Aplikace matematiky

Lubomír Skála

Algorithms. 40. NEGEIG. Distribution of the eigenvalues of eigenproblem $\mathbf{A x}=\lambda \mathbf{B} \mathbf{x}$

Aplikace matematiky, Vol. 20 (1975), No. 3, 227-231

Persistent URL: http://dml.cz/dmlcz/103587

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ALGORITMY

40. NEGEIG

DISTRIBUTION OF THE EIGENVALUES OF EIGENPROBLEM $\mathbf{A x}=\lambda \boldsymbol{B x}$

Lubomír Skála, Matematicko-fysikální fakulta KU, Katedra teoretické fysiky, Ke Karlovu 3, 12116 Praha 2

An individual eigenvalue is of little significance for very large matrices. Frequently only the distribution of eigenvalues is needed. A procedure (based on the negative eigenvalue theorem) which determines the distribution of eigenvalues of the generalized eigenproblem $\boldsymbol{A x}=\lambda \boldsymbol{B x}$ is described here. It makes it possible to find the number of eigenvalues less than any given real number. This procedure is efficient especially for band matrices of high order.

Given the generalized eigenproblem

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \mathbf{B} \boldsymbol{x}, \quad \text { where }
$$

\mathbf{A}, \mathbf{B} are hermitian matrices of order n, \mathbf{B} positive definite, then the number of eigenvalues $I(\mu)$ less than a given real number μ equals to

$$
I(\mu)=\sum_{i=1}^{n} \Theta\left(-X_{i}\right), \quad \text { where }
$$

$\Theta(x)=1$ for $x>0$, otherwise $\Theta(x)=0$. Numbers X_{i} are the $(1,1)$ elements of the partitioned matrices \boldsymbol{U}_{i}, where

$$
\begin{equation*}
\mathbf{U}_{1}=\mathbf{A}-\mu \mathbf{B}, \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\mathbf{U}_{i}=\mathbf{Z}_{i-1}-\mathbf{Y}_{i-1} X_{i-1}^{-1} \boldsymbol{Y}_{i-1}^{*}, \quad i=2, \ldots, n, \tag{2}\\
\mathbf{U}_{i}=\left[\begin{array}{c:c}
X_{i} & \boldsymbol{Y}_{i}^{*} \\
\hdashline \mathbf{Y}_{i} & \boldsymbol{Z}_{i}
\end{array}\right] .
\end{gather*}
$$

(The asterisk designates hermitian conjugation). For the proof see [1]-[3].

The procedure NEGEIG may be used to calculate the number of eigenvalues of any real symmetric eigenproblem $\boldsymbol{A x}=\lambda \boldsymbol{B x}$ (\mathbf{B} pos. def.) which are less than a given real number. However, it is most efficient if $\boldsymbol{A}, \boldsymbol{B}$ are band matrices of very high order.

The matrices \boldsymbol{A}. \mathbf{B} are assumed to be band matrices $\left(a_{i j}=b_{i j}=0\right.$ for $|i-j| \geqq$ $\geqq m$. For the sake of efficiency, just the (i, j) elements $(0 \leqq i-j<m)$ of the matrix $\boldsymbol{A}-\mu \mathbf{B}$ are stored, column by column, in one-dimensional array a. E.g. for $m=2, n=3$ the matrix

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{array}\right]
$$

is re-stored as $a=\left(a_{11}, a_{21}, a_{22}, a_{32}, a_{33}\right)$.
The theorem fails if some $X_{i}=0$. In such a case X_{i} is replaced by -rel \times $\times \max _{j=1, \ldots, k}\left|\left(\boldsymbol{Y}_{i}\right)_{j}\right|, i=1, \ldots, n-1$ where $k=\min (m-1, n-i)$, like in [4]. It means that the zero X_{i} is treated as negative. If \boldsymbol{Y}_{i} is the zero vector then Eq. (2) is replaced by $\boldsymbol{U}_{\boldsymbol{i}}=\boldsymbol{Z}_{\boldsymbol{i - 1}}$. If $\mathbf{A}=\mathbf{0}$. \mathbf{A} is treated as a negative definite matrix.

The number of non-zero elements of the matrix $\boldsymbol{Y}_{i-1} X_{i-1}^{-1} \boldsymbol{Y}_{i-1}^{*}$ is less or equal to $(m-1)^{2}$. Hence only $(m-1)^{2}$ elements in the left upper corner of \boldsymbol{Z}_{i-1} are changed in the course of calculation of $\boldsymbol{U}_{\boldsymbol{i}}$. This property may be extremely useful since it is possible to work part by part with matrices of such a large order that $\boldsymbol{A}-\mu \boldsymbol{B}$ cannot be localized in the array a.

The procedure NEGEIG involves approximately (for large m, n) $n m^{2}$ additions and $1 / 2 \mathrm{~nm}^{2}$ multiplications.
integer procedure NEGEIG (a, m, n, const, eps);
value m, n, const, eps; real const, eps; integer m, n; array a;
comment Input to procedure NEGEIG
$a \quad$ array a gives the (i, j) elements $(0 \leqq i-j<m)$ of a band real symmetric matrix $\boldsymbol{A}-\mu \boldsymbol{B}$ stored column by column. This elements are lost during the calculation.
$m \quad$ bandwidth of $\boldsymbol{A}, \boldsymbol{B}$ is $2 m-1$.
$n \quad$ order of $\boldsymbol{A}, \boldsymbol{B}$.
const $1 / \mathrm{rel}$, where rel is the smallest number for which $1+\mathrm{rel}>1$ on the computer.
eps the smallest positive real number representable on the computer.
Output of procedure NEGEIG
NEGEIG the number of eigenvalues of the eigenproblem $\boldsymbol{A x}=\lambda \mathbf{B x}$, A, B real. sym., B pos. def., which are less then μ;
begin real c, x, y max; integer $i, i 1, i 2, j, k, l 1, l 2, n 2$, neg; array $y[2: m]$;
neg $:=0$;
comment $X_{1}=x$;
$x:=a[1]$;

```
    if \(x<e p s\) then neg : \(=n e g+1\);
    i1: = 1 ;
    for \(i:=2\) step 1 until \(n\) do
    begin comment \(U_{i}(\operatorname{array} a)\) and \(X_{i}=x\) will be computed;
    \(n 2:=n-i+2 ;\)
    \(l 1:=n 2-m\);
    if \(l 1<0\) then \(l 1:=0\);
    comment \(l 1\) is the number of the last rows of the matrix \(\boldsymbol{Y}_{i-1} X_{i-1}^{-1} Y_{i-1}^{*}\)
            having zero elements;
    if \(m<n 2\) then \(n 2:=m\);
    comment The first \(n 2-1\) non-zero elements of \(\boldsymbol{Y}_{i-1}\) are stored as \(y\);
    \(y \max :=0\);
    for \(j:=2\) step 1 until \(n 2\) do
    begin \(i 1:=i 1+1\);
        \(c:=a[i 1] ;\)
        if \(\operatorname{abs}(c)>y\) max then \(y m a x:=a b s(c)\);
        \(y[j]:=c\)
    end \(j\);
comment if ymax \(<\) eps then \(\boldsymbol{U}_{\boldsymbol{i}}=\boldsymbol{Z}_{i-1}\);
if \(y m a x \geqq e p s\) then
begin \(i 2:=i 1\);
    for \(j:=2\) step 1 until \(n 2\) do
        begin if \(\operatorname{abs}(x)<e p s\) then \(c:=y[j] / y m a x \times\) const
            else \(c:=-y[j] / x\);
            comment Calculate the \((j-1)\)-st column of \(\boldsymbol{U}_{i}\);
            for \(k:=j\) step 1 until \(n 2\) do
            begin \(i 2:=i 2+1\);
                \(a[i 2]:=a[i 2]+c \times y[k]\)
            end \(k\);
            comment From the stored elements in the \((j-1)\)-st column
                of \(\boldsymbol{U}_{\boldsymbol{i}}\) the last min \((l 1, l 2)\) unchanged elements will
                be jumped over;
            \(l 2:=j-1\);
            if \(l 2<l 1\) then \(i 2:=i 2+l 2\) else \(i 2:=i 2+l 1\)
        end \(j\)
end;
    \(i 1:=i 1+1 ;\)
    \(x:=a[i 1]\);
    if \(x<e p s\) then neg \(:=n e g+1\)
end \(i\);
NEGEIG: = neg
end NEGEIG;
```

The procedure NEGEIG has been tested on MINSK 22 (ALGOL 60) and IBM 360/40 (FORTRAN) computers.

The accuracy of the result is not influenced by close or coincident eigenvalues. The procedure has been tested extensively. To give a formal test of the procedure the matrices [5]

$$
\boldsymbol{A}=\left[\begin{array}{rrrrr}
10 & 2 & 3 & 1 & 1 \\
2 & 12 & 1 & 2 & 1 \\
3 & 1 & 11 & 1 & -1 \\
1 & 2 & 1 & 9 & 1 \\
1 & 1 & -1 & 1 & 15
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{rrrrr}
12 & 1 & -1 & 2 & 1 \\
1 & 14 & 1 & -1 & 1 \\
-1 & 1 & 16 & -1 & 1 \\
2 & -1 & -1 & 12 & -1 \\
1 & 1 & 1 & -1 & 11
\end{array}\right]
$$

were used. The eigenvalues of the corresponding eigenproblem are [5]

$$
\begin{aligned}
& +4 \cdot 32787211020_{10}-1 \\
& +6.63662748402_{10}-1 \\
& +9.43859004670_{10}-1 \\
& +1.10928454002_{10}+0 \\
& +1.49235323254_{10}+0 .
\end{aligned}
$$

The quantities $I(\mu)$ in dependence on μ are given in the following table (we have put $r e l=2^{-28}$ and $e p s=10^{-18}$ on MINSK 22).

Table

μ	$I(\mu)$
$+4.32787210_{10}-1$	0
$+4.32787220_{10}-1$	1
$+6.63662752_{10}-1$	2
$+6.63662764_{10}-1$	2
$+9.43858992_{10}-1$	2
$+9 \cdot 43859004_{10}-1$	3
$+1 \cdot 10928452_{10}+0$	3
$+1 \cdot 10928455_{10}+0$	4
$+1 \cdot 49235321_{10}+0$	4
$+1.49235325_{10}+0$	5

The procedure has been used already to calculate the distribution of eigenvalues (calculating $I(\mu)$ at about one hundred equidistant points in the eigenvalue spectrum) for a lot of different matrices $n=100-10000, m=2-80$.

References

[1] Jeffreys H., B. S. Jeffreys: Methods of Mathematical Physics, At the University Press, Cambridge, 1946, p. 127.
[2] Dean P.: The Vibrational Properties of Disordered Systems: Numerical Studies. Rev. Mod. Phys. 44 (1972), 127-168.
[3] Dean P., J. L. Martin: A Method for Determining the Frequency Spectra of Disordered Lattices in Two-Dimensions. Proc. Roy. Soc. A 259 (1961), 409-418.
[4] Barth W., R. S. Martin, J. H. Wilkinson: Calculation of the Eigenvalues of a Symmetric Tridiagonal Matrix by the Method of Bisection. Numer. Math. 9 (1967), 386-393.
[5] Martin R. S., J. H. Wilkinson: Reduction of the Symmetric Eigenproblem $A x=\lambda B x$ and Related Problems to Standard Form. Numer. Math. 11 (1968), 99-110.
[6] Wilkinson J. H.: The Algebraic Eigenvalue Problem. Oxford University Press, London, 1965.

