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SVAZEK 22 (1977) A P L I K A C E M A T E M A T I K Y ČÍSL01 

ON SIGNORINI PROBLEM FOR VON KARMAN EQUATIONS 

OLDRICH JOHN 

(Received March 26, 1976) 

1. INTRODUCTION 

In this article we deal with the Signorini boundary value problem for the system 
of von Karman equations. The existence theorem (Theorem 4.1) is proved in the case 
of rather general boundary conditions. All restrictions concerning the shape of the 
plate and the boundary functions (i.e. (4.2) and (4.8)) seem to be quite natural from 
the physical points of view. There is only one unpleasant restrictive condition, namely, 
that the boundary dQ of Q is infinitely smooth. (Q is the simply connected bounded 
domain corresponding to the middle plane of the undeflected plate.) This can be 
weakened immediately to Q e C3. Probably, apart from some additional technical 
difficulties, Theorem 4.1 is available also for an angular domain whose boundary 
is piece wise of C3. 

Theorem 4.1 is obtained by means of Theorem 5.3 (see also [9]) which is a general
ization of the result of J. L. Lions and Q. Stampacchia [6]. We make the application 
of this abstract result possible by transforming previously our variational problem 
in Section 6 to a suitable form using the idea of G. H. Knightly (see [3], [2]). 

The present paper is a continuation of the article [2] by J. Necas and the author. 
J. Naumann in [7] studies the unilateral problems by a different method. 

2. CLASSICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM 

Let Q be a simply connected bounded domain in E2 with infinitely smooth 
boundary dQ (see [2], Definition 5) divided into three pairwise disjoint subsets 

3 

ri9 F2, F3, U rt = dQ. We suppose that either Ff = 0 or F? is a union of finitely 

many sets kj where each kj is homeomorphic with an open interval. (F? is the interior 
of ri with respect to dQ.) 

As usual we write wx instead of dwjdx, wxy instead of d2w\dx dy etc. The vector 
function n = (nx9 ny) maps each point of dQ onto the unit vector of the outer 
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normal to dQ at this point and we define the normal derivative wn and the tangential 
derivative wT as 

(2.1) wB = wxnx + wyny , wT = wx(-ny) + wynx . 

Denote further 

(2.2) A2w = A(Aw) = w ^ ^ + 2wxxyy + wWJ, 

and 

(2-3) [ w , / ] = w ^ / ^ + wyyfxx - 2 w ^ / ^ . 

Finally, let the boundary operators M and Tbe defined as follows: 

(2.4) Mw = v Aw + (1 - v) (wxxn
2

x + 2wxynxny + wyyn
2), 

(2.5) Tw = (-Aw)n + (i - v) (wxxnxiiy - wxy(n
2

x - n2
y) - wyynxny)x 

where v is Poisson's constant (0 = v < -j). 

Being interested above all in the variational solutions of boundary value problems 
we do not give the classical formulation in full detail. We mention it here to make the 
situation clearer. 

Three types of problems will be introduced — R, S{ and Sn. Each problem will 
be specified on the one hand by the division of dQ into Ft (i = 1, 2, 3) and on the 
other hand by the following given functions: q : Q -> E1 (which represents the den
sity of the perpendicular load), $ 0 , ^i : dQ -> Ei (boundary value of the Airy stress 
function and its normal derivative) and k2, m2 : F2 -> El9 k31, k32, m3, r3 : F3 -> Et. 
(Functions k are the coefficients in the boundary conditions concerning elastically 
supported and elastically clamped part of dQ while m and r are the given bending 
moments and shearing forces on the corresponding parts of the boundary.) 

2.1. Definition. A pair of functions w, <P e C4(Q) is said to be a classical solution 
of the boundary value problem R if 

(2.6) A2w = [0, w] + q on Q, 

(2.7) A2</> = - [ w , w] on Q, 

(2.8) (P = 0O and <Pn = <PX on dQ, 

(2.9) w = wn = 0 on ri , 

(2.10) w = 0 , Mw + k2w., = m2 on F2 , 

(2.11) Mw + k31wB = m3 on F3 , 

(2A2) Tw + k32w = r3 On F3 . 
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Remark . This problem was treated in the paper [2]. Remember here at least the 
meaning of the special case of boundary conditions: Fx is the clamped part of the 
boundary. If k2 = m2 = 0 on F2 then F2 is simply supported. If k31 = m3 = k32 = 
= r3 = 0 on F3 then F3 is the free part of the boundary dQ. 

2.2. Definition. A pair of functions w, <P e C\Q) is said to be a classical solution 
of the problem S, if it satisfies the equations (2.6) —(2A 1) and if 

(2A3) w _ 0 and Tw + k32w _ r3 and 

w(Tw + k32w — r3) = 0 on F3 . 

Remark . In the special case of k32 = r3 = 0 the condition (2.13) describes the 
following situation: The edge F3 of the plate lies on a rigid base so that it can be 
deflected only upwards (w _ 0). The possible shearing force is the reaction of the 
base which acts in the positive sense (Tw = 0). If w(P) > 0 at a point P e F3, no 
reaction of the base acts there so that Tw(P) = 0 and the product w(P). Tw(P) = 0. 
If w(P) = 0 then Tw(P) can be > 0 but the product w(P) . Tw(P) is zero again. 

2.3. Definition. A pair of functions w, <P e C4(.Q) is said to be a classical solution 
of the problem Su if it satisfies the equations (2.6) — (2.10), (2.12) and the condition 

(2.14) wn = 0 and Mw + k31w,. = ra3 and 

wn(Mw + k31w„ - m3) = 0 on F3 . 

3. VARIATIONAL FORMULATION OF THE BOUNDARY VALUE PROBLEMS 

First we introduce the necessary notation: 

(3.1) (u, V)WQ2,2 = (uxxvxx + 2uxyvxy + uyyvyy) dx dy , 
J Q 

(3.2) (u, v)v = (u, v)^02)2 + v [u, v] dx dy , 
J Í? 

(3.3) a(u, v) = k2unvndS + (k31unvn + k32uv) d S , 
J T2 J T3 

(3.4) A(u, v) = (u, v)r + a(u, v) , 

(3.5) B(v; u,<p) = (v^ux(py + ^ u ^ x - ^u^^. x - ^wy<Py) dx dy . 
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Notice that for cp e W^2 

(3.6) B(v; u, cp) = B(cp; v, u) = B(u; (p, v) . 

Using the Holder inequality we obtain 

(3.7) |B(w; v, (p)\ S c||H|Wo2'2 \\vlWUA Iklk1-4 • 

Define further the subspace Vof W2,2(Q) as F" where 

(3.8) r = {v e C°°(D); v = v„ = 0 on Fl9 v = 0 on F2} 

(the closure in W2'2(.Q)) and two cones in this subspace 

(3.9) K, = {v e V; v = 0 on F3} , K„ = {v e V; vn ^ 0 on F3 
ì 
i • 

3.L Definition. A pair of functions w e V, & e W2,2(Q) is said to be a variational 
solution of the problem R if <P satisfies the condition (2.8) in the sense of traces, 
if further 

(3A0) A(w, v — w) ^ B(w; 4>,v- w) + q(v — w) dx dy + 

+ m2(vn - wn) dS + [m3(vn - w;j) + r3(v - w)] dS 
J T2 J T3 

holds for each v e V and if 

(3.11) V<A G W0
2'2(^) : ( 0 , *AVo2,2 = - B ( w ; w, </,) . 

3.2. Definition. A pair of functions w e K„ 0 G W2'2(iQ), (w e K„, ^>G 1V2'2(.Q), 
resp.), is said to be a variational solution of the problem Sj (Su) if <P satisfies the 
condition (2.8) in the sense of traces, if further (3.U) holds and if the inequality 
(3.10) is satisfied for all v e Kx (v e KH). 

Remark . The relation between the variational and classical solution is explained 
in Section 8. 

4. THE MAIN RESULT 

Define 

(4.1) Yv = {vG V; A(v,v) = 0} . 

It follows from the definition of A by means of the formula (3.4) that Yv is a linear 
subset of the set of all polynomials of the first order restricted to the domain Q. 
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4A . Theorem. Suppose that Q is the domain described in Section 2 and that 

(4.2) either F2 = 0 or F2 is a union of finitely many segments of the straight line. 

Let the prescribed functions k2, k3I, k32 and q, m2, m3, r3 satisfy the following 
conditions: 

(4.3) k2 e Lp(F2) (p > 1) and k2 ^ 0 almost everywhere on F2, 

(4.4) k3I e Lp(F3) (p > 1) and k31 ^ 0 almost everywhere on F3 , 

(4.5) k32eLl(F3) and k32 ^ 0 almost everywhere on F3 , 

(4.6) q e Lp(Q) , (p > 1) , 

(4.7) m2eLp(F2) and m3eLp(F3), (p > 1) , r 3 e L 1 ( F 3 ) . 

Let the functions <P0 and <P± defined on dQ almost everywhere have the following 
properties: 

(4.8) 0O = <P{ = 0 on F3 , 

(4.9) there exists a function F e C2(Q) for which 

F = <t>0 and Fn = 01 on dQ. 

Then the following assertions hold: 

(i) If Yv = {0} then there exists a variational solution of the problem R. 
(ii) If K, n Yv = {0} then there exists a variational solution of the problem S,. 

If K, n Yv #= {0} and if simultaneously each zeKxn Yv \ {0} satisfies the in
equality 

(4.10) qz áxáy + m2z„ dS + \_m3zn + r3z] dS < 0 
J Q J T2 J T3 

r/î rz thcre ^xiSIs a variational solution of the problem Sj. 

(iii) IfKn n Yv = {0} th^ti th^r^ exists a variational solution of the problem Su. 
If K„ n YF =|= {0} and /f simultaneously each z e Kn n YF \ {0} satisfies the 
inequality (4.10) then there exists a variational solution of the problem Sn. 

In the proof of Theorem 4.1 we employ Knightly\s idea of transforming the prob
lems in question to nonlinear operator inequalities (Section 6) to which we apply 
in Section 7 the abstract Theorem 5.3. 

5. ABSTRACT EXISTENCE THEOREM 

Let H be a real Hilbert space with its norm || • ||;/ and let px be a seminorm in H. 
Let <f v> denote the pairing between H' and H. 
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5A. Definition. An operator ?T: H -> H' is said to be semicoercive on H with 
respect to the seminorm px if there exists a function 

(5.1) G: <0, + 00)-> <0, +co) 

for which 

(5.2) lim G(z) = + oo 
Z~* + GO 

and a positive constant C such that 

(5.3) V t e H : (.T{v), v} ^ Pl(v). G(Pl{v)) - C . 

5.2. Definition. Au operator ZT: H ~> H' is said to be pseudomonotone if 

(5.4) <T is bounded on H 

and 

(5.5) un — u and lim sup <^(u"), un - u> ^ 0 implies lim inf <3~(u% un - v> ^ 
^ CT(u), u - v> /Or a// v e H. 

5.3. Theorem. Let H be a real Hilbert space with the norm || • IL, let px be a semi-
norm in H and p0 an other norm in H such that H is pre-Hilbert with respect to p0. 

Let further the following assumptions be satisfied: 

(5.6) P0(-) + Pi(') is a norm equivalent with | ' | | / / , 

(5.7) the subspace Y = {z e H; px(z) = 0} has a finite dimension, 

(5.8) there exists cx > 0 such that for all v e H, 

infp0(v + y) ^ cx px(v), 
yeY 

(5.9) K is a closed convex subset of H, 0 e K, 

and 

(5-10) 3~: H -> H' is a pseudomonotone operator semicoercive with respect to the 
seminorm px. 

Then the following two assertions hold: 

(i) If K n Y = {0} then for each fe H' there exists an element weK such that 

(-Ml) <^(w), v - w> ^ </, v - w> , Vv e K . 
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(ii) If K n Y 4= {0} then for each f e Hr which can be decomposed into a sum 

f = fo + fi in sucn a way tnat 

(5A2) <f0, y} < 0 for each y e K n Y\ {0} 

and 

(5.13) 3c2 > 0: |</ l 5 v>| ^ c2 px(v) for each veH 

there exists w e K such that (5A 1) holds. 

Proof. Denote 

(5.14) Kn = K n {v e H; ||v||„ ^ n} . 

Each Kn is a closed convex nonempty subset of H. According to [4], Theorem 8.1, 
there exists for each f e H' a solution u e Kn of the inequality 

(5.15) <;T(u), v - u> ^ </, v - u> , Vv e K„. 

Lemma A. Let u eK ; . be u solution of (5.15) u/iu7 let ||u|L < u. Then u is tf solution 

o/(5.11). 
Indeed, fix D e X and denote w; = At> + (t — A) M. We can choose 1 e(0, 1) such 

that wxeKn. Substituting into (5.15) we have 

(.r(u), wx-u}^ </, wx - «> 

which implies immediately 

(.r(u), v-u}^ </, v - M> 
and Lemma A is proved. 

According to Lemma A it suffices to prove that 

(5.16) in each sequence {un}n
xL1 (un e Kn) of solutions of the inequalities (5.15) 

there exists u"° such that ||u"°||// < "o-

Let (5.16) be not valid, i.e., 

(5.17) there exists a sequence {u"}^°=1 (u" eKn) of solutions of the inequalities (5.15) 

such that \un\n ~ n f ° r a " n e N* 

We shall prove that under the assumptions of Theorem 5.3, (5.17) leads to a contra
diction. 

Denote 

(5.18) vv" = — , neN. 
n 
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It is vv" e K for each n e N. Because of the boundedness of {wn}^Lx in H there exists 
a weakly convergent subsequence [wnk}^Lx, 

(5.19) w"k~- w. 

K is closed and convex which implies that K is weakly closed and so vv e K. 

Lemma B. Let w be defined by (5.19). It is px(w) = 0 (i.e. w e Y). 
To prove that we put in (5.15) u"k for u and 0 for v. We have 

(*r(u"% u"k) S </, iink> 

and using the inequality (5.3) (semicoerciveness), 

Pl(u"") G(Pl(u"*)) - C £ </, u""} . 

Hence it follows after substituting (5.18) that 

Pl(w"k) G(nk Pl(w"'<)) - ~ S < / w"k> S \\f\\H- • 

Taking into account (5.2) we obtain finally 

(5.20) lim pi(vv"k) = 0 . 
k-* oo 

Denote now 

(5.21) P: H -> Y (the projection of H on Ywith respect to p0). 

From (5.6) it follows that P is a continuous mapping in H (with respect to || * ||«)-
It is vv"k - Pvv"k - vv - Pvv in H. This together with (5.6), (5.8) and (5.20) yeilds 
p0(w - Pvv) + px(w) S M\\w - Pw\\H ^ M lim inf ||vv"k - Pw"k|j/7 ^ MM1 lim inf. 
. [p0(w

nk - Pw"k) + p,(w"k)] ^ MM1(c1 + 1) lim Pi(w"k) = 0 and so Pl(w) = 0. 

Lemma C. Let {w"k} be defined by (5.19) and let P be the projection defined by 
(5.21). Then p0(Pw) > 0. 

Suppose that p0(Pw) = 0. As the operator P is continuous in H and its range Y 
has a finite dimension it is totally continuous. So there exists a subsequence {zn}^Lt 

of {w"k}f=1 such that 

(5.22) lim p0(Pzn) = p0(Pw) = 0 . 
7J-+ OO 

On the other hand, 

1 = \\z%, ^ M1(p0(z") + Pl(z"j) ^ 

£ Af .(p0(z« - Rz") + P l(zn) + p0(Pz")) ^ Af .((Cl + 1) p.(z") + Po(Pz")) . 

Using (5.22) and (5.20) we obtain a contradiction and Lemma C is proved. 
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So the assumption (5.17) yields the existence of an element w e K which belongs 
to Y (Lemma B) and is not zero (Lemma C). But this is impossible if K n Y = {0}. 
Thus in this case (5.16) takes place and the assertion (i) of Theorem 5.3 is proved. 

Lemma D. Let K n Y #= {0} and let f eH\f = f0 + fx where f0 e H' andfx e H' 
with f0,fL satisfying (5.12), (5.13). Then (5.16) holds. 

Suppose on the contrary that (5.17) holds and let {w"k}^=i be defined by (5.18) 
and (5.19). Substituting in (5.15) unk for u and 0 for v and using the condition (5.3) 
of semicoerciveness we get 

(5.23) </, wnk) ^ - — , keN. 
nk 

On the other hand, 

(5.24) </, wnk) = <f0, wnk - Pwnk) + <f0, Pw"k> + <f1? wnk) . 

Estimating <f0, w"k - Pw"k> by \\f0\\H. \\w"k - Pw"fc||H and using (5.6), (5.8) and 
(5.20) we get 

(5.25) Jim </0, wnk - Pwtlk) = 0 . 
A;-* co 

From (5.13) it follows immediately that 

(5.26) lim <f1? wM*> = 0 . 
k-* oo 

Using finally the fact that Pwn,c ~- Pw together with Lemma C (Pw #= 0) and Lemma 
B (Pw = w e K n Y) we conclude 

(5.27) lim <j0, Pw"k} = <j0, Rvv> < 0 . 
k-+ oo 

Passing to the limit in the equality (5.24) we obtain from (5.25) —(5.27) that 
</, w> < 0 while (5.23) yields that <f, w> ^ 0. So the assumption (5.17) leads to 
a contradiction and the proof of Lemma D is complete. 

Lemma D and Lemma A imply immediately the validity of the assertion (ii) of 
Theorem 5.3. 

6. APPLICATION OF KNIGHTLY'S IDEA 

From now we still suppose the assumptions (4.2) —(4.9) to be satisfied. Let 
F e C2(Q) be any function for which F = <P0 and Fn = <t>1 on dQ. Define 

(6.1) g = <£ - {F 

where £ is an auxiliary function from CX(Q) for which 

(6.2) C = 1 on dQ and £„ = 0 on dQ. 
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Substitute now from (6.1) into (3.10) and (3A 1) realizing that the equation (3.11) 
is then equivalent to the inequality 

(6.3) Vi/7 6 W2,2(Q): 

(g, ^ - g)Wo2-2 + (£F,<// - gVo2-2 + B(w'ivv' *A - d) = ° • 

Adding the inequality from (6.3) to the result of the substitution into (340) we 
obtain the inequality 

(6.4) A(w, v - w) + (g, \jj — g)^02)2 — B(w; g, v — w) + B(w; w, \jj — g) + 

+ (CF, iA - g)Wo2,2 - B(w; CF, t' - w) ^ 

.7(0 
J я 

w)dx dv + m2(v„ - w„)âS + [m3(v,г - wn) + r3(v - w)] dS . 

6.1. Definition. A couple of functions we V and g e W0

2'2(:Q) (we K, and g e 
e WQ,2(Q), WE Kn and g e W0

,2(Q), respectively) is said to be a solution of the 
problem R., (SK, Sni-) if the inequality (6.4) is satisfied for each couple ve V and 
\jj e W0

,2(Q) (v E K, and \\t e W0

,2(Q\ v e K„ and \jj e W2,2(Q)). 

Remark . It follows from the procedure described above that the existence of 
a variational solution to the problem R, (Sh Su, respectively) will be proved if we 
prove the existence of a solution of the problem Bc (SK, SlK) for a fixed function £. 
The formulation of all three problems is based on the same inequality (6.4) but each 
problem has its specific convex set of solutions and test functions. 

Now we rewrite the problems IxV, 5,c and Su^ in a form which permits to apply to 
them Theorem 5.3. 

Denote by 

(6.5) H = V x W2'2(Q) 

the linear space whose elements 

(6.6) U = /w, g\ , w e V, g e W0
2 2(Q) 

are normed in the usual way as 

(6.7) U « + g WO2'2 

IL, II (Remember here that ||O||^02,2 == (g, g)Uo2>2 anc* ||u;||W2-2 = I W \ \ L 2 ' 

The space H with the norm ||-||/f defined by (6.7) is a real Hilbert space. Denote 
further 

(6.8) К i - Ќ , x W0
2'2(£>), К„ = /?„ x W0

2-2(ß) 
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and define the functional Q: H -> E{ and the operator &~£ H -> H' as 

(6.9) Q(U) = V Q(U) = Í/VV dx d>' + m2wn áS + 2 % . 
L2 

[m3wл + r3w] dS 
' T 3 

and 

(6.10) < ^ ( U ) , Z> - A(w, v) + (gf, xls)Wo2,2 - B{w; g, v) + B(w; w, <//) -

- B(w; CF, i?) + (CF, l\j)Wo2a , 

where Z = /v, t///. 

6.2. Definition. A solution of the problem R^ (S^, S1IC, respectively) is such an 

element of H (K,, Ku) for which the inequality 

(6.ii) < ^ c ( U ) , z - U> ^ < e , z - U> 

holds for each ZeH,(ZeKhZe K„). 

R e m a r k . The equivalence of Definitions 6.1 and 6.2 is evident. In accordance 

with our programme we are looking for the function f for which the operator 3~\ 

is pseudomonotone and semicoercive with respect to a suitable seininorm. 

6.3. Lemma. The functional Q defined by (6.9) is a continuous linear functional 

on H. 

Proof. The assertion follows from (4.6) and (4.7) by means of Sobolev imbedding 

theorems and theorems of traces (see e.g. [8]). 

6.4. Lemma. Let ( e CG0(.Q) be a function with the property (6.2). Then the opera

tor <T^ defined by (6.10) is a bounded operator from H to H'. 

Proof. The assertion follows from the estimate (3.7), Sobolev imbedding theorems 

and theorems of traces. 

7. PROOF OF THEOREM 4.1 

In the space H defined by the relations (6.5) —(6.7) set for U = /w, gj 

(7A) Po(u) = HIL2 + lkl»V'2> 

(7.2) Pi(U) = \_A(w,w)Y12 + ||g||Wo2,2. 

H is pre-Hilbert with respect to the norm p0. From (4.3) —(4.5) it follows that p{ 

is a seminorm in H. From the definition (3.4) of A(u. v) we obtain easily that P0(*) + 

+ Pi(*) is equivalent with the norm ||'||//. So the assumption (5.6) of Theorem 5.3 

is satisfied. 

62 



Denoting Y = (UGH; Pi(U) = 0} we have immediately 

(7.3) Y = Yv x {0} 

where Ŷ  is defined by (4.1), Since Yv is a linear subset of the set of all polynomials 
of the first order restricted to the domain _7, it is finite dimensional and the assumption 
(5.7) of Theorem 5.3 is satisfied. 

To prove (5.8) we have to show 

(7.4) 3 V inf ||u + z||L2 ^ c[A(u, u)]l/2 . 
c>0 uev zeYv 

Let X _L Yv be the orthogonal decomposition of the space Vwith respect to the scalar 
product in L2(Q). Suppose that (7.4) does not take place. Then there exists a sequence 
{f-n}£-i i n Vsuch that 

(7.5) inf IM" + z||L2 = 1 and A(u}\ un) S - , n = J, 2, . . . . 

zeT K n 

Let w" be an orthogonal projection of utl onto X. According to (7.5) it is 

(7.6) |w"||L2 = l , neN 

and A(w'\ wn) -> 0 so that ||w"|j^02,2 -» 0. Thus the sequence {w"}*=i is bounded 
in W2a(Q). Thanks to the compact imbedding W22(Q) a L2(Q) there exists a sub
sequence {w",c}^L] convergent in L2(Q) to an element w. Because of Dawnk -> 0 in 
L2(Q) for each a, |a| = 2, it is w"'c ~> w in W2,2(_7). As w e V and A(w, w) = 0 we 
obtain that w e YK, which implies 

wnkwdxdy = 0 , fce_V. 
Q 

Thus w = 0 which contradicts (7.6). 

Each of the sets H, K, and Kn is a convex closed subset of H containing zero so 
that in all three cases the assumption (5.9) is satisfied. 

To prove the semicoerciveness of ^ ( U ) with respect to pt for an auxiliary func
tion C we use the following lemma the proof of which will be sketched at the end of 
this section. 

7A. Lemma. There exists a function £ e C°°(Q) satisfying (6.2) for which 

(7.7) |B(w;CF9w)| ^ ip2(U) for all U = /w. g\ e H . 
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Let us estimate now <-^"?(U), U>. We obtain by means of (3.6), (7.2) and (7.7) 
for each U = jw, gj 

(7.8) <-r,(U), U> = A(w, w) + (g, g)Wol, ~ B(w; g, w) + B(w; w, g) -

- B(W. ~F, W) + (IF, g ) W o i , ^ \ v\(u) - \B(W, IF, w)\ -

-\{tF,g)w-.*\ ^ f p f ( U ) - \(CF, g)Wo>.2\ . 
Estimating 

\$F,g)w-.,\ ^ C\g\\Wo2, 5S C + l\\g\\Wo2, ^ C + I p](U) 

and substituting it into (7.8) we obtain finally that 

(7.9) <,r5(U), U> ^ i Pl(u) - c. 

It remains to prove the pseudomonotonicity of the operator .T?. We can write 

(7.10) <-^(U"), U" - V> = <^z(Un) - -T£U\ U" - U> + 

+ <^?(U), U" - U> + <^>(U"), U - V> . 

If we prove that the situation 

(7.11) U" -* U and lim sup <^(U") , U" - U> S 0 

implies that the first two members on the right hand side of (7+0) tend to zero and 
<T^(l)n) -*• ^ ( U ) then the pseudomonotonicity will be established. Obviously, 
lim <^%(U), U" — U> = 0. Further, according to Lemma 7A, 

(7.12) (^(U") - -^(U) , U" ™ U> = A(wn - w, w" - w) + 

+ (gn - g, gn - g)Wo2,2 - B(w" - w; CF, w" - w) + 

+ {B(w"; w", g" - g) + B(w; g, w" - w) - B(w"; g", w" - w) -

- B(w; w, O" - g)} = fp2(U" - U) + 

+ |B(w"; w", g" - g) + B(w; a, w" - w) - B(w"; .a", w" - w) - B(w; w, a" - g)}. 

For n -» oo the expression in figure brackets tends to zero. (This follows from the 
estimate (3.7) and from the compactness of the imbedding W2,2(.Q) c WXA(Q).) 
Using (7.H) we obtain from (7A2) that 

lim <^(U" ) - -^(U) , U" - U> = 0 . 

Simultaneously we get from (7A2) that 

(7.13) l imp^U" - U) = 0. 
n~* oo 
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Let now Z = /v, \jjj. It is 

(7.14) < ^ ( U " ) - , r ? (U ) , Z> = A(w" - w, v) + (O" - </, ^ )^ o 2 > 2 -

- B(w"; a", v) + B(w; gy v) + B(w"; w", \jj) - B(vv; w, i//) - B(w" - vv; CF, v) . 

From (7.13) and (3.7) it follows that 

(7.15) lim (A(w" - w, v) + (g" - g, iAW>2 - B(w" - w; CF, v)} - 0 , 
/7 - > 0 0 

(7A6) lim {B(w; O, v) - B(w"; O", v)} = lim B(w - w"; #, v) -
n —> oo I I - * oo 

- lim B(w"; a" - #, v) = 0 
/? —• 0 0 

and 

(7.17) lim |B(w"; w\ ij/) - B(w; w, ^)} = lim B(w" - w; w", i/J) + 
/J -» x n -*• oo 

+ lim B(w; w" - w, i/y) = 0 . 

Using (7A5)-(7A7) we obtain from (7.14) that 

lim <^(U " ) - ^ ( U ) , Z> = 0 . 

In this way we have established that under the conditions of Theorem 4.1 all 
assumptions of Theorem 5.3 are satisfied for the operator ZT^ in the space H. The 
assertion of Theorem 4A is nothing else than the assertion of Theorem 5.3 rewritten 
for the operator 2T^ 

Sketch of the p roo f of Lemma 7.1. Under the conditions (4.2), (4.8) and 
(4.9) we are able to prove the following fact: For each y > 0 there exists a function 
C e Cco(Q) satisfying (6.2) for which 

(7.18) |B(w; CF, w)| S y f H l i U ; for all w e V. 

(For the details see [2 ] , Section 6.) Put y = l / l6 (c 2 + 2) where c is the constant from 

(7.4) and denote by £ an auxiliary function for which (7.18) holds. For w e V and 

z e Yv v/e have 

|B(w + z; CF, w + z)| < — ||w + z||2F2,2 < 
! V A - 1 6 ^ 2 + 2 ) | | || H _ 

(IIw + zll"2 + HI5v.O 
8(c2 + 2) 
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and, using the definition of A(w, w) and the relation (7.4), 

(7.19) inf \B(w + z; CF, w + z)| = — - 1 (c2 + 2) A(w, w) ^ | p2(U) . 
zeYK 8(c2 + 2) 

a) In the case YK = {0} the proof is complete. 

b) In the case Yv 4= {0} we must prove that B(w + z; CF, w -\- z) = B(w; CF, w) 
for w e V, z e YK or, equivalently (remembering that z are polynomials of the first 
order) 

(7.20) B(w; CF, z) = 0 

for all w e C°°(.Q) for which w = w„ = 0 on Fx and w = 0 on F2 and all polynomials 
z(x, y) = Ox + by + c from YK \{0}. We obtain by Green's formula (using also 
(6.2), (4.8) and (4.9)) that 

(7.21) B(w; CF, z) = f (CF)T (-bwx + Owy) dS = 
} CQ 

= J (0o)x(-bwx + Ow,)dS. 
J r2 

If now F2 = 0, the last integral equals zero. Let F2 -j= 0. As z e Yv cz V, Ox + by + 
+ c = 0 on F2. This implies that ( — b, O) is a tangential vector so that the expression 
— bwx + awy equals cwx with some real constant c. But wr = 0 on F2 as w = 0 on F2 

and so B(w, CF, z) = 0 q.e.d. 

8. RELATION BETWEEN CLASSICAL AND VARIATIONAL SOLUTIONS 
OF THE PROBLEM 

The sufficiently smooth variational solution is a classical one. We sketch the proof 
in the case of the problem Sr. From Green's theorem we obtain (for u, v and w 
sufficiently regular) 

(8.1) (w, v)v = \ A2wvdxdy+ TwvdS+ Mw vn dS , 
J Q J DQ J dQ 

(8.2) (w, vVo2>2 = I A2w v dx dy if v e W2<2(0), 
JQ 

(8 .3) B(u; w, v) = [u, w] v dx dy — (w
x

uyz ~ wyllxr) v dS 
J Q J (IQ 
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Let w, 0 be a sufficiently smooth variational solution of the problem S, (see 

Definition 3.2); using (3.11), (8.2) and (8.3) we obtain 

J (A2<P + [w, w]) \j/ dx dy = 0 , Vi/l e WQ'2(Q) . 

This yields 

A2(P = —\w,w^\ on .Q, 

which is the equation (2.7). 

Setting in (3.10) v = w + cp where cp is a smooth function with a compact support 

in Owe obtain from (8.1) and (8.3) that the functions w and <P satisfy the equation 

(2.6). Because of w e V, the condition (2.9) is satisfied automatically and w = 0 

on F2 as well. 

Using these facts together with the formulas (8.1) and (8.3) we transform (3.10) into 

(Mw + k2w„ - m2) (vn - w„) d5 + (Mw + k31w,, - m3) (vn - w„) d5 + 
J T2 J T3 

+ f (Tw + k32w - r 3 ) (v - w) dS + f ( 4 ^ - ^ w j (v - w) dS ^ 0 . 
J T3 J dQ 

The integral j " a f i ( ^ w ^ — @ywxr) (v — w) dS in (8.4) equals zero because v — w = 

= 0 on Fj u F2 and <PX = <Py = 0 on F3 (see the assumption (4.8)). If we take now 

v = w + cp with (/? e Cco(Q) and such that cp = 0 on rlf2, cpn = 0 on f, u F2 we get 

Mw + k31wn = m 3 on F3 which is the boundary condition (2.11). Analogously we 

obtain that satisfies the condition Mw + k2w„ = m2 on F2. 

It remains to prove that w satisfies the inequalities (2.13). Until now we have 

proved that the inequality (8.4) has the form 

(8.5) j (Tw + k32w - r 3 ) (v - w) dS ^ 0 , Vv e K, . L< 
Firstly, w ^ 0 according to the definition of K,. Secondly, if (Tw + k32w — r 3 ) (P) < 

< 0 at a point P e F3 we obtain (by the continuity) that for a suitably chosen function 

v e Ki it is 
/» 

(Tw + k32w - r 3 ) (v - w) dS < 0 , 
3 

which contradicts (8.5). So it is Tw + k32w — r 3 ^ 0 on F3. Finally, substituting 

v = 0 and v = 2w we obtain from (8.5) that 

(8.6) (Tw + k32w — r 3 ) w dS = 0 
Tз 

As we have proved the non-negativeness of the subintegral function, the formula 

(8.6) implies that (Tw + k32w — r 3 ) w = 0 on T 3 . 
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S o u h r n 

O S I G N O R Í N I O V Ě P R O B L É M U P R O VON K Á R M Á N O V Y R O V N I C E 

OLDŘICH JOHN 

Článek volně navazuje na práci [2]. Je v něm dokázána existence variačního řešení 
zobecněného Signoriniova problému převedením příslušné okrajové úlohy na nerov
nici s pseudomonotonním semikoercitivním operátorem. Řešitelnost této nerovnice 
plyne z abstraktní Věty 5.3, která je zobecněním výsledku J. L. Lionse a Q. Stam-
pacchii z článku [6] na nelineární případ. 
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