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SVAZEK 22 (1977) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

THE TAIL cr-FIELDS OF RECURRENT MARKOV PROCESSES 

RICHARD ISAAC 

(Received November 28, 1975) 

1. INTRODUCTION 

The purpose of this article is the proof of a general representation theorem for the 
tail cr-field of a discrete parameter Markov process on general state space (Theorem 1) 
and then the development of the structure of such er-fields for the most general 
recurrent processes. A self-contained treatment appears here, and even where there 
is some overlap with other authors (part of Theorem 2 can be obtained by combining 
results in [14] and [15], and we have recently discovered the ancillary Theorem 4 
in [14]) our proofs are different and our techniques and point of view remain prob
abilistic throughout. 

Theorem 5 presents another proof of the Jamison-Orey [11] generalization to Harris 
processes of the Blackwell-Freedman [1] description of the tail cr-field of persistent 
Markov chains; the new proof is again based on the representation Theorem 1. 

Let {Xn, - c o < n < oo}bea Markov process with stationary transition probabil
ities Pn(x, E) having c-finite stationary measure n satisfying: 

(IT) n(E) > 0 implies P{X„ e E i.o. | X0 = x} = 1 a.e. (n) 

on state space Q. 
(IT) is weaker than the condition of Harris; it is equivalent to conservativity and 

ergodicity of the process. The bilateral representation provides a one-one shift 
T:Xn(Tco) = Xn+1(co), and a handy symmetry. The helpfulness of this symmetry 
was observed in [6] where it was seen that the structure of the "infinite past", 3T'_Q0, 
(defined below) determines the limiting behavior ("the infinite future") of the 
functions P"(x, E). 

The process [Xn, — oo < n < + oo} is called the forward process. The backward 
process is the process {Y„, — oo < n < -f oo} where Y„ = X-n for each n. The transi
tion functions for the backward process will be denoted by Qn(x, E). If n is stationary 
for the {Xn} process, n is stationary for the {Y„} process; a similar symmetry is easy 
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to prove for (1.1). Later (Theorem 4) it will be noted that the condition of Harris 
is also true for both processes if it is true for one of them. 

There are two tail cr-fields of interest: 

00 

^+00 — 0 ™{xn, Xn+1,...) 
n = 0 

— 00 00 

s-.n = n «(•. • *.-!,*-) = n @(Y„, Y„+1,...) 
n = 0 n = 0 

where ^ ( . . . ) is the cr-field generated by the random variables in parenthesis. 
Results will be derived for &~+O0 and may then be applied to ^-^ by considering the 
backward process {Y„}. <&~+ao and ^~-m may be quite different even if (1.1) holds, 
as example 2 in Section 3 shows; but if the condition of Harris holds, ^-^ = ^+o0 

(Theorem 5). 
Since n may be infinite, it will be convenient to consider a probability a0 equi

valent to n, and use it to induce a measure on coordinate space for n ^ 0: 

(1.2) a*(U) = P(U | * o = *) «o(dx) 

where P(U | X0) is conditional probability measure determined by the transition 
functions Pn(x, E)„ Let ocn be the projection of a* on x^-space, i.e., a„(S) = oi*(Xn e S). 
If we substitute n for a0 in (1.2), a* becomes n*, a c7-finite measure invariant under 
the shift T(see [5], [13], for example). 

If n is a probability, we take a0 = n = <xn and a* = n*. 
Let Ce^"+00. Since C may be considered measurable on the sample space of 

[Xk, k ^ n} for arbitrarily large n (at least, up to equivalence with respect to the 
underlying measure on bilateral space), the following representation holds for all n: 

(1.3) a*(C) = | P ( C | Xn = x) a„(dx) . 

Throughout this paper we frequently write " A = B" for two sets when these sets 
may differ by a null set. 

2. RESULTS 

The first result is a useful representation theorem for ^~+00-sets, and does riot 
require (1.1). 

Theorem 1. Let CeZT+o0, a*(C) > 0. 
(a) There is a sequence of sets {Un, n ^ 0} in state space Q given by (2.2) below 

such that C has the representation (up to equivalence): 

398 



(2.1) C = {Xn e Un for all but a finite number of n = 0.} 

(b) lim a„(U„) = a*(C) . 

(<0 lim ľ P(C | Xи = x) aя(dx) = a*(C) . 
и - > o o J un 

Proof . By the Levy 0—1 theorem, 

P(C\X09Xl9 ...9Xn)-+\c a.e. (a*) as n - co , 

where l c i s the indicator of C. By the Markov property and the fact that C e &" + 0 0, 

it follows that P(C | Xn) -> l c a.e. For each n = 0, define 

(2-2) Un = {x : P(C | X„ = x) > i} . 

Almost all points co in C satisfy co e lim inf {Xw e U„}, and conversely, by the above, 
n-+ oo 

proving (a). Now let 

Vn = {X* e U& for all k = n} , 

so that {V„} is increasing with limit C. Thus, N can be chosen so large that 

a*(C) = a*(Vw) + e = a*(Xn e U„) + e = a^UJ + e , n = N , 

and so for any subsequence m 

(2.3) l iminfa,„(U m )^a*(C) . 
m-+ oo 

If C is the complement of C, we may suppose a*(C;) > 0; otherwise (b) is immediate. 

Let Wn be the sets obtained in (2.2) for C in place of C. The sets Wn and Un are 

disjoint for each n and the analog of (2.3) holds. Then 

1 = lim inf am(Um u Wm) = lim inf am(Um) + lim inf am(Wm) ^ 

= a*(C) + a*(C0 = 1 , 

proving 

liminfam(Um) = a*(C) . 
m-»oo 

Since the subsequence {m} is arbitrary, (b) follows. Finally, letting {V„} be the se

quence of sets defined above, we obtain 

lim inf J P(C | Xn = x) ocn (dx) = lim inf f P(C | Xn(co)) a*(dco) = 

J un J Vrl 

= lim inf j f P(C | Xn(co)) a*(da>) - a*(C - V„)l = 

= J lim inf P(C | Xn) a*(dco) = a*(C). 
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On the other hand, 

lim sup P(C \Xn = x) a„(dx) ^ lim sup a„(U„) = a*(C) 

by (b), and so (c) follows. 

Corollary 1. The sets {Un} of (2.1) are unique. If Ct and C2 are disjoint ZT + ao sets, 

and if Un

l), i = 1, 2, are the corresponding sets obtained in (2.1), then for each 

n, Un

l) n U[2) = 0. 

P r o o f : Immediate from (2.2). 

Definition. The relation (2.1) is called a representation of C e ST + 00, and the sets 

{Un} are called representation sets for C. 

From now on (IT) will be assumed. The next theorem shows how Theorem 1 is 

strengthened when ^+O0 is known to be atomic. 

Theorem 2. Let ^ +a0 be atomic. Then 

(2.4) &~+o0 is Xn measurable for any fixed integer n. 

(2.5) There is a partition of Q into cyclically moving classes: there is an integer 
r - l 

r _ 1 and disjoint sets C0, Cl9 . . ., Cr_t with (J Ct and Q differing by a n-null set 
; = o 

F. Each atom of ^~+ao is equivalent to one of the sets [X0 e CJ, 0 — i — r — 1. 
Defining Cn for an arbitrary integer n as the unique set Ci9 0 = i = r — 1 with 
n = i (mod r), we have 

n*i.o-{i *Лc[ 
The decomposition into sets {Ct} is unique in the sense that any other such decompo

sition consists of sets equivalent to the sets {Ct}. 

(2.6) ocn(Cn) is constant for each n — 0, where Cn is defined as above. 

Proof. Let C be an atom of ^~+o0, a*(C) > 0. For any integer n, T"C is an atom 

of ^+00, so by (1.1) there is a smallest positive integer r with a*(T rC n C) > 0, and 

then TrC n C = C = TrC. Stationarity of transition probabilities yields for any 

integer s, 

(2.7) Us = {x: P(C | Xs = x)>i} = {x: P(TrC \ Xs = x) > i} = 

= {x:P(C\Xs+r = x)>i} = Us+r, 

and so the representation sets are periodic: Um = Un if m = n (mod r). It follows that 

C is measurable with respect to the random variables {Xk, k = n} for any fixed 
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integer n, since knowledge of P(C | Xk(a)j) for k rg n is sufficient, by (2.7) and (2.1), 
to determine whether w e C.Thus C is 2F'-^ measurable. Then the Markov property 
shows 

1C = E(1C| ...Xn^,Xn) = E(lc\Xn) 

and (2.4) has been proved. Now we resort to an idea used in [6] and [7] . Let An = 
= 3§(... X_n_u X_„) for n = 0,f= 1 [Xoe.4], the indicator of X0 e A, any set of finite 
measure, and put F(f | A„) = fn. The invariance of T and the Markov property 
easily show (see [6] and [7]) 

(2.8) T"j„ = T" £( j | A„) = £(l[X„M] | . . . „ _ „ _ 0 ) " - W | *o) = 

= T"(*0, A). 

Since C is X0 measurable, there is a set A <r £2 with j = l[„oe_] = lc, an<l (2-8) 
and the ^ " - ^ measurability of C imply by (2.8) 

(2.9) llXneA1 = T"j = T" £( j | A„) = T"j„ = P"(X0, A). 

(2.9) immediately proves the basic fact 

(2.10) Pn(-Ko> -4) assumes only the values 0 or 1 a.e. (a*). 

Now let C0 = A and define C_„ by 

C_„ = [x: P"(x, C0) = 1] , n = l. 

From (2A0) it readily follows that 

C_/I = [x :P (x ,C_„ + 1 ) = l ] , n ^ \ 
and that 

(2.H) C = [ K 0 e C 0 ] = [ K _ n e C _ , J ] . 

Since C = T"rC = [K__ + r e C_„], it is clear that the sets {C_„, n ^ 0} are periodic 
with period r and are precisely the r distinct representation sets. By (1.1), iterates 
of C generate all the atoms of ^~+O0; thus each atom can be expressed in terms of a set 
C-n, n = 0: 

T-"C = [K H 6C 0 ] = [ X 0 e C _ „ ] . 

Relabel the sets so that the r distinct sets are indexed by the integers modulo r with 
P(x, Cn+1) = 1 or 0 depending upon whether x is or is not an element of Cn The 
uniqueness assertion is clear, and (2.5) has been shown. (2.6) is immediate from 
the relation 

«„(C») = P(*> Cn) a„_!(dx) = c^^^C^^ . 
J c n _ , 

This completes the proof of Theorem 2. 
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is {X,., n = N} measurable for some fixed N, it turns out that C has 
a pleasant representation even in the case where ^~+o0 is not atomic. The following 
theorem describes this situation in part (a), and more generally gives a rather com
plete description of 3T+o0. 

Theorem 3. Either 3T+O0 is atomic or 3T'+o0 is non-atomic. In the atomic case 
Theorem 2 gives a complete description of the structure of 3~'+o0. If 3T + 00 is non-
atomic, the sets in ^"+O0 can be of two types: (a) sets C which are Xn measurable 
for any fixed integer n. If {U„} are the representation sets for C, the following 
statements are satisfied for all n = 0: 

ф.t ! в + 1) = {J; 

C = [Xn є U„] . 

X6U„ 
x$Un 

ocn(Un) is constant and has common value a*(C). 

(b) sets C which are not measurable on the sample space of {Xn, n _ N} for any 
finite integer N. 

If at least one of 3T^^ or $~+O0 is non-atomic, then the forward and backward 
processes are singular in the sense that for almost all (n) x there exist n-null sets 
Nin\ M(n) for each integer n = 1, with 

p~(x, N<;>) _ i 

Qn(x, M(n)) = 1 

for the forward and backward n-step transition functions. 

If 3~"_<*, and 3T +ao are both atomic, then 3T_^ = £T'+o0 = 3T. 

Proof . If there is one atom C, a*(C) > 0, (1.1) assures the existence of an integer r 
r— \ 

such that U T~nC is equivalent to the whole space, where each set F~"C is clearly 
n = 0 

seen to be an atom. In this case, then, there is no non-atomic part, so that ,5% ^ is 
atomic. Otherwise, there is no atom, and ^~+00 is non-atomic. In the non-atomic 
case suppose Ce<T+a0 is measurable with respect to {Xn, n = N) for some fixed 
integer N. The Markov property used in the first part of the proof of Theorem 2 may 
be applied here to prove C X„-measurable for n = N. Moreover, it involves no loss 
of generality to suppose N = 0. If (2.8) is considered for the backward process (by 
substituting — n for n and putting A_„ = ^{Xn,Xn+1, . . . ) , n = 0), the analog 
of (2.9) implies the analog of (2.10), namely, that Q"(X0, A) = 1 or 0 a.e. for all 
n = 1, where lXoeA — 1c- This follows from the X„-measurability of C for n = 0. 
The sets Un, analogs of the sets C_„, can be defined, and then it is not hard to obtain 
all the statements of part (a), using the relation a„(U„) = a„+1(U„+1) = 
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= $Un + 1 Q(x,Un) ocn+i(dx) = §UnP(x,Un+i) ocn(dx). We note that the periodicity 
of the representation sets now fails in general because the atomic property no longer 
holds. The only alternative to (a) in the non-atomic case is given by (b). 

If at least one of 3T'_^ or 2T'+00 is non-atomic, it will follow from Theorems 4 and 
5 that (l.V), the condition of Harris, fails both for the forward and for the backward 
process. The singularity of the processes is then obtained from [10]. 

If ^"+00, say, is atomic, (2.4) shows 3~+O0 measurable on {Xn, n i_\ N] for all fixed 
N ;_? 0, so that ^~+00 is F-#> measurable: &+ 00 c ZT'_Q0. \f <?~_aQ is also atomic, 
then tr_^ c 3T+O0, and so ST = F_^ = ^r+oD. 

This completes the proof of all the assertions of Theorem 3. 
Now we introduce the condition of T. E. Harris, a strengthening of (1.1): 

(1.1') n(E) > 0 implies P{X„ e E i.o. | X0 = x} = 1 for all x e Q . 

We shall prove that (l.V) implies the atomicity of ^-^ and 3~ + 00 so that one can 
speak of a single tail cr-field 2T by Theorem 3, and £T satisfies the assertions of Theorem 
2. Thus we will show the preceding theorems contain the results of [ l ] and [11]. 

It is known that under (l.V) there is an integer r _\ 1, a b > 0, and a set V c Q, 
0 < n(V) < oo, such that the density pr(x, y) of Pr(x, E) with respect to n satisfies 

(2.12) inf pr(x, y) = 5 
(x,y)sVxV 

(see [13], p. 7). 
We want to see that the symmetry of the forward and backward processes per

sists even under (l.V). 

Theorem 4. If the forward process satisfies (l.V), so does the backward process, 
except perhaps for a fixed null set of x. 

Proof . The backward process satisfies (1.1); if it does not satisfy (l.V) a.e., then 
for almost all (n) x, the n-step backward transition function has its support on 
a 71-null set, for each n (see [10]). Therefore, to show (l.V), it will be sufficient 
to prove the existence of a positive integer r satisfying 

(2.13) t M ) > o 
dn 

on an x-set of positive (n) measure, where (2.13) is the Radon-Nikodym derivative 
of Qr(x, •) with respect to n. Let r be the positive integer and V the set of (2.12) 
for the forward process transition function. Let A c V, B c V. Then 

P(X_r e A, X0 e B) = j Qr(x, A) n(dx) + | fix(Mx n A) n(dx) = 
JB JB 

= j Pr(x, B) n(dx) + j AX(NX nB ) 7i(dx) = 6 n(B) n(A) . 
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Here fix(')9 ^x(') are measures singular with respect to n and having supports on 
7r-null sets Mx and Nx respectively. From the above, it follows that on V x V 

dP(X_re-,X0e-) = dQ'(x, •) > & 

dn x dn dn 

This proves (2A3) and completes the proof of Theorem 4. 
Before proceeding to Theorem 5, we make an observation: let Ce«f + 0 0 have 

a*(C) > 0. Theorem 1 gave a representation of C by (2.1) where the sets Un are defined 
in (2.2). The number \ there could have been replaced with any fixed number a — \, 
and all the results of Theorem 1 and its corollary would follow. (If 0 < a < \ is 
chosen, the representation so obtained is valid, but representation sets for disjoint 
tail sets are not necessarily disjoint for each n.) Thus we define for each s — \, 

(2.14) U* = {x:P (C |K„ = x ) > 1 - £ } . 

Theorem 5. (l.V) implies 3~ +o0 and 3~_^ are atomic. Therefore, <T +o0 = 3~-^ — 
= ZT by Theorem 3, and the results of Theorem 2 hold. In particular there is a de
composition of 3T into cyclically moving classes. 

Proof . We shall show ^"+00 atomic; then by considering the backward process 
and Theorem 4, it will follow that ^-^ is also atomic. First the case of finite n 
will be considered; in fact, suppose n(Q) = 1. Let r, S and V be any items specified 
in (2A2). SF'+O0 will be shown atomic by proving that there do not exist more than r 
disjoint 3T' +o0 sets. To this end, suppose {Ct, 1 — i :g r + 1} is a partition of the 
entire space into disjoint 3T'+o0 sets, each with positive a* measure. Choose e subject 
to the following restrictions: 

(2.15) « S rs 

(2.i6) -^" <<n < 
(1 - ell4)ð ~ 20 

(2.17, tn^m. 
y ' S ~ 20 

For each set Ch let {,-Uli} be the representation sets as described in (2.14). Put 

Fl^G-Wl. 
i=l 

r + 1 

YJ ~~(iUn) -> 1 as n -> oo since n(Q) = 1, by (b) of Theorem 1 (note: a„ = n, here), 
t=i 

hence n(Fn) -> 0 as n -> oo. This implies: 
r + l 

(2A8) there is an integer N such that if n — N, V n (J £Un is not empty. 
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We will now prove that for any set Ct there is an integer /(/) 2; N, with 

(2.19) iz{iU
l>(i)+krnV)^.9n(V), where fi = e1 '2 

for all positive integers k. It will be sufficient to do this for C t . Observe first that if 
0 < a < b ^ \, then for each fixed i and n, tU

a
n cz .UJ. Let l ^ 0 be any integer 

with x e 1V\ n V; ; an infinite number of such exist by (1.1). Then x e jUf, and so 
P(CX | Xt = x) > 1 - p. Fix i * 1, and put W = ,Uf+r n V Then 

/3 ^ P(Q | X, -= x) ^ ! Pr(dy \Xt = x) P(Ct | X/ + r = y)> Sn(W)(l- fi) 
Jw 

by (2.12), so that 

n(W)< - ^ 
( 1 - 0 * 

Then (2.16) implies 

(2,0) lW"M<^Sf' 
Let Ci be the complement of Cl9 x e 1V] n Vand put M = Ff+r n V Then we 

obtain 

e ^ P(Ci | X, = x) = f Pr(dy [ xt = x) P(C; | K/+r = y)> S n(M) p , 
J M 

implying 

(2.21) « ( M ) < - - - ^ . 
v ' v ' 5 " 20 
by (2.17). (2.20) and (2.21) yield 

(2.22) n{tUUr n V) ^ 7t(V) - 2 . - ^ = .9<V) . 

It has therefore been shown that for any I ^ 0 with XU] n V not empty, (2.22) 
holds. To complete the proof by induction, we show that if l ^ N (N being the 
integer described in (2A8)), and if 

(2.23) TiGU?^ n V) ^ ,9n(V) 

for some k = 0, then .l/J+n, n Vis not empty, so that the argument leading to (2.22) 
proves (2.23) holds for k + 1 substituted for k. To see this, we use (2A8). If xU\+kr n 
n Vis empty, there must exist i -# 1 with x e tU

e
l + kr n V Then repeat the argument 

leading to (2.22) on Ct instead of Ct to show, where we write rj = e1/4 = pl/2 

(2.24) 7iGU/+(*+1)r n V) ^ 7i(,U?+(,+ 1)r n V) ^ .9;r(V) . 
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On the other hand, the restrictions on e are such that since there exists x e xUf+kr n V 
by (2.23), again the argument leading to (2.22) may be repeated with ft substituted 
for £ to show 

(2.25) 7r(iU/ + (,+ i ) r n V ) ^ . 9 7 r ( V ) . 

rj = \ by (2.15) so the sets in (2.24) and (2.25) are representation sets and are disjoint 
for fixed n. Thus (2.24) and (2.25) are contradictory. This proves iU/+fcr n V non
empty and the assertion (2.19) follows by induction on k, because by ( l . l ) there is 
certainly I = N with XU] n Vnot empty. But (2.19) is incompatible with the existence 
of more than r values of i because the representation sets in (2.19) are disjoint. This 
contradicts the supposed partition into r -f 1 sets and proves ^ + 0 0 atomic when 
n(Q) < oo. 

To extend to the case of infinite n we make use of the "process on A" approach 
of Harris (see [4], [13]). Let A => V be a set of finite n measure. Let A* = \co\ 
X0(co)eA]. For almost all (n*) coeA*, the random variable Tn(co), the nih value 
of Xx(co), X2(co), . . . lying in A, is defined, by (1.1). Put Y„(co) = XTn(co)(co), n = 1; 
Y0(co) = X0(co), {Yn} is a Markov process with stationary transition probabilities 
P^(x, E), E _ A, and with stationary probability measure nA = n(')\n(A) (see [4]). 
Let C G ̂ ~+O0', as we have observed at the begining of the proof of Theorem 1, if 
CO 6 A* 

P(C | Yn(co)) = P(C | XTn(co)(co)) -* lc(co) a.e. (TT*) on A* 

by the Levy 0 — 1 theorem and the Markov property, since Tn(co) -> oo a.e. by (1.1). 
This is equivalent to stating: P(C n A* | Yn) -> lCnA* a.e. with respect to "process 
on A" measure induced by nA and Pn

A(x, E) so that C n A* is measurable with 
respect to ^~ + 00, the forward tail cr-field for the Yn process. Since we suppose A => V 
the {Yn} process satisfies (l.V) and has transition probabilities satisfying [4] 

Pr
A(x, E) = Pr(x, E), E cz A, 

so that on V x Vthe respective densities satisfy 

pr
A(x, y) = p\x, y) = 3 

implying that ,T+ ^ has no more than r disjoint atoms by the proof for the finite 
case. If ^ + 0 0 is non-atomic, there are r + 1 disjoint ^~+o0 sets Cl9 C2, ..., Cr+l 

of positive measure, and then, as noted above, Cx n A*, C2 n A*, . .., Cr+i n A* 
are ^"+00 sets. Since A* may be considered so large that n*(Ct n A*) > 0 for each i, 
this contradicts ^ + 0 0 having at most r disjoint atoms. Therefore ^~+o0 is atomic. 

Now apply Theorem 2 to obtain a cyclic decomposition of ^"+ 0 0 . (2.5) and (2.12) 
make it clear that each atom Ct satisfies: there is an integer t = t(i) with V cz lUn 

for n _ t(mod r), where {iU„} gives a representation of Ct. From this it follows that 
there are exactly r disjoint atoms of &~+Q09 if r is the smallest value of r given in (2.12). 
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Using Theorem 4,3T _^ may be handled in the same way, and so 3T+aa = 3T_ 

= 3T, by Theorem 3, and the proof of Theorem 5 is complete. 

3. EXAMPLES 

We conclude by giving two examples for which (1.1) but not (1.1') hold. These 

examples are due to Jamison and Orey. 

E x a m p l e 1. State space Q is the unit circle. To define P(x, F), rotate by an irra

tional multiple c of the number n. Set P(x, {y}) = 1 if y = exp i(c + 6) where 

x = exp i9, and P(x, {y}) = 0 otherwise. The orbit of each x is dense in Q, (1.1) 

is satisfied for Lebesgue measure which is stationary for the process. (1.1') is not 

satisfied, for the orbit of each point x is countable. The process is deterministic: 

for all sets E, P(x, E) = 1 or 0, and ^~+ 0 0 is equivalent to the class of all K0-measur-

able sets. We are in the situation where all sets are described by Theorem 3(a). In 

this example ^.^ = «f+00. 

E x a m p l e 2., Let Zn be a sequence of independent, identically distribution random 

variables with common distribution P(Zn = 0) = P(Z„ = 1) = \, and let — oo < 

< n < + oo. Define the point Xn on Q = [0, 1] by the binary expansion 

Xn = .ZnZn_xZn_2 • • • 

Xn is a Markov process on Q and the Borel sets, Lebesgue measure is stationary, and 

(1.1) is satisfied, but not (1.1'). 3T'_QO is trivial, for it is measurable with respect to the 

tail a-field of the independent {Zn, n _ 0}. On the other hand, ^ +ao consists of all 

measurable subsets of bilateral space, since every point in bilateral Z-space may be 

expressed in terms of the Xns for n = N,N arbitrarily large and fixed. Hence 3T_ ^ =f= 

References 

[\] Blackwell, D. and Freedman, D.\ The tail o-field of a Maгkov chain and a theorem of Orey. 
Ann. Math. Stat. 35, (1964), 1291-1295. 

[2l Doeblin, W.\ Elements ďune theorie generale des chaines simples constants de Markoff. 
Ann. Sci. Ecole Norm. Sup., III, Ser. 57, (1940), 61-111. 

[Зl Halmos, P. R.\ Measure Theory. Van Nostrand, (1950). 
[4l Harris, T. E.\ The existence of stationary measures for certain Markov processes. Third 

Berkeley Symposium on Math. Stat. and Prob., vol. 2 (1956), 113—124. 
[5l Harris, T. W. and Robbins, Ң.\ Ergodic theory of Markov chains admitting an infinite in-

variant measure. Proc. Nat. Acad. Sci., 39, (1953), 860-864. 
[6l Isaac, R.\ Limit theorems for Markov transition functions. Ann. Math. Stat. 43, (1972), 

621-626. 
[7l Isaac, R.\ Theorems for conditional expectation, with applications to Markov processes. 

Israel Journal of Math., vol. 16, no. 4 (1973), 362-374. 

407 



[8] Isaac, R.: A uniqueness theorem for stаtionаry meаsures of ergodiс Mаrkov proсesses. Ann. 
Mаth. Stаt. 35, (1964), 1781-1786. 

[9] Isaac, R.: On regulаr funсtiсnѕ for сertаin Mаrkov proсeѕѕeѕ. Proс. Amer. Mаth. Soс, 17, 
(1966), 1308-1313. 

[10] Jain, 7V. C: A note on invаriаnt meаѕureѕ. Ann. Mаth. Stаt., 37 (1966), 729—732. 
[11] Jamison, B. аnd Orey, S.: Mаrkоvсhаinѕ rесurrеnt in thе ѕеnѕе оf Hаrriѕ, Z. F. Wаhrѕсhеin, 

8, (1967), 41-48. 
[12] Orey, S.: Rесurrеnt Mаrkоv сhаinѕ. Pасifiс Јоurnаl, 9 (1959), 805—827. 
[13] Orey, S.: Limit Thеоrеmѕ fоr Mаrkоv Сhаin Trаnѕitiоn Prоbаbilitiеѕ. Vаn Nоѕtrаnd (1971). 
[14] Toguel, S. R.: Thе еrgоdiс thеоrу оf Mаrkоv Prосеѕѕеѕ. Vаn Nоѕtrаnd Rеinhоld (1969). 
[15] Rosenblatt, M.: Mаrkоv Prосеѕѕеѕ. Ѕtгuсturе аnd аѕуmptоtiс bеhаviоr. Ѕpringеr-Vеrlаg 

(1971). 

S o u h r n 

ZBYTKOVÉ a-ALGEBRY REKURENTNÍCH MARKOVOVÝCH 
PROCESŮ 

RICHARD ISAAC 

Nechť {X„, — co < ti oo } je Markovův proces s homogenními pravděpodob
nostmi přechodu, mající <r-konečnou stacionární míru a splňující podmínku slabé 
rekurentnosti. V článku se studuje struktura zbytkových <r-algeber budoucnosti a 
minulosti Čí'+o0 a ŽT-^ v různých situacích. Hlavním výsledkem je věta o repre
sentaci množin v ^ ~ + 0 0 ; na jejím základě je pak provedeno systematické vyšetřování 
a odvozeny některé nové i některé známé věty včetně rozkladu na cyklické třídy 
pro procesy vyhovující Harrisově podmínce. Základní pojetí i metody jsou všude 
pravděpodobnostní. 

Authoťs address: Prof. Richard Isaac, Herbert H. Lehman College of the City University 
of New York, Bronx, New York 10468, USA. 
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