "B-terms" are reduced to the estimation 
of integrals of the type Jfi uxyvxwy dx dy. Thus we have 

(5.17) 

(5.18) 

|B(w;£F,<p)| = . . . í \wxy\ |(£F), | \<px\dxdy... = 

J Q 

= c I K F l d HwilW2-2 IklIW2.2 = č||cF||Ci l^HH IMIH 

|B(w;#, (p)| = ... K>'í gv kxl d x d y « = 

= [the same estimation as in the proof of (5.9)] _ 

f(íк 
1/4 

<P* 

1/4 

< 

= cj|w||^2,2 ||^||^2,2 11̂ 11̂ 2,2 = C\\U\\H \\¥\\H . 

Analogously 

(5.19) |B(w;w,i/t)| = c||U||H|j*F||H. 

From (5.15)-(5.19) the inequality (5.14) follows. 

6. THE COERCIVENESS OF OPERATOR ST ̂  

Lemma 5. Let the conditions (5.3), (5.4) be satisfied. Then there exists £ e C°°(.Q) 
such that the operator &~\ is coercive on H. 

Proof . Let U = \w, g\ e H. From (1.10), (3.11) we have 

(6.1) <r£u) [U] = \\U\\2
H - B(w; £F, w) + (£F, g)^o2,2 . 
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According to the idea described in Section 3 we find the function £ e C*(Q) (among 
the functions defined by Lemma 2) such that 

(6.2) \B(w; £F, w)\ ^ £ ||U||H , VU e H . 

After that the remaining term in (6.1) can be estimated as 

| (£F ,gW ,2 | ^ c||£F||c2 1^11^2,2^ c||£F||c. ||l/||n-

From here, using the well-known inequality \ab\ ^ (l/2s) a2 + (e/2)b2, e > 0 we 
obtain 

(6.3) \(CF, g)W02.2\ ^ c\\CF\\h + \\\U\\H . 

(6.1)-(6.3) give then 

(6-4) ^ - c ( U ) [ U ] ^ i | | U | | ^ - c | | C F | ^ 

so that 

(6.5) lim ? ^ E \ = + oo. 
II^IIH-OO ||U||H 

Consider a function £ described by Lemma 2. Its parameters O" and £ will be specified 
later. We can restrict ourselves to the functions w 6 V (see (2-7)). According to 
(4.11), (1.9) we have 

(6.6) B(w; £F, w) = J b'xy(w; £F, w) dx dy 

where 

(6.7) bxy(cp; i/t, rj) = ( ^ ^ + P * , ^ * - (Pxx^Jly - <PwlM* • 

Denote 

(6.8) w*(t, s) = w(x(t, s), j;(f, s)), (t, s) e <0, R) x, <0, O*> etc. 

Rewriting b*y(w; £F, w) in terms of w*, £*, F* and using the substitution theorem 

in the right-hand side integral in (6.6) with the transformation (4.6) we obtain 

+ (6.9) B(w; £F, w) = f f b's(w*; C*E*, w*) [ f e - í ] * ds dř 
Jo Jo l_č(t,s)J 

+ Z f f {<(£•*•)-. < í̂ z.; z2, z3) - J 4 ds dř • 
Jo Jo ( 3(ř, s) 

where z, = ( o r s for i = 1, 2, 3 and we summarize over all such triplets. 
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To deal with the integrals in (6.9) we group them in the following way: 

1 s t g r o u p . The subintegral function contains the expression 

(6+0) (C*F*),. 

As a representant of this group we estimate 

(6.11 л ЖC*-7*) Ь(t,s)_ 
ását. 

According to (4.9), (4.13) and (4.14) we have 

1 CR C3 

(6.12) | J t | ^ — jw*| |F*| |w*| dsdt ^ [Holder inequality] 
^ i jo jo 

i / pR p3 \l/2 / pR pd \ l / 4 / pR pS \ l / 4 

S~T(1.M) ( L M (f.M) s 

^ [after the resubstitution in integrals containing w* and using (4.9), (4.7)] :g 

g cO-1/4||F||cl | |w||^ )2 . 

All other integrals from (6.9) belonging to the 1st group can be estimated in the 
same way. 

2nd g r o u p . The subintegral function contains the expression 

(6.13) (Í*F% w? . 

Concerning the sum £*F*w* + £*F*w* we notice that the first term can be estimated 
in the same way as (6+2). Substantially different approach is required for the second 
term. As a pattern we consider the integral 

(6.14) + CsF*w* bx\s; s, t) -^^-' ásdf. 
д(x, y) 

õ(t,. 

According to (4.9), (4.6), (4.8), (4.15) we have 

*. \F*w*\ 
(6.15) \j2\z%cs 

0 Ј 0 

ds dt = cs 
Уi + УlJ o 

u*\Ml\F* F* dsdí + 

+ ce\ |w*| |w*| 1—1 ds dt = ce(J3 + J4) . 
y3 J 0 
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From (2.7) we have w*(t, O) = w*(t, 0) = 0 on yx u y2. Hence in case of J3 we 

can use Proposition 1: 

(6.16) Ј , ѓ E í Ґ w 

J Уi^УгJ 0 

1/2 

< 

й 2\\F\\ 
nvy2J o 

K*): 
1/2 

«r 

ő K ) N 2 

o s 

1/2 
< CІIEL llwl ^ 2 , 2 . 

According to (5.3) F*(t, 0) = F*(f, 0) = 0 on y3. Hence we have |F*(t, s)/s| = 

= | |F | |ci for s e ( 0 , <5> and 

(6n) j<s(U> : )fUM'' 
From (6.15), (6.16) and (6.17) we obtain 

EL. á c EL. w IГ2. 2 ' 

(6.18) J , á C E F U w 

Finally we estimate the two remaining terms of (6.9) which belong neither to the 
1st nor to the 2ndgroup. The integral 

(6.19) f rw*(c*E*)sw*r^i_idsdí 
Jo Jo L 5 ( t>S )J 

can be transformed — by integrating by parts in t — to 

<62o) -o>?[ (?*F*^ ;(tiridsd ' ' 
Thanks to the independence of function £ of t the integrals obtained after the 

differentiation of the expression in squared brackets contain either the factor 
w*(£*F*)s or w*(C*F*)s. In both cases it can be estimated as J2 (see (6.18)) 
because w*(f, 0) = 0 on y1 u y2 and (5.3) implies F*(t, 0) = 0 on y3. 

The last term 

(6.21) 
J 0 J 

v * ( Ç * E * ) s w * И w ) Ş ^ d s d f 
д[tђ s) 

splits into two integrals. The first one with £*F* can be estimated as (6.11). The second 
one can be written in the form 

(6.22) Js = 
o j o 

w*Ç*E*ws* Ъx\s; s, s) 
õ(x, y) 

õ(t, s) 
ását < 

60 



+ L 

< 

Ҷ2 Њ*| 

f fV*iif 

J yi J o 

b*y(S; s s) 

dsát + 

ását + f ґ w 

J yз J 0 

j£| l ds dř 
s 

cг(j6 + J 7 + J 8 ) 

To estimate J6 we apply Proposition 1 to w*, knowing that w^(t, 0) = 0 on yx 

In J7, using (5.4) we can estimate \bxy(s; s, s)\\s by a constant on y2. For J8 we us 
again |F*|/s g | |F | |ci. 

Putting all this into (6.9) we get the inequality 

(6.23) |B(w;CF, vv)| ^ (ce + cöm) IF! 

with constants c, c depending only on Q. Hence, choosing adequately the numbers e 
and 3 and taking for £ the corresponding function from Lemma 2 we obtain finally 
(6.2) which completes the proof. 

Lemma 6. Let the conditions (5.3), (5.4) be satisfied. Let £ be the function from 

lemma 5. Then &~\ satisfies (1.21) (S-condition) 

Proof . For each Un = \wn, gn\, U = \w, g\ e H, 

(6.24) Qn = £T^(Un) [Un - U] - ZT^U) \Un - U] = 

= \Un - U\\2
H - B(wn; gn, wn - w) + B(w; g, wn - w) + 

+ B(wn; wn, gn - g) - B(w; w, gn - g) ~ B(wn - w; CF, wn - w). 

Let £ be a function for which (6.2) holds. Its existence was established in proof 
of Lemma 5. In this case we have 

(6.25) Q„ + [В(w"; g", w" - w) - B(w; g, w" - w) -

B(w"; w", g" -g) + B(w; w, g" - fl)] ^ | |U" - Щl. 

Let now Un -* U in H and Qn -> 0. If we show that the weak convergence implies 

the convergence of the expression in squared brackets to zero then (6.25) implies 

Un -> U in H and (1.21) is valid. 

However, Un -* U in H implies wn -— w in W2'2(Q) and both {gn} and {wn} are 
bounded in W2'2(Q). Because of the compactness of the immersion 

E:W2>2(Q)^ WiA(Q) 
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there exists a subsequence {wnk}, wnk -> u in H71,4(í2). It is obvious that u = w. 
Hence wn -> w in W1A(Q). Using the estimate 

|B(wn; gn, wn — w)\ = c||wn||iF2,2 ||gn||^2,2 ||wn — w ^ i ^ 

we obtain finally lim B(wn; gn, wn — w) = 0 . 
»—> 00 

Similarly we prove that all the other terms in squared brackets in (6.25) tend 
to zero. 
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Souhrn 

ŘEŠITELNOST VON KÁRMÁNOVYCH ROVNIC 

OLDŘICH JOHN, JINDŘICH NEČAS 

V článku je zkoumána existence variačního řešení obecného okrajového problému 
pro von Kármánovu soustavu nelineárních rovnic. Úloha je převedena na otázku 
řešitelnosti jisté operátorové rovnice. Dokazuje se, že operátor je koercitivní a splňuje 
některé další podmínky, které dohromady zaručují existenci řešení. 
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