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SVAZEK 22 (1977) AP LI K A C E M ATE M A T I KY ČÍSLO 2 

ON ITERATIVE SOLUTION OF NONLINEAR HEAT-CONDUCTION 
AND DIFFUSION PROBLEMS 

HERBERT GAJEWSKI 

(Received November 18. 1975) 

INTRODUCTION 

Let G be a bounded domain in the n-dimensional Euclidean space Rn with the 
boundary F and let S = [0, F] be a bounded (time-) interval. Set Q = ]0, T[ x G 
and I = ]0, T[ x F. 

We consider in the present paper initial-boundary-value problems of the form 

(0.1) e(w) w' — div (f(w) grad w) = q in Q , 

w(0, x) = a(x), x e G ; w = b0 on I. 

For such problems we shall establish approximation methods under natural con­
ditions on the material functions e and f, the right-hand side q, the initial values a 
and the boundary values b0. Especially we shall show that the solution of (0.1) can 
be calculated by the successive solution of problems of the form 

z\ - Azt = r(t,x, z f._t) in Q, i=\,2,..., 

Zj(0, x) = 0 , x e G ; zt = 0 on I . 

The paper consists of six sections. In the first section we introduce the notation 
used in the following The formulation of the basic assumptions, the precise statement 
of the problem and a comparison principle for the problem (0.1) are given in the 
second section. In the third section we prove the main result of the paper concerning 
the convergence of the iteration method mentioned above. A procedure of Galerkin 
type for solving the problem (0.1) is considered in the fourth section. As we show 

The results contained in this paper were first presented by the author at the Summer School 
on "Nonlinear Analysis and Mechanics'', September 1974, Stara Lesna near Poprad, Slovakia. 
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in the fifth section, this procedure may be combined with the iteration method to 
obtain a projection-iteration method. In the sixth section we sketch an example. 

Some results of this paper follow from more general results of the papers [2] — [4]. 
We shall refer to these papers at the corresponding proofs. 

1. NOTATION 

Let G be a bounded domain in Rn with a Lipschitzian boundary F. We denote 
by 13(G), Hk(G), H0(G) and H~\G) the usual Hilbert spaces (see e.g. [5]). The 
symbol (*,•) denotes the scalar product in L2(G) and also the pairing between 
H~1(G) and HJ(G). The symbols | • [, II • II and II • IL mean the norms in L2(G), Ho(G) 
and H-1(G), respectively. 

Let S = [0, T] be a bounded (time-) interval. In what follows we shall consider 
functions on S which have values in the Hilbert spaces mentioned above. Let H be 
a Hilbert space. We denote by C(S; H) the space of continuous functions u e (S —> H). 
The Hilbert space L2(S; H) consists of all Bochner-measurable functions u e(S -> H) 
for which Js ||u(l)||2/ dt < oo. We denote by H*(S; H), k = 1, 2 the space of func­
tions u belonging to L2(S; H) together with their derivatives (taken in the sense of the 
space ^*(S; H) of distributions on ]0, T[ with values in H) up to the order k. 
Accordingly we write u for the derivative of u with respect to t e S. 

The scalar product in L2(S; L2(G)) and the norms in L2(S; L2(G)), L2(S; H0(G)) 
and L2(S; H_1(G)) are denoted by 

(u, v)s = (u(t), v(t)) dt, |u | | = |u(t)|2 d t , 

|«l|i = Í14011 dt, \\r\ [2 
i*s \r(t)\\ldt, 

respectively. 

We set g -= ]0, T[ x G and I = ]0, T[ x F. Let u be any function from 
L2(S; L2(G)). In what follows we shall denote by u also the function (t, x) .->• (u(*)) (x) 
belonging to L2(Q) and, consequently, consider "abstract" functions from L2(S; L2(G)) 
as "ordinary" functions simultaneously. 

Let F e (R1 -> R1) be a given function. For any function u e L2(G) (L2(S; L2(G))) 
we denote by F(u) the function x i-> F(u(x)) ((t, x) i-> F((u(t)) (x))). If F is Lipschitz 
continuous, then we can define by u i-> F(u) mappings of the spaces L2(G), Hl(G), 
L2(S;L2(G)), H\S;L2(G)) and L2(S; H\G)) into itself. In the following lemma 
we collect some simple continuity properties of these mappings. 

Lemma 1.1. Let F e (R1 -> R1) be a Lipschitz continuous function. Then the 
mapping u i—> F(u) is 
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a Lipschitz continuous mapping OfL2(G) \nt0 itself 

a weakly continuous mapping of HX(G) into itself 

a Lipschitz continuous mapping OfL2(S; X}(G)) into itself. 

Moreover, if un i-> u strongly in L2(S; L2(G)) and weakly in L2(S; HX(G)) (HX(S; 

L2(G))), then F(u„) i-> F(u) strongly in L2(s; L2(G)) and weakly in L2(S; HX(G)) 

(HX(S; L2(G))). Let finally F have an upper-semicontinuous derivative, then u i~> F(u) 

is a continuous mapping of HX(G) (L2(S; H3(G)), H^S; L2(G))) into itself. 

2. ASSUMPTIONS. FORMULATION OF THE PROBLEM 

We consider the initial-boundary-value problem 

(2.1) e(w) w' - div (f(w) grad w) = q in Q , • 

(2.2) w(0, x) = a(x) , x e G , 

(2.3) w = b0 on I 

and suppose that the following basic conditions are satisfied throughout this paper: 

a) The function f is measurable on Rx and there exist constants f! andf2 such that 

0 < fj = f(s) = f2 < oo for almost all s e Rx . 

b) The function e is measurable on Rx and there exist constants ex and e2 such that 

0 < et = e(s) = e2 < oo for almost all s e R1 . 

c) There exists a function b e L2(S; HX(G)) such that b = b0 on Z\ 

d) The function x i-> J0
(x) e(s) ds belongs to H~X(G). 

e) The right-hand side q belongs to L2(S; H~X(G)). 

R e m a r k 2.1. Many of the considerations to follow concerning (2.1) may be 
extended to the more general equation 

e(x, w) wr — div (f(t, w) grad w) + g(t, x, w) = q . 

In this case the functions £,fand g must satisfy the following basic conditions: 

0 < ex = e(x, s) ^ e2 < oo , x e G , s e Rx , 

0 < A ^ f(t, s) < f2 < oo , t e S , S G ^ 1 , 

)#(*, x, s j - #(t, x, s2)| ^ gjsi - s2 | , teS , XEG , sus2eRl . 
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R e m a r k 2.2. For the sake of simplicity, we shall restrict ourselves to Dirichlet 
boundary conditions. The more general results of the papers [2] — [5] may be applied 
also to other boundary conditions and to the determination of periodic solutions of 

(2-1)-
We define Lipschitz continuous functions E and F by 

E(s) = re(p) dp and E(s) = f / 0 ) dp . 
Jo Jo 

Then the equation (2A) can be written in the form 

(2.4) (E(w)y - AF(w) = q . 

Definition 2.1. We say that a function w e L2(S; Hl(G)) n H\S; L2(G)) is a solu­
tion of (2.l)-(2.3) if w - beL2(S; H0(G)), w(0) = a and w satisfies (2.4) under­
stood as an equation in L2(S; H~~\G)). 

R e m a r k 2.3. If w e L2(S; H\G)) n H\S; L2(G)), it follows from Lemma 1.1 
that F(w) e L2(S; H\G)), E(W) e H\S; L2(G)) and therefore AF(vv) e L2(S; H^G)), 
(E(w)y G L2(S; L2(G)) c L2(S;H~\G)y Thus we see that (2.4) really makes sense 
i n L ^ H - ^ G ) ) . 

The notion of a solution just defined makes it possible to state the following 
comparison theorem. 

Theorem 2.1. Let w be a solution 0/(2.1)-(2.3). Set 

K = {v | v e L2(S; H0(G)), v = 0 a.e. on Q) . 

If Js (q(t), v(t)) At g 0 Vv G K, then 

ess sup w(t) ^ M = max (ess sup b0, ess sup a) 
G I G 

for every t e S and also ess sup w ^ M. 
Q 

If \s (q(t), v(t)) dt _- 0 Vv eK , then 

essinfw(t) ^ m = min (ess inf b0, essinfa) 
G I G 

for every t e S and also ess inf w ^ m. 
Q 

Proof. We confine ourselves to a proof of the first statement. The proof of the 
second statement is analogous. Let w be a solution of (2.1) —(2.3). We set w. = E(w), 
d = E(M) and define z = z(t, x) by 

z(t, x) = idw^t , x) — d\ + w\t, x) — d) = max (wt(t, x), d) — d . 
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Obviously, we have 

ess inf z = 0 and z(0, x) = 0 for almost all x e G . 
Q 

Using the Lipschitz continuity of the functions E and x i-> |x|, we obtain by Lemma 
1.1 zeL2(S; Hl(G)) n Hl(S; L2(G)). Since 

Wj = E(w) = F(b0) on T , 

it follows that z e L2(5; Hl
0(G)). Thus we see that z e K. Now, applying the fact that 

either z(t, x) = 0 or z(t, x) = w<(L x) — d for all (t, x) e Q, we conclude from (2.4) 
that for any t e S 

(2.5) 0 í ((F(w))' - ЛF(w) - q, z)ás 
) o 

= j ((E(w)У - AF(w), z)ds 

i;', z + /(w) grád w grád z) dx ds 

—— grad WJL grad z ) dx ds 

G 2 j 
j(^) 

e(w) 

(Z2)' d5 dx + I I 
JoJG <vv; 

z l | 2 ds . 

grad z dx ds 

2 J G ea 

This implies z(L x) = 0, i.e. w. ^ d, for almost all x e G and consequently, 
ess sup w(t) = M for every t e S. For t = T we obtain from (2.5) and Friedrichs' 

inequality 

dg = 0. 

This means z = 0, i.e. w, = d almost everywhere and thus ess sup w = M. Theorem 
Q 

2.Vis proved. 

Remark 2.4. Let q = 0. Then it follows from Theorem 2.1 that m _ w = M 
almost everywhere on Q. Hence the functions / and e may be extended outside the 
interval [m, M] arbitrarily, for instance by constants. By this, evidently, the problem 
(2A) — (2.3) remains unchanged. 



Besides the initial-boundary-value problem (2.1) —(2.3) we now consider the 
initial-value problem 

(2.6) Au'~Au = r, u(0) = 0 , u e L2(S; Hl
0(G)) n Hl(S; L2(G)), 

where r = r(t) = J 0 (q(s) + AF(b(s))) ds + E(a) and the operator A is defined by 

Av = E(F~1(v + F(b))) Vv e L2(S; L2(G)). 

The problems (2A) —(2.3) and (2.6) are equivalent in the following sense. 

Theorem 2.2. If the function w is a solution of the problem (2.1) —(2.3), then the 
function 

u(t)=ľ(F(w(s))-F(Ь(s)))ds 

is a solution of the problem (2.6). 

Conversely, let u be a solution of (2.6) and let, in addition, u + F(b) e 

e L2(S; H\G)) n H*(S; L2(G)). Then the function 

w = F-\u + F(b)) 

is a solution Of (2.1) —(2.3). 

Proof. Let vv be a solution of (2.1) —(2.3). Then, obviously, we have 

u(t) = J (F(w) - F(b)) ds G H\S; Hl(G)) and u(0) = 0 . 
Jo 

Further, it follows from (2.4) that Vt e S 

0 = | ((E(w))' - AF(vv) - q) ds = E(w(t)) - E(a) - j (AF(w) + q) ds = 
Jo Jo 

= (Au')(t)-

= (Au')(t) 

A(F(w) - F(b)) ds - j (q + AF(b)) ds - E(a) = 
) Jo 

Au' ds - r(t) = (Au') (i) - A j u' ds - r(t) = 
o Jo 

= (Au') (t) - Au(t) - r(t) . 

To prove the second statement, let us assume that u is a solution of (2.6) and 

u' + F(b) e L2(S; H\G)) n H\S; L2(G)). Then 

w = F~'(«' + F(ft)) e L2(S; H^G)) n //'(S; L2(G)), w - be L2(S; H^G)), 

Au'e Hl(S; 13(G)) and -Au - r e WJ(S; H _ 1(G)) . 
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Since H!(5; L2(G)) c H\S; H~l(G)) cz C(S; H"1(G)), it follows by (2.6) that for 
every t e S 

0 = (Au') (t) - A u(t) - r(t) = E(w(t)) - A u(0) Au' ds — r(t) 

E(w(t)) - E(a) - (A F(w) + q) ás . 

Hence we conclude L(w(0)) = E(a), i.e. w(0) = a, and (2.4). Theorem 2.2 is proved. 
With regard to Theorem 2.2 it is useful to introduce 

Definition 2.2. Let u be a solution of (2.6). Then we say that the function w = 
= F-^u' + F(b)) e L2(5; L2(G)) is a generalized solution of (2.1) ~(2.3). 

R e m a r k 2.4. The equation (2.6) is a simple example for an evolution equation 
nonlinear in the time derivative. Existence and uniqueness theorems for such equa­
tions have been proved by several authors, see e.g. W. Strauss [7], Y. Konishi [6] 
and H. Gajewski - K. Groger [2] —[4]. 

3. ITERATION METHOD 

From the assumptions a) — c) we easily conclude that the operator A satisfies the 
following basic conditions 

(3.1) (Avx — Av2, vj — v2)s ^ — |v! — v2|s (strong monotonicity) , 
J 2 

(3.2) |Av t — Av2|s ^ — |v, — v2|5 (Lipschitz continuity) 

for any v1? v2 e L2(S; L2(G)). 

Moreover, A is a potential operator. (Obviously, A has the potential 
*v + F(b) 

ę{v) = Г E(F~x(s))ásáQ .) 

Theorem 3.1. There exists a unique generalized solution w of the problem 
(2A)-(2.3). Let w0 e L2(S; L2(G)) and a e ]0, 2f1/^2[ be arbitrary. Then the sequence 
(wt) defined by 

(3.3) Wi = F^1^; + F(b)), / = 1,2, . . . , 

u'i — ocAui = u'i-\ — a(^(v^/-i) — r) , w,{0) = 0 , 

Ui e L2(S; H0(G)) n Hl(S; L2(G)) , u0 = F(w0) - F(b) 
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converges to w strongly in L2(S; L2(G)). Moreover, the following error estimates 
hold: 

I 1 ^ / 2 (*(«))' 1 l / • A 
\Wi - w\s < ^- • , r |w, - w0|s = e, (a pr/On), 

/ 1 1 - % ) 
T 

\w; — w[s < —— \r — AuJ + AUi\s -* 0 (a posteriori) 
fi*i 

where k(a) = max [ 1 — a — , a — — 1 ) < 1 . 
V e2 fj / 

Proof. A result of the paper [2] (Bemerkung 6) implies that the initial-value 
problem 

z' - aAz = p + r , z(0) = 0 , ze L2(S; Hl
0(G)) n H'(S; L2(G)) 

has a unique solution z for every p e L2(S; L2(G)) and every r e H\S; H~ \G)). 
Consequently, we can define an operator B of 

H'(S; L2(G)) into L2(S; H0(G)) n H^S; L2(G)) by v 1 > z = Bv 

where z is the unique solution of 

z - otAz = v - a(Av' - r) , z(0) = 0 , ze L2(S; H0(G)) n HJ(S; L2(G)) . 

Using a well-known lemma on potential operators (see [5], Lemma 4.14, Chap. Ill), 
we conclude from (3.1) and (3.2) that 

(3.4) \z\ - Z% + a2\A(Zl - Z2)\l f, 

^ K ~ zz|s - 2a(A(Zi - z2), z\ - z'2)s + a2\A(zx - z2)\
2

s = 

= \z\ - z2 - aA(zt - z2)\
2
s = \v\ - v2 - u(Av\ - Av'2)\

2
s S 

S (k(a))2 \v\ - v'2\
2
s 

for any vu v2 e L2(S; H0(G)) n H\S; L2(G)), where z, = Bv, and z2 = Bv2 . 
The set 

X = {v I v G H](S; L2(G)), v(0) = 0} 

is a Banach space with respect to the norm ||v|L = |v '|s. The estimate (3.4) implies 
that the operator B considered as a mapping of X into itself is strictly contractive. 
Obviously, we may define the sequence (u,) by u{ = Bu{_x. Thus the statements of 
our theorem follow from BanadVs fixed-point theorem, (3.4) and condition a). 
Theorem 3A is proved. 
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Remark 3.1. The function k has its minimum 

K[cí\) ~ - a t OL ~ 
f\*\ + ./>2 f\č\ +f2e 

We now state a regularity theorem for the solution of (2.6), which we need in the 
next section in order to establish the Galerkin method. 

Theorem 3.2. Suppose b e Hl(S; L2(G)) and a e L2(G). Then the solution of (2.6) 
belongs to Hl(S; H0(G)). 

We omit here the somewhat lengthy proof of the theorem. We note only that the 
proof essentially utilizes the potentiality of the operator A. 

We conclude this section with an extension of Theorem 3.V 

Theorem 3.3. Suppose b e Hl(S; L2(G% A F(b) + q e L2(S; L2(G)) and F(a) -
— F(b(0)) 6 HQ(G). Then the problem (2.1) — (2.3) has a unique solution w. For 
arbitrary a e ]0, 2f,/^2[ the sequence (wt) defined by (3.3) converges strongly to w 
in C(S; L2(G)), provided the starting element w0 satisfies the conditions w0(0) — a 
and w0 e Hl(S; L2(G)). Moreover, the error estimate 

| K - VV||C(S;L2(C)) g c(6iY/2 

holds where the constant c may be calculated explicitly. Suppose the function f 
is lower-semicontinuous, then the sequence (vv() converges strongly to w also in 
1}(S; Hl(G)). Finally, suppose f is Lipschitz continuous and b e L2(S; H2(G)), 
then w belongs to L2(S; H2(G)). 

Proof. Since b e Hl(S; L2(G)), we have because of Lemma IT F(b) e Hl(S; 
L2(G)) cz C(S; L2(G)). Thus the operator A e (L2(S; L2(G)) -» L2(S; L2(G))) has the 
representation 

(Av) (t) = A(t) v(t) = E(F~\v(t) + F(b(t)))) Vt e S , Vv G L2(S; L2(G)) 

with potential operators A(t) e (L2(G) -* L2(G)) satisfying the estimate 

(3.5) |A(t) y - A(s) y\ ^ ~f2\b(t) - b(s)\ t , seS, y e L2(G) . 
J i 

Taking into account (3.1), (3.2) and (3.5) we can easily conclude our assertions from 
a result proved in [3] (Satz 3). (In [3] A is assumed to satisfy a slightly different 
condition with respect to the time dependence. However, it is easy to see that the 
results of [3] remain valid under the condition (3.5).) 
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4. GALERKIN METHOD 

The space Hl
0(G) is separable. Let (hk) c_ H0(G) be a sequence of coordinate 

functions complete in H0(G) and let 

Hn = span (//^ ..., hn) . 

Hn provided with the L2(G)-scalar product is a Hilbert space. 

Definition 4.1. A function un e H!(5; L2(G)) with the representation 

u„(t) = _ "{nJV) hj 
./' = 1 

is called the n-th Galerkin approximation of the solution u of (2.6) // un is a solu­
tion of 

(4.1) (Alt'. - Au„ ~ r, h)s = 0 V/«e L2(S; H„), M„(0) = 0 . 

Lemma 4.L For each n = 1, 2, ... there exists a unique n-th Galerkin approxi­
mation un of the solution u of (2.6). Let u'n0 be an arbitrary starting element with 
u'n0 e L2(S; L2(G)) and let a e ]0, 2f1/e2[. Then the sequence (uni)i==i,2... defined by 

(4.2) (uni - ocAunh hk) = (u;,._, - (x(Au'ni_i - r), hk), k = 1, 2, ..., n , 

",./(°) = °> unieH\S;Hn) 

converges strongly to un in Hl(S; L2(G)). Moreover, the error estimate 

K i " w«o|s , % ) = max/ 1 - a ~ , a - 2 - 1 J 
\ J 2 J1 / 

holds. Finally, there exists a constant c independent of n such that 

(4-3.) |K|c<S;H«o(G)) -- C ' 

Proof. The apriori estimate (4.3) holds because of 

f ^ \u„\2ds + _-|K(0|2 = I (-4u„ - AO - Aun, un\ds = \ (r - AO, u'n) ds __ 
J 0 / 2 Jo Jo 

= H ' ) | * + ^ (l!"nW!|2 + ^ MO| 2 ) + | |r ' | |2
s + f ' ( I ||u„(S)||2 + J \u'„(sf) ds . 

Further, it follows from the well-known results on systems of ordinary differential 
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equations that we can define an operator Bn e (H{(S; Hn) i-> H1(S; Hn)) by v i-> z = 
= Bnv where z is the solution of 

(z - ocAz, hk) = (v' - a(Av' - r), hk) , k = 1, 2, ..., n , 

z(0) - 0 , zeH\S;Hn). 

Using the lemma on potential operators which was already used to prove Theorem 
3A, we obtain for any vl9 v2 e HJ(S; H„) and zx = Bnv^, z2 = Bnv2 

\z\ - z% + - \zx(T) - z 2 (T) | 2 = (vi - v2 - a(Avi - Av2), z\ - z'2)s = 

= k(a) |vi - v2|s |zi - z'2\s 

and hence 

KB.vO' - (B„v2)'|s = k(a) |vi -v]\s. 

Thus the operator Bn is strictly contractive on the space 

X„ = {v | v e H'(S; Hn), v(0) = 0} 

with respect to the norm \\v\\x = \v'\s. Since, obviously, we may write (4.2) in the form 

Uni ~ BnUni-l , / = 1, 2 , . . . , 

the lemma follows from Banach's fixed point theorem. 

R e m a r k 4.1. The solution uni of (4.2) has the representation 

MO = t rtXt) hJ> ani(°) = o, j = i, • • •, 1 • 
./ = ! 

Hence we can see that (4.2) is an initial-value problem for a system of linear ordinary 
differential equations which determines the vector (an\\ ..., a^f). 

Theorem 4.1. Let b e H\S; L2(G)), a e L2(G) and let un denote the n-th Galerkin 
approximation of the solution u of (2.6). Then the sequence (wn) defined by 

(4.4) wn = F-\u'n + F(b)), n = l,29... 

converges strongly in L2(S; L2(G)) to the generalized solution w of (2.1) —(23). 

Proof. From Theorem 3.2 we know that u e H\S; Hl
0(G)). We denote by P„ the 

orthogonal projector of H0(G) onto Hn and set yn = P„u. Obviously, we have 
y'n = (Pnu)f = Pnu and, consequently, 

\\y'n(t)\\ = \\Pn 4 0 1 = IKOII and ||y;(0 ~ "'(01 -> o 
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for almost all t e S. Hence by Lebesgue's theorem we obtain ||y„ — u'||s -> 0. This 
and (4.1) implies that 

0 = (Au'n - Au - A(un - u), un - y'n)s = 

= (Aun - Au' - A(un - u), u'n - u')s + (Au; - Au' - A(u„ - u), u - y'„)s ^ 

^ ef |u; - u'|2 + i|u„(T) - u(T)||2 - ef |u; - u'\s \u' - y% -

J 2 J \ 

- IM« - "||S ||w' - y«||s-

Applying the a priori estimate (4.3) and Friedrichs inequality we find that 

K " U% ^ ^l| |«' - y'n\\s 

where the constant c. is independent of n. Thus we see that 

K - w|s S j \u'n - u\s ^ - 1
 ||M' - y'n\s -> 0 . 

J i J I 

Theorem 4.1 is proved. 
We conclude this section with an extension of Theorem 4.1. 

Theorem 4.2. Suppose thai b e Hl(S; L2(G)), A F(b) + q e L2(S; L2(G)), 6(0) = a 
and hk e H2(G) n H0(G) for /c = 1,2, . . . . Then the sequence (wn) defined by (4.4) 
converges strongly in C(S; L2(G)) to the solution w of (2.1) — (2.3). 1f, in addition, 
f is lower-semicontinuous, then (wn) converges strongly to w also in L2(S; HX(G)). 

Theorem 4.2 follows from results of the paper [4] (Satz 2.3 and Bemerkung 2.3). 

5. PROJECTION-ITERATION METHOD 

In the following theorem we combine the iteration method (3.3) with the projection 
method (4.1), (4.4). 

Theorem 5.1. Suppose that b e H\S; L2(G)) and a e L2(G). Let z0 e L2(5; L2(G)) 
and a e ]0, 2fl\e2[ be arbitrary. Then the projection-iteration sequence (zn) 
defined by 

(5.1) z„ = F-i(v'm+ F(b)), n = 1 ,2 , . . . , 

(v'n - <*Avn, hk) = (_,',_ , - a(E(z„_,) - r), hk), k = \,..:, n , 

y„(0) = 0 , v„eH\S;Hn); v0 = E(z0) - F(b) 

converges strongly in L2(S; L2(G)) to the generalized solution w of (2.1) — (2.3). 
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Proof. Evidently, we may write (5A) in the form 

vn = -Vn- l > w = 1,2, ... 

where Bne(Xn -» X„) is the strictly contractive operator which was introduced to 
prove Lemma 4.1. Now the Galerkin approximation un is a fixed point of Bn. 
Moreover, it follows from the proof of Theorem 4.1 that \u'n — u'\s -> 0. Hence, 
using a result of [5] (Lemma 3.2, Chap. Ill), we obtain \v'n — u'\s -> 0. This implies 

\zn - w\s S — \v'„ - u'\s -> 0 . 
Ji 

Theorem 5.1 is proved. 
From results of [4] (Satz 3.3 and Bemerkung 3A) we derive the following extension 

of Theorem 5.1. 

Theorem 5.2. Under the assumptions of Theorem 4.2 the sequence (zn) defined 
by (5.1) converges strongly in C(S; L2(G)) to the solution w of (2.1) — (2.3), provided 
a e ]0,2f1/(?2[ and the starting element z0 satisfies the conditions z0 e Hl(S; L2(G)) 
and z0(0) = a. If, in addition, f is lower-semicontinuous, then (zn) converges strongly 
to w also in L2(S; H\G)). 

Remark 5.V In order to determine the function vn and hence the function z„, 
the main task is to solve a system of linear ordinary differential equations. 

R e m a r k 5.2. The numerical realization of (5A) is especially simple if the eigen-
functions of the — A-operator are available. Indeed, let hk e Hl

0(G) n H2(G), k = 
= 1, 2, ..., be the eigenfunction corresponding to the k-th eigenvalue Xk associated 
with the problem —Ah = //., h\r = 0. Then it holds 

{-Ahk, hj) = Xk5kl . 

Consequently, we may write (5.1) in the form 

(5.2) z„ = F- l{v'n + F(b)) , n = 1, 2, . . . , „„ = f b„k\ , * £ . . = < ) , 
k= 1 

bf\t) = e-" f 'e^%b„k2,)' (s) - a(E(z„^(s)) - r(s), /,,)) ds , 

fc= 1, . . . , « , tf0 = F(z0) - F(fc). 

In this case, in order to determine the function z„ we have mainly to calculate integrals. 
Finally, the following a posteriori error estimate is valid (see e.g. [4]) 

|z„ - w\s g / 2 - \r - Av'n + Av„\s - 0 . 
/ i « i 
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6. AN EXAMPLE 

We consider the motion of the interface between two diffusing substances which 
undergo a chemical reaction, the products of which do not take part in the diffusion 
process. This phenomenon leads (see e.g. Cannon and Fasano [1]) to the following 
problem 

To find domains G{t), i = 1, 2, t e ]0, T[ with 

G - G,(t) u G2(t), G,(t) n G2(t) = 0 

and nonnegative functions Wi(t) defined on Gt(t) such that for every t e S it holds 

(6.1) et(wi) w'i - div (fi(wt) grad wt) = 0 in G,, 

w.(0) = a,- > 0 in G;(0) , 

w{t) = 0 on Fo(0 = G^f) n G2(t) , 

H*) = bio(t) > 0 on F,(t) = F n G^tJ - F0(t) , 

v / i K ) — 1 = f 2 ( w 2 ) - - ^ on Fo(0-
Onx On2 

Here et- and f are material functions, at and b/0 are given initial and boundary 
values, respectively, v is a given positive constant. Finally, nt denotes the direction 
of the exterior normal at F0, relative to Gh 

In order to show that we may apply our results to (6.1) we set in (2.1) —(2.3) 

(6 2) e(s) = H^ f°r S - ° ' f(s) - {v / l ( s ) f°r S~°' 
lo.z, eys) | ^ ( _ s ) for s < ( ) ^ / W | y 2 ( _ s j for s < 0 ) 

f a. in 0 , (0) , f M O on r . ( t ) , 
a - j - a 2 in G2(0), o W ~ l - M 0 o n ^ ( t ) -

Then the following statement is valid (see [ l]) . 
Let (Gh wt) be a (classical) solution of (6.1). Then w defined by 

= i wx in Gi , 
\ - w 2 in G2 

is a solution of (6.2), (2.1) —(2.3). Conversely, let w be a sufficiently smooth solution 
of (6.2), (2.1)-(2.3). Then the couple (Gh wt) defined by 

G.(t) = {x | x e G, w(t, x) > 0} , G2(t) = {x | x e G, w(t, x) < 0} , 

Wj = w in Gx , w2 = — w in G2 

is a solution of (6A). 
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R e m a r k 6.L Some of our results (especially Theorem 2.1 and the existence and 
uniqueness assertions of Theorems 3.1 and 3.3) are related to the results which Cannon 
and Fasano [1] háve obtained in studying problems of the form (6.1). However, 
we háve got our results under somewhat more generál assumptions and by a complete-
ly different technique. 
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S o u h r n 

O ITERAČNÍ METODĚ ŘEŠENÍ NELINEÁRNÍ ROVNÍCE 
PRO VEDENÍ TEPLA A DIFUSNÍCH PROBLÉMŮ 

H. GAJEWSKI 

Předložená práce se zabývá numerickým řešením nelineární rovnice pro vedení 
tepla. Navrhuje se určitá iterační metoda, ve které jednotlivé iterace se dostanou 
řešením lineárních rovnic pro vedení tepla. Dokazuje se konvergence této iterační 
metody za velmi přirozených podmínek kladených na daná vstupní data původní 
úlohy. V další části práce se studují otázky konvergence Galerkinovy metody apliko­
vané jednak na původní rovnici, jednak na lineární rovnice ve výše zmíněné iterační 
metodě. 
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der Wissenschaften der DDR, Mohrenstrasse 39, 108 Berlin, DDR. 
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