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INTRODUCTION

The evaluation of a definite integral over a finite interval using Chebyshev poly-
nomials was in the center of interest of a number of authors.
Clenshaw and Curtis (1960) obtained the polynomial approximation of a function
over the zeros of Ty, (x) — T,-4(x), i.e. over the points x, = cos (x s/N), s =
N

=0,1,...,N, in the form f(x) & }"a, T,(x) and then evaluated the definite inte-
r=0

gral performing term by term integration. The double primes in the above summation

indicate that the first and last terms are halved and T,(x) = cos nf, x = cos 0 is the

Chebyshev polynomial of the first kind. Filippi (1964) estimated f(x) by a poly-
N

nomial in T,(x) of the form f(x) & } b, T,(x), over the zeros of Ty, (x), i.e. over
r=1

the points x, = cos (r s/N + 1), s = 1,2,..., N and then obtained the value of the

definite integral.

Basu (1971) approximated f(x) by a polynomial in T,(x) over the points x, =
= cos (2s — 1) n/2N, s = 1,2, ..., N, i.e. over the zeros of Ty(x) and then converted
the expression in a series of T,’,(x) by means of a conversion formula expressing

N
T,(x) in terms of T,(x). This final expression for f(x), viz. f(x) & Y c, T)(x), where
r=1
the prime indicates that the last term is halved, was utilized to find the value of the
definite integral.

The problem of evaluating the integral [§° e f(x) dx using a variant of Chebyshev
polynomials T:(e_") = cos mf with 2¢™ — 1 = cos f was solved by Basu and
Kundu (1975). They approximated f(x) by a polynomial ¢(x) by collocation over
the zeros of Tx+1(e”¥), i.e. over the points x, = log sec? (,/2), where 0, = (25 + 1).

g N

.7[2N 4+ 1), s=0,1,..,N, in the form f(x) ~ $(x) = Z’Oa,,, Tr(e™) and then
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evaluated the above integral performing term by term integration. In the present
note the above integral is evaluated using Th(e ™), the variant Chebyshev polynomial,
by several methods analogous to those of Clenshaw and Curtis (1960), Filippi (1964)
and Basu (1971) and the methods are verified by numerical examples.

Our main interest lies in the exploration of some new methods of handling the
quadrature problem over the semi-infinite interval by exploiting the existing methods
for the similar problem over a finite interval. It may be remarked that none of the
methods can claim to be the best one including the method proposed by Basu and
Kundu (1975). The numerical results reveal that for a certain problem with a pre-as-
signed number of points, a particular method may offer rapid convergence but the
desired accuracy in the result is not achieved while another method in the same case
may provide better accuracy at the cost of a few more points.

%

ANALOGUE OF THE CLENSHAW & CURTIS METHOD

Let a function f(x) defined over (0, o0) be expanded in a convergent series of the
form

(1) f(x) = % + A, Ti(e™) + A, T3(e™) + ...

The polynomials T;(e™*) being orthogonal in the range with respect to the weight
function /[e™*/(1 — e™¥)], the coefficients are given by

) a=2[0 m) me r a

A useful polynomial approximation to f(x) can be obtained by truncating the
infinite series in (1). However, in attempting to find a suitable polynomial approxima-
tion to a general function f(x), the integral occurring in (2) cannot be evaluated
explicitly and recourse has to be made to approximate methods for evaluating A,.
The most widely used method is the “curve fitting” method. There are several varia-
tions of the method. In all these methods we construct the interpolation polynomial
¢(x) by collocation with f(x) at a specified set of points spread out over the semi-
-infinite interval. These polynomials are then used to evaluate the required integral.

Let the interpolation polynomial to f(x) be expressed in the form
a -x -x =X
() SR =T+ THE) + @ THe™) + o + "_2~ Ti(e™)

where the interpolation is effected over the zeros of Ty, (e™*) — Ty—s(e™¥), i.e.
over the points x, = log sec? (6,/2) with 6, = ns/N,s = 0, 1,..., N.
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Now since Ti(e™*) = cos mf, 2¢”* — 1 = cos 0, we get form (3)
(4) f(log sec? (6/2)) ~ a_20 +a,cos 0 + a,cos20 + ... + a—zN cos NO .
By using the orthogonality relation

N
(5) Y cos jb, cos iy = 0 for i=*j

s=0
=N for i=j=0 or N

=NJ[2 for i=j+0 or N
the coefficients are obtained as

N
(6) a, ~ % Y f(log sec? (6,/2)) cos rf, .
s=0

Hence from (3), we can write

o0

© N

(7 J‘ e f(x)dx ~ Y'a, | e *Tf(e ) dx.
0 r=0 0

Since

(®) [fermten o

0

I
o
S
-
~
o
a
a

= ! , for r even
1 -7
we obtain
©) Cer s darn Yt
e f(x)dx ~ "
,[o p=0 1 — 4p*

where [N/2] means the largest integer contained in N/2 for a given N. The double
primes indicate that the first term is halved and the last term is also halved if N
is even.

ANALOGUE OF THE FILIPPI METHOD

In this method we express f(x) e~ * in a series of T;'(e™*) and the equations similar
to (1) and (2) are obtained as

(10) f(x)e ™™= A, T (e™) + A, T3'(e™) + ...

where

(11) 4= L[ Ve =0T s e
ar? Jo

and ,/(e* — 1) is the corresponding weight function.
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Now the interpolation polynomial is given by
(12)  f(x)e ™ ~m ¢p(x) =a, Ti'(e™*) + a, T3 (e™) + ... + ay T (e,

the expansion is effected over the zeros of e* Ty’ (e™*), i.e. over the points x, =
= log sec? (0,/2) where 0, = ns[(N + 1), s = 1,2, ..., N.
Again changing the variable, we get

(13) —1/2sin 0 f(log sec? (0]s)) ~ a, sin 0 + 2a, sin 20 +
+ ... + Naysin N6 .

In consequence of the relations

N
(14) Y sinifgsin jO, =0 if i+j, i=j=0
s=1
N+1 .
= lf i=j
> J

the coefficients in (12) are given by

o '
(15) a, ~ — T 0 S;f(log sec? (6,/2)) sin 6, sin r0,

and so from (12), we get
0 N )
(16) J. e f(x)dx ~ Y a,J' T,*’(e"‘) dx .
. 0 r=1 0
Now since

(17) fT,*’(e"‘)dx: —2 for r odd
0
= 0 for r even,

(16) reduces to
[(N+1)/2]

(18) [ e f(x)dx~ =2 Y ay,_,.
.0 p=1
ANALOGUE OF THE BASU METHOD
Let f(x) be approximated by a polynomial

(19) SO~ 9(x) =T + @ THE™) o+ oo+ ayoy THo (™)

by collocation over the zeros of Ty(e™), i.e. over the points x, = log sec? (6,/2
with 0, = (25 — 1) /2N, s = 1,2,...,N.
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By virtue of the conversion formula

(20) Te™™) = e_x[Tf—'l(e”‘) T
’ 41 j-1 J+1
(19) reduces to
@) e R b THE) + by T e T

By making a change in the variable, (21) reduces to

(229 - %sin 0 f(log sec® (6/2)) ~ by sin 0 + 2b,sin20 + ... + N 925 sin NO

and using the orthogonality relation

N
(23) Y sin i, sin jO, = 0 if i+j, i=j=0
s=1
=N if i=j=N
=N[2 if i=j*N
we get
1 N
(24) b, = — — % f(log sec’ (6,/2)) sin 0, sin 0,
rN s=1
and so (21) and (17) give
w0 [(N+1)/2]
(25) J e f(x)dx = -2 Y by,
0 p=1

where the prime indicates that the last term is halved if N is odd.

Table 1
T | N .
| Basu Method i Filippi Method | Clenshaw-Curtis
| ‘ ‘ Method
{ |
[——— ‘, - ﬁ;_,
1 ‘ 1 | 1 i I
| I
‘1 : ‘ ‘ S
8 | 206319673 | 206507253 | 205787725
| 10 : -206331066 | 206444653 | 206009810
| 12 ! 206336468 | 206411808 206123124
| 14 206339410 ‘ 206392622 | 206188262
i 16 206341171 206380526 ! -206228940
. |
% 64 | 206346244 206340246
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NUMERICAL EXAMPLES

We consider the following numerical examples:

f*o0

o
(a) I = — dx = 0206346,
Jox+4
Moo
(b) = | e *sinxdx = 05
Jo
roo ,
(¢) I = e™* cos x dx = 1-3803884 .
J —o
Table 2 .
Basu Method Filippi Method Clenshaw-Curtis
Method
N I 1 1
8 -495135092 -493546576 512665465
9 -497000511 -491899248 -509475562
10 -499664788 -491786136 -504458705
11 -500990525 -491959675 -503475114
33 -499996306
34 -499989332
Table 3
Basu Method Filippi Method | Clenshaw-Curtis
Method
N 1 I I
12 1-38037380 1-380379575 1-380398500
13 1-38045055 1-380447705 1-380389740
14 1-38038243 1380430232 1-380386691
15 1-38037246 1380415192 1-380383993
16 1-38038750 1-380402806 1-380387698
17 1-38037767 1-380391688 1380387160
20 1-38038844
26 1-3803884
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The numerical details of the above examples are contained in Tables 1, 2 and 3
respectively.
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Souhrn
NEKTERE METODY NUMERICKE INTEGRACE NA POLOPRIMCE
N. K. Basu, M. C. Kunpu

V ¢lanku se vyuzivaji nékteré metody numerické integrace na ohraniéeném inter-
valu (Clenshaw a Curtis 1960, Filippi 1964, Basu 1971) k navrZeni metod numerické

integrace na polopfimce. UZiva se pfitom podobné techniky jako v dfivéjsim ¢lanku
obou autoril. (Apl. Mat. 20 (1975), pp. 216 —221).
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