Aplikace matematiky

Nguyen Van Ho
The $0-1$ law generalized for non-denumerable families of events and of σ-algebras of events

Aplikace matematiky, Vol. 21 (1976), No. 4, 296-300
Persistent URL: http://dml.cz/dmlcz/103649

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE 0-1 LAW GENERALIZED FOR NON-DENUMERABLE FAMILIES OF EVENTS AND OF σ-ALGEBRAS OF EVENTS

NGUYEN-van-Ho
(Received January 27, 1976)

INTRODUCTION

Let (Ω, \mathscr{A}, P) be a complete probability space. Let T be an arbitrary set of indices, $T=\{t\}$, such that

$$
\begin{equation*}
\operatorname{card} T \geqq \operatorname{card} N, \quad \text { where } \quad N=\{1,2,3, \ldots\} \tag{1.1}
\end{equation*}
$$

Let $\left\{A_{t}, t \in T\right\} \subset \mathscr{A}$ and $\left\{\sigma_{t}, t \in T\right\}$ be a family of σ-algebras of events in \mathscr{A}. Let $\sigma(\cdot)$ denote the σ-algebra generated by (\cdot).

In the case card $T=\operatorname{card} N, t=\left\{t_{n}\right\}, n \in N$, the following definitions are wellknown:

$$
\begin{align*}
& \lim \sup A_{t_{n}}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{t_{k}}(\in \mathscr{A}) \tag{1.2}\\
& \lim \inf A_{t_{n}}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{t_{k}}(\in \mathscr{A}), \tag{1.3}\\
& \lim \sup \sigma_{t_{n}}=\bigcap_{n=1}^{\infty} \sigma\left(\sigma_{t_{n},}, \sigma_{t_{n+1}}, \sigma_{t_{n+2}}, \ldots\right) \quad(\text { being a } \sigma \text {-algebra } \subset \mathscr{A}) . \tag{1.4}
\end{align*}
$$

It is clear that

$$
\begin{equation*}
\lim \inf A_{n}=\Omega \backslash \lim \sup \bar{A}_{n}, \quad \text { where } \quad \bar{A}_{n}=\Omega \backslash A_{n} . \tag{1.5}
\end{equation*}
$$

The following two theorems are well known (see, e.g. [1], [2], [3], [4]).
The Borel-Cantelli Lemma. If $\left\{A_{n}\right\}, n \in N$, is a sequence of independent events in \mathscr{A}, then $P\left(\lim \sup A_{n}\right)=0$, or $=1$, according to $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, or $=\infty$, respectively.

The $0-1$ law of Kolmogorov. If $\left\{\sigma_{n}\right\}, n \in N$, is a sequence of independent σ-algebras in \mathscr{A}, then $\lim \sup \sigma_{n}$ is composed of events of probability 0 or 1 .

In Section 2 the author will generalize the definitions in (1.2)-(1.4) to the definitions of $\underset{T}{\operatorname{SUP}} A_{t}, \underset{T}{\operatorname{INF}} A_{t}$, and $\underset{T}{\operatorname{SUP}} \sigma_{t}$, respectively, for the case (1.1).

In Section 3 there will be given results generalizing the Borel-Cantelli Lemma and the $0-1$ law of Kolmogorov.

2. GENERAL DEFINITIONS

Let $T, N,\left\{A_{t}, t \in T\right\},\left\{\sigma_{t}, t \in T\right\}$ be given as in Section 1. Let (1.1) be satisfied. Denote

$$
\begin{equation*}
S(T)=\left\{\left\{t_{n}\right\}: n \in N, t_{n} \in T, t_{i} \neq t_{j} \quad \text { if } \quad i \neq j \in N\right\}, \tag{2.1}
\end{equation*}
$$

i.e. $S(T)$ is the set of all subsequences $\left\{t_{n}\right\}$ of distinct indices of T.

Let us define:

$$
\begin{align*}
& \underset{T}{\operatorname{SUP} A_{t}}=\underset{\left\{t_{n}\right\} \in S(T)}{\bigcup} \lim \sup A_{t_{n}}=\bigcup_{\left\{t_{n}\right\} \in S(T)}^{\bigcup} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{t_{k}}, \tag{2.2}\\
& \underset{T}{\text { INF } A_{t}}=\bigcap_{\left\{t_{n}\right\} \in S(T)} \liminf A_{t_{n}}=\bigcap_{\left\{t_{n}\right\} \in S(T)} \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{t_{k}}, \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\underset{T}{\operatorname{SUP}} \sigma_{t}=\sigma\left(\sigma_{\left\{t_{n},\right.},\left\{t_{n}\right\} \in S(T)\right), \tag{2.4}
\end{equation*}
$$

where $\sigma_{\left\{t_{n}\right\}}$ denotes $\lim \sup \sigma_{t_{n}}$.
Clearly,

$$
\begin{equation*}
\underset{T}{\operatorname{INF}} A_{t}=\Omega \backslash \underset{T}{\operatorname{SUP}} \bar{A}_{t} . \tag{2.5}
\end{equation*}
$$

The following Lemma shows that the new definitions generalize the ones in (1.2) to (1.4) respectively.

Lemma 1. If

$$
\begin{equation*}
\operatorname{card} T=\operatorname{card} N, \quad T=\left\{t_{n}\right\}, \quad n \in N, \tag{2.6}
\end{equation*}
$$

then

$$
\begin{align*}
& \underset{T}{\operatorname{SUP} A_{t}}=\lim \sup A_{t_{n}}, \tag{2.7}\\
& \underset{\Gamma}{\mathrm{INF} A_{t}}=\liminf A_{t_{n}}, \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
\underset{T}{\operatorname{SUP}} \sigma_{t}=\lim \sup \sigma_{t_{n}} . \tag{2.9}
\end{equation*}
$$

Proof. a) Evidently, $\lim \sup A_{t_{n}} \subset \underset{T}{\operatorname{SUP}} A_{i}$. Now, let $\omega \in \underset{T}{\operatorname{SUP}} A_{i}$. There exists a subsequence $\left\{t_{n(k)}\right\} \in S(T)$ such that $\omega \in \lim \sup A_{t_{n(k)}}$, by (2.2). On the other hand, $\lim \sup A_{t_{n(k)}} \subset \lim \sup A_{t_{n}}$, by (1.2) and by $\left\{t_{n(k)}\right\} \subset\left\{t_{n}\right\}$. Therefore $\operatorname{SUP}_{T} A_{t} \subset$ $\subset \lim \sup A_{t_{n}}$, and (2.7) is proved.
b) (2.8) follows from (1.5), (2.5), and (2.7).
c) Obviously, lim sup $\sigma_{t_{n}} \subset \operatorname{SUP} \sigma_{t}$.

Let $m \in N$ be given. Let $\left\{t_{n(k)}\right\} \in S(T)$. Hence $\left\{t_{n(k)}\right\} \subset\left\{t_{n}\right\}$ and $n(k) \rightarrow \infty$ as $k \rightarrow \infty$. Thus there is a $k(m) \in N$ such that $n(k) \geqq m$ for all $k \geqq k(m)$. One has successively

$$
\lim \sup \sigma_{t_{n(k)}} \subset \sigma\left(\sigma_{t_{m}}, \sigma_{t_{m+1}}, \sigma_{t_{m+2}}, \ldots\right)
$$

for every $\left\{t_{n(k)}\right\} \in S(T)$, by (1.4),

$$
\underset{T}{\operatorname{SUP}} \sigma_{t} \subset \sigma\left(\sigma_{t_{m}}, \sigma_{t_{m+1}}, \sigma_{t_{m+2}}, \ldots\right)
$$

for every $m \in N$, by (2.4),

$$
\underset{T}{\operatorname{SUP}} \sigma_{t} \subset \lim \sup \sigma_{t_{n}}, \quad \text { by } \quad \text { (1.4). }
$$

This completes the proof of (2.9).

3. RESULTS

Note that when card $T \geqq$ card N, SUP σ_{t} defined by (2.4) is always a σ-algebra of events in \mathscr{A}, while $\operatorname{SUP} A_{t}$ or INF A_{t} with card $T>\operatorname{card} N$ belongs to \mathscr{A} only under some conditions. However it will be proved in Theorem 1 below that one of them is always an event in \mathscr{A} having probability 1 or 0 respectively.

Theorem 1. Let (Ω, \mathscr{A}, P) be a complete probability space, and let $\left\{A_{t}, t \in T\right\}$, with T satisfying (1.1), be a family of independent events in \mathscr{A}. At least one of the following assertions is always valid:

$$
\begin{array}{ll}
\underset{T}{\operatorname{SUP} A_{t} \in \mathscr{A}}, & P\left(\underset{A}{\left.\operatorname{SUP} A_{t}\right)}=1,\right. \\
\underset{T}{\operatorname{INF} A_{t} \in \mathscr{A}}, & P\left(\underset{T}{\operatorname{INF}} A_{t}\right)=0 . \tag{3.2}
\end{array}
$$

More precisely,
(i) (3.1) is satisfied if there exists $\left\{t_{n}\right\} \in S(T)$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(A_{t_{n}}\right)=\infty, \tag{3.3}
\end{equation*}
$$

(ii) (3.2) is satisfied if there exists $\left\{t_{n}\right\} \in S(T)$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(A_{t_{n}}\right)<\infty \quad \text { or } \quad \sum_{n=1}^{\infty}\left(1-P\left(A_{t_{n}}\right)\right)=\infty, \tag{3.4}
\end{equation*}
$$

(iii) both (3.1) and (3.2) are satisfied if we have (3.3) for some $\left\{t_{n}\right\} \in S(T)$ as well as (3.4) for some $\left\{t_{n}^{\prime}\right\} \in S(T)$.

Proof. a) If (3.3) is satisfied for some $\left\{t_{n}\right\} \in S(T)$, then from the Borel-Cantelli Lemma we get $P\left(\lim \sup A_{t_{n}}\right)=1$, i.e.

$$
\left.P(\Omega) \backslash \lim \sup A_{t_{n}}\right)=0 .
$$

Since $\lim \sup A_{t_{n}} \subset \underset{T}{\operatorname{SUP}} A_{t}$, or equivalently $\Omega \backslash \underset{T}{\operatorname{SUP}} A_{t} \subset \Omega \backslash \lim \sup A_{t_{n}}$, one has $\Omega \backslash \underset{T}{\operatorname{SUP}} A_{t} \in \mathscr{A}$ and $P\left(\Omega \backslash \underset{T}{\operatorname{SUP}} A_{t}\right)=0$, by the completeness of the probability space.

Therefore (3.1) is valid.
b) If one of the conditions in (3.4) is satisfied for some $\left\{t_{n}\right\} \in S(T)$, we have then $\sum_{n=1}^{\infty} P\left(\bar{A}_{t_{n}}\right)=\infty$. Now (3.2) follows from (2.5) and the proof above for $\left\{\bar{A}_{t}, t \in T\right\}$.

The following Theorem generalizes the $0-1$ law of Kolmogorov.
Theorem 2. Let $\left\{\sigma_{t}, t \in T\right\}$ with card $T \geqq$ card N be a family of independent σ-algebras contained in \mathscr{A}. Then

$$
\begin{equation*}
P(A)=0 \text { or }=1 \quad \text { for all } \quad A \in \operatorname{SUP}_{T} \sigma_{t} . \tag{3.5}
\end{equation*}
$$

Proof. Denote

$$
\begin{equation*}
\mathfrak{M}=\{A: A \in \mathscr{A}, P(A)=0 \text { or }=1\} . \tag{3.6}
\end{equation*}
$$

The $0-1$ law of Kolmogorov implies

$$
\begin{equation*}
\mathfrak{M} \supset \sigma_{\left\{t_{n}\right\}} \text { for every } \quad\left\{t_{n}\right\} \in S(T) . \tag{3.7}
\end{equation*}
$$

It follows from (3.6) that
(a) $A, B \in \mathfrak{M} \Rightarrow A \cup B \in \mathfrak{M i}$,
(b) $A \in \mathfrak{M i} \Rightarrow \bar{A} \in \mathfrak{M}$,
(c) $\Omega \in \mathfrak{M}$.

Hence \mathfrak{M} is an algebra containing the family $\left(\sigma_{\left\{t_{n}\right\}},\left\{t_{n}\right\} \in S(T)\right)$. Moreover, \mathfrak{M} is a monotone class. In fact, let $\left\{A_{n}\right\} \subset \mathfrak{M}, A_{n} \uparrow$, then

$$
P\left(\lim \uparrow A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)= \begin{cases}1 & \text { if there is } A_{k} \text { such that } P(A)=1, \\ 0 & \text { if } P\left(A_{n}\right)=0 \text { for all } n \in N\end{cases}
$$

Hence $\lim \uparrow A_{n} \in \mathfrak{M}$. Similarly, one has also $\lim \downarrow A_{n} \in \mathfrak{M}$ for $A_{n} \downarrow$ in \mathfrak{M}. Therefore \mathscr{M} is a σ-algebra containing

$$
\sigma\left(\sigma_{\left\{t_{n},\right.},\left\{t_{n}\right\} \in S(T)\right)=\operatorname{SUP}_{T} \sigma_{t} .
$$

This completes the proof.

References

[1] J. Neveu: Bases mathématiques du calcul des probabilités. Paris, 1964.
[2] W. Feller: An introduction to probability theory and its applications. New York, 1966.
[3] A. Rényi: Probability theory. Budapest, 1970.
[4] И. И. Гихман, А. В. Скороход: Теория случайных процессов. Москва, 1971.

Souhrn

ZÁKON 0-1 ZOBECNĚNÝ PRO NESPOČETNÉ SYSTÉMY JEVU゚ A JEVOVÝCH σ-ALGEBER
 NGUYEN-van-Ho

Pojmy $\lim \sup A_{n}, \lim \inf A_{n}$ pro posloupnosti množin A_{n} a pojem $\lim \sup \sigma_{n}$ pro posloupnosti σ-algeber σ_{n} jsou v článku zobecněny pro nespočetné systémy množin, resp. σ-algeber. Na základě těchto zobecněných definic se pak dokazuje určitá slabší obdoba Borelova-Cantelliho lemmatu pro nespočetné systémy množin $A_{t}, t \in T$, a přímé zobecnění Kolmogorovova $0-1$ zákona pro nespočetné systémy σ-algeber $\sigma_{t}, t \in T$.

Author's address: Nguyen-van-Ho, Khoa Toan-ly Dai-hoc Bach-khoa, Hanoi, VDR.

