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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

DUAL FINITE ELEMENT ANALYSIS 
FOR AN INEQUALITY O F THE 2nd ORDER 

JAROSLAV HASLINGER 

(Received July 20, 1977) 

In practice we often meet problems when the cogradient of the unknown solution 
is more important than the solution itself. Using the so called dual variational for
mulation, one can approximate directly the components of the cogradient. The 
dual finite element analysis for the case of elliptic equations is given in [3]. Involving 
Lagrange multipliers in the dual formulation, we obtain the so called dual hybrid 
formulation, which is studied in [11]. 

In the present paper, the dual finite element analysis for an elliptic inequality 
of the 2nd order with an interior obstacle is given. Using piecewise linear equilibrium 
elements, the rate of convergence of Ritz approximations is established, provided 
the exact solution is smooth enough. The primal analysis of this problem is given 
in [2]. The dual analysis for unilateral boundary value problems is given in [12], [13]. 

1. SETTING OF THE PROBLEM 

Let Q c Rn be a bounded domain with a Lipschitz boundary F. By H\Q) (k ^ 0 
integer) we denote the classical Sobolev spaces with the following notation: 

(i-i) H-.«-(l Z ( H 2 d * v / 

(1.2) '\m,Q 

Q \*\йk 

1/2 

Dav|2 d x ) 
Q | a 

£ |Z>"p|2dxj 
d|=m j 

In the case k = 0 we set H°(Q) = L2(Q) and we write simply ||i!||o,G = H i e By 
Hk

0(Q) we denote the completion of 9(Q) under the norm (11). Hk(Q) denotes the 
Cartesian product of H\Q) with the usual norm ||v||ktQ and seminorms |v|m,Q. 
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We shall consider the following obstacle problem: 

(0>) find ue% such that 

f(u) = min f(v) 
veW 

with 

% = {veHl

0(Q):v ^ cp a. e. in Q) , 

f(v) = |grad v|2 dx - 2 fv dx , 
JQ J Q 

where fe L 2(g) and cp e HQ(Q) are given functions. °tt is a closed convex subset of 

Ho(<2). Let us recall the following existence and uniqueness result (cf. [8], [10]). 

Theorem 1.1. There is a unique solution u of(0>) and this solution is characterized 

by the relation 

(1.3) 

where 

a(u, v u) = Г f(v - u 
JQ 

) dx Vv є ^ , 

a(u, v) = grad u . grad v dx 
JQ 

If u is smooth enough, then using Green's formula we deduce from (1.3): 

- A u = / in Q0 cz Q , 

- A u = f in Q+ c Q , 

where 

Q 0 = {x G g : u(x) > <p(x)} , 

Q + = { x e 6 : w ( x ) = (p(x)}. 

As (B- G HQ(Q), we can write ^ = <p + ^ 0 , where 

<%0 = {WE Ho(Q) : w ^ 0 a. e. in Q} . 

Let 

(1.4) u = cp + W* , W* G ^ o • 

Then we have 

Lemma 1.1. It holds 

(1.5) <-Au -f, w*> = 0 , 

where <,> denotes the duality pairing between H~1(Q) = (HQ(Q))' and HQ(Q). 

Proof. Inserting v = cp and v = cp + 2w* into (1.3) and using (1.4) we obtain (1.5). 
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Next we derive a dual variational formulation to (0>). To this end we introduce the 
following Lagrangian S£\ 

<Є{JÍ,v, I) = JíiJíiáx- 2 fv dx + 2 f kt (— - JVA dx x) 
e JQ 

where (^V, v, A) e W= L2(Q) X W X L2(Q)9 JT = (JTl9 ..., </V„), A = (A1? ..., An). 
It is easy to verify that 

(1.6) (u) = inf Д v ) = inf sup SЄ(JГ9 v, A) , 

where (JT9 v) e L 2 (g) x %9 ke L2(Q). 

Theorem 1.2. There is a unique saddle-point (Jr*9 v*9 A*) of S£ on W and 

(1.7) (J^*, v*9 A*) = (grad w, u9 grad u) , 

where u is the solution of (0>). 

Proof. Let (JT*9 v*, A*) e Wbe a saddle-point of i f on W. Then 

(1.8) O^(.yV*, v*, A*) = 0 o JT* = A* , 

(1.9) bkS£(JT*9 v*, A*) = 0 o JT* = grad v* , 

(1.10) bvS£(JT*9 v*, A*) (v - v*) ^ 0 Vv e ^ o 

o[ ^(—-—)dx^ [f(v- v*)dx V v e ^ , 
) Q \dxt dxj } Q 

where bjrS£ denotes the partial differentiation of S£ with respect to JT (and analo
gously bxS£9 bvS£). Taking into account (L8), (1.9) we deduce from (1.10) that v* = u 
is a solution of (0>). Hence we conclude that there is at most one saddle-point of S£ 
on W. Conversely, to prove that (1.7) is a saddle-point of S£ on W, we must verify: 

(1.11) Se(JT*9 v*9 A) g S£(JT*9 v*9 A*) VA e L2(Q), 

(1.12) S£(JT*9 v*9 A*) S S£(JT9 v, A*), (JT9 v) e L2(Q) x m . 

It is easy to see that (1.11) is satisfied even with the sign of equality. Let us prove 
(1.12). We have 

(1.13) 
/ . ( " • 8xJ \ dxj 

f ôu (дu 

+ 2 \f(v-u) 
JQ 

( ] dx + 
Q dxt \dxi OXÍJ 

dx 

for V.yVeL2(g), VveW by virtue of (1.3). A direct calculation shows that (1.12) 
and (1.13) are equivalent. Theorem is proved. 

1) In what follows a repeated index implies always summation over the range 1, 2, ..., n. 
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Using the well-known properties of saddle-points, we can write in (1.6): 

(1.14) f(u) = inf sup Sf(JT, v, X) = sup inf Sf(jT, v, k) 
(^.») )• X (jr,v) ' ' 

(jr,v)eL2(Q) x <%, XeL2(Q). 

Let k = (I1; ..., I„) e L2(Q) be fixed and let us set 

S?(JV, v) = Sf(JT, v, 1) = Sf^jr) + Sf2(v) , 

where 

se JJT) = JVÍJVI dx - 2 

Je 
- Ï І Л ^ dx , 

Sf2(v) =l[ Xt~dx-2,fvdx. 
J a 8xt JQ 

Let (JV, V) e L2(Q) x ^ be such that 

^(yP, t5) = inf Sf(jr, v, I) = inf seAjr) + jnf je2{v) 
(̂ ,») ,r 2 t. 

JT e L2(Q), » e « . Then 

bjrSf .(yF) = 0 o / = ] 
and 

On the other hand, 

.Sř-.fyГ) - (Ҷ 
Jß 

Д; dx . 

inf JS?2(i>) = ЫSЄ2(q + w ) = 

+ T - l d x - 2 | / f ø + w)dx|. = 
" • M Je V ^ Í 

/ 2 \ Xi-^dx-2\ f<pdx if 1eJí}(Q) 

\ 

where 

Hence 

-oo if k ÍJT}{Q), 

JГJІQ) = Џ є L2(Q) : ľ A x ^ ľ / „ d, Vw є * 0 l . 
t JQ CXІ JQ j 

sup inf а>{jf9 v> Я) = sup { - f AЛ dx + 2 
Я < Ж ' У ) AєЖ-/(ß) ( JQ 

ГxЛы-
Q дxt 

-2\f(pdx=- inf Sř(X) - 2 [ fq> dx , 
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where 

sř{k) kjki dx — 2 ^ Д d x . 
ö дxt 

Let us define the following variational problem: 

(&*) find k* e JTJ(Q) such that 

se(k*) = inf sr(k) 
Xe.rf~(Q) 

(&>*) will be called the dual problem to (0>). 

Theorem 1.3. There is a unique solution k* of (&*) and 

(1.15) ;t* = gradw, 

where u is the solution of (0). 

P r o o f of the existence and uniqueness is standard. The derivation of (0*) justifies 

(1.15). 

R e m a r k . It is easy to see that 

k e JTJ(Q) o div k + / g 0 in Q 

in the sense of distributions. Let k° e L2(Q) be such that 

div A0 = -/• in Q . 

Then JTJ(Q) = k° + Jrj(Q\ where 

^o(Q) = lxe L2(Q) : f Xi ~ dx ^ 0 Vw e « f 0 l , 

or equivalently 

Xejrj(Q)odivX^0 in Q 

in the sense of distributions. 

Problem (&*) can be formulated equivalently as follows: 

(find k* e JTJ(Q) such that 

\b(k*, k- k*)^ &(k - k*) VA e ^V7(e), 
where 

b{k, //)=(* ;,./i; dx, &{k) 
Je 

^ , . ^ d x . 

Approximation of (0>*) 

In order to define the Ritz-Galerkin approximations, we introduce a system 

{jVoh(Q)}> he (0,1) of "finite dimensional approximations" of JTJ(Q). Let us 
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suppose that Jr

0h(Q) c ^o (6) f o r a 1 1 A e (°> 1) a n d l e t u s s e t 

^ 7 , ( Q ) = ^° + JT~h(Q) c ^ ; ( Q ) V h e (0, 1) . 

We define the following procedure: 

{>*) fmd k* e JrJh(Q) such that 

ST(k*)= min <?(kh) 
Xhe^fh-(Q) 

or equivalently 

\find kh e JrJh(Q) such that 

{b(ti, kh - A*) 2: ^(A* - A*) VA„ e JT]h(Q) . 

Lemma 1.2. To every h e (0, l) there exists precisely one solution kh of (&*). 

Moreover, it holds: 

(1.16) ||A* - i*jla ^ {F(k* - kh) + b(A* - A*, A, - A*) + 

+ b(k*, kh - A*)} VA„ e Jf'Sh(Q). 

Proof. Sf(kh) (kh e jVJh(Q)) is a quadratic function generated by a symmetric, 

positive-definite matrix, Jrfh(Q) is a closed convex subset of JVJ(Q). Hence the 

existence and the uniqueness of k* follows. For the proof of (1.16) see e.g. [2], [5]. 

2. CONSTRUCTION OF ^Jh (Q) 

Let us suppose that Q is a bounded polygonal domain. For the sake of simplicity 

we restrict ourselves to the plane case only. We introduce the following notation: 

c(Q) = [c(Q)Y 

with the norm | |v| |C ( 2 ) = max \vt(x)\9 v = (vi9 v2) and C2(Q) = [C 2 (2)] 2 with the 

seminorm 1

XJQ2 

\C2(Q) — m a x 

i,j,k= 1,2 
xeQ 

дH, 0) •') 

Let K be a non-degenerate triangle with vertices al9 al9 a3 and let us set a 4 = av 

Let Pi(K) denote the set of linear polynomials on K and Pt(K) = [P l v K) ] 2 . We say 

that k[l), X2

l) are basic linear functions of the side atai+1 if 

k(jl) are linear on atai+1 , 

A (/>(a ;)= 1 , A ( i >(a i + 1 ) = 0 , 

A(i>(a;) = 0 , A(i>(a,.+ 1 ) = l -

1) Ck(Q) (k ^ 0 integer) denotes the usual Banach space of continuous functions on^Q, de
rivatives of which up to the order k are continuous on Q and continuously extensible on Q. 
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For v e Hl(K) we define the outward flux by the relation 

(2 l) Tv = vl n ( 0 

where v|aia< + l are traces of v on ajai+1 and n ( 0 is the outward unit normal to OK. 

From the trace theorem (see [4]) it follows that Tt e L(H\K), J3(a{ai+1))
 2). 

For the scalar product in L2(a fa f+i) we use the notation 

[u ,v]i 

First we make some observations, the proofs of which are given in [3], 

uv ás , 
ÜЯi + l 

Lemma 2.1. Let yi,dieR1 (i = 1,2,3) be given. Then there exists a unique 

v 6 PlvK) such that 

Tiv(at) = yi9 Ttv(ai+1) = <5f. 

Theorem 2.1. Let v £ Hl(K). Then the equations 

(j) [Tfv, 4°]f = af[4°, 4°]. + &[4°, 4°]i, k = 1, 2 ; 
(jj) Hv(af) . n ( 0 = a, , Hv(af+1) . n ( 0 = /Jf 

define a mapping II G U(H\K), PlvK)) n L(C(K), PlvK)). 
Let 

^0(K) = {v G fl^JK) : div v = 0 in K} , 

J((K) - {v G PlvK) : div v = 0 in K} . 

Theorem 2.2. Let II be defined by means of the relations (j), (jj). Then 

IIeL(.r0(K)9J?(K)); 

nv = v Vv G PlvK). 

Theorem 2.3. Let v e C2(K). Then 

l|v-I7v|U^4fl + ^ V | y C(K) = *+ - -r- ~ " v C-(X) 

sin a/ 

where h = diamK ana7 a is the minimal interior angle of K. 

Theorem 2.4. Let v G H%K), 7 = 1 , 2 . Then 

\\v ~ ny\\o,K = (chjjsm a) \v\j>K , 

where h, a have the same meaning as in Theorem 2.3 and c > 0 is an absolute 

constant. 

) L(X, Y) denotes here the space of linear bounded mappings of X into Y. 
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Now we extend the above mentioned results. We shall prove that the mapping FI 
preserves the negativity (or positivity) of divergence. Let us define 

JT~(K) = {ve. Hl(K) : div v ^ 0 in K} , 

M~(K) = {ve PX(K) : div v ^ 0 in K} . 

Lemma 2.2. 

v e ^ - ( K ) < - > v e P l v K ) and v . n ds g 0 . 

J dK 

Proof. Let 

V = (?1 + ylXl + y3x2 , 5t + S2X1 + 33X2) . 

Using Green's formula we obtain: 

ás 
J к J ÕK 

If 

div v dx = v . n i 
JK J dK 

\ v . n ds ^ 0 
J dK 

then 

div v dx = (y2 + S3) mes K ^ 0 

Hence y2 + S3 <; 0 which implies v e ^#~(K). 

Lemma 2.3. v e JT(K) ove PX(K) and £ (ai + Pt) Z» = °> w/l6?r£? a* = T<v(ai)> 
i = i 

ft = Fjv(ai+1) ana7 l£ denotes the length of aiai+v 

Proof. 

f v . n ds -= X f *> d5 = X f ( M i 0 + jM<°) ds = J £ (a, + ft) I f . 
JaK i = 1 Ja .« . + 1

 i=1Jfl,a i + 1
 l * 

The assertion now follows from Lemma 2.2. 

Theorem 2.5. Let 17 be definied by the relations (j), (jj). Then 

neL(jr~(K)9 J(\£)) * 

Proof. Adding the equations (j) for k = 1, 2 we obtain 

f T,v ds = [7>, 4° + 4°]. = a.[4°> l]i + W » !]« = Ka< + ft)'. 
J a.a. + i 
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using that 4 ° + A(
2° = 1 on aiai+1 and [A[°, 1],- = Z,/2. If v e / 0 " ( K ) then 

O k f v . n d s = £ f Tv ds = * £ ( « ; + & ) ! . . 

The assertion follows from the definition of 17 and Lemma 2.3 (continuity of H#has 
been proved in [3]). 

Let 3~h, h e (0, l) be a triangulation of Q satisfying the usual requirements con
cerning the mutual position of two triangles and max diam K = h VK e 3~h. We say 
that a family {3~h}, h e (0, l) of triangulations of Q is regular, if there exists a con
stant a0 > 0 independent of h such that all interior angles of the triangles of 3~h e {3~h} 
are not less than a0. Denote by TIK the mapping defined on K e 3~h by means of the 
conditions (j), (jj). Let K, K' e 3'h be two adjacent triangles with a common side 
atai+1. The function T(v defined by (2.1) with respect to the triangle K will be denoted 
by TiKv (analogously for TiK, v). We say that the condition (3t) is satisfied on the 
side ajai+1, if 

TitKv + TiK,v = 0 on atai+1 . 

Now we define 

jV~~h(Q) = {v, v\K G M~(K) VK e 3~h, (01) is satisfied on each 

common side of any pair K, K' of adjacent 

triangles of 3~h} . 

For v e HX(Q) we define the mapping rh by the relation 

rhy\K = nKv vK e «rh. 

Theorem 2.6. Let {3~h}, he(0, 1) be a regular family of triangulations of Q. 
Then 

(2.2) rheL(^~(Q)nH\Q), ^~h(Q)); 

(2.3) ||v - r,v|j0>Q g ch2\v\CHQ) Vv e C2(Q) ; 

(2.4) ||v - r,v||0>Q ^ chJ\v\JtQ j = 1, 2, and Vv e R\Q) , 

where c > 0 is an absolute constant. 

Proof. The proof of (2.2) follows immediately from Theorem 2.5 and the definition 
of rh (see also [3]). (2.3), (2.4) follow immediately from Theorems 2.3, 2.4 respectively. 

R e m a r k . It holds: 

^UQ)^^o{Q) VAe(0.1). 
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Proof . Let v e JVoh{Q), <p e ^ 0 be arbitrary. Then 

<div v, cp} = — v . grad cp dx = — ]T \ v • g r a^ (p dx = 
J o Ke3r* J K 

- - Í ' 
Ke.^h J x 

TXV()9 d;S . div v<p dx — £ 
Ke^; 

The last term vanishes because of the condition {M). Hence 

<div v, cp} = J] div v(p dx = div vcp dx g 0 V<p £ ^ o • 
* e ^ J K J Q 

Finally, let us set JfJh{Q) = k° + jV0h{Q). 

For our next purpose we estimate ||div k — div rhk\\0>K. 

Theorem 2.7. Let k e H\K) he such that div k e H\K). Then 

(2.5) ||div k — div nKk\\0tK = ch|div A|1>K , 

where c > 0 depends on the minimal interior angle a OfK Only. 

Proof. Let P0 denote the set of all constants on K. Green's formula and the 
definition of LIK yield 

(2.6) (v, div k - div nKk)0>K = v{k - ITKk) n ds = 0 
J dK 

for every v e P0. It means that div HK^ e P0 is the orthogonal L2(K) projection of 
div k on P0. Using the well-known property of orthogonal projections and the 
approximation property of P0 in H*(K) (see [9]) we obtain the assertion. 

One can easily extend (2.5) to the whole domain Q. 

Theorem 2.8. Let {&~h} he a regular family of triangulations of Q. Then for 
every k e ^{Q) with div k e H1{Q) we have 

(2.7) ||div k — div rhk\\0fQ ^ ch|div k\1>Q , 

where c > 0 is an absolute constant. 

3. APPLICATIONS OF JTjh(Q) TO THE DUAL VARIATIONAL FORMULATION 

In this section we establish the rate of convergence of the Ritz-Galerkin ap
proximations kh e JfJh(Q) to the exact solution A* e Jrj{Q) of (^*). Let us recall 
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that 

A* = k° + x* , 

A? = °̂ + it, 
where #* e yV0 (g), / * e e/V0/.(2) and div A0 = -f. In what follows we shall suppose 

that a family {«^~/.}, h e (0, l) of triangulations of 2 u s e d for the construction of 

^"oh{Q\ is regular. 

Theorem 3.1. Let x* e ^o~(2) n # y ( 2 ) , j = 1, 2. Then 

(3-1) \\l* -i:\\0>Q = 0(hj/2), / w 0 + . 

Proof. Let us set kh = k° + r ^ * e ./V7I(2)« Then according to (1A6) we can 
write 

(3.2) \\X* - X*h\\lQ S H*-* - K) + b(k*h - k*, kh - k*) + 

+ b(k*, kh - X*) g 

= Hi* - rnX*) + cep* - A*||g>Q + - \\rhx* - X*\1.Q + 
e 

+ b(X*, r„x* - x*) Vs > 0 . 

Using the estimate (2.4) we deduce 

(3-3) \F(x* - r„x*)\ = 0(hJ) , 

(3.4) \b(X*, r„x* - x*)\ = 0(hJ) , A - 0 + . 

Taking e > 0 sufficiently small, (3.2) —(3.4) implies (3.1). 

Taking into account (3.1) we see that the optimal rate of convergence has not been 
obtained. Next we shall try to improve (3.1). We shall suppose that the following 
conditions are satisfied: 

(3.5) (u - <p)(-Au -f) = 0 a. e. in Q, 

(3.6) Q0 = U Qo,, Qor n Qos = 0 for r + 5 , 

where Q0t9 t = 1, ..., p are domains with sufficiently smooth parts of boundaries 

r0t n Q. 
Let us give another equivalent form of the right hand side of (1.16). Using the 

definition of #" and the fact that A* = grad u, we obtain 

(3.7) \\X* - X*h\\
2

0iQ = b(X* - X*h, x* -XH)+\ grad (<p - u)(x* - XH) dx = 

JQ 

= b(X* - X*, x* - XH) + <u-<P, div (X* - XH)> VZft 6 JT^Q) , 

where <,> denotes the duality pairing between Hl
0(Q) and H~i(Q). 
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Theorem 3.2. Let %* e HJ(Q)9 u - cp e Hk(Q0t) and dk l\dnk \u ~ cp) = 0 on 

fot n Q, div X* e Hm(Q), j , k = 1, 2, m = 0, 1, * = 1, ..., P. Le* (3.5), (3.6) be 

satisfied. Then 

(3.8) ||** - A?||0>fl =g cft("+""/2 v( I I I " - *lke.. Idiv X*|-.fl..») + W • 
f = l 

where 
Qvtnh = {xeQ: dist (x, F0r) < */ft, t] > °} • 

Proof. We need to estimate the term 

<u - <p, div (x* - /„)> = £ (i* - «?) div (/* - Xh) d * 
Ke^h J K 

with xfc = ^ /* . Let K e ^ be fixed. If u = <p a. e. in K, then 

(3.9) f (u - </>) div (z* - & ) dx = 0 . 
J K 

If K c Q0f for some t = 1, ..., p then div x* = 0 a. e. in K so that div x* = 
= div IlKx* = 0 in K by virtue of Theorem 2.2. So (3.9) holds again. Let G be 
a system of all Ke0~h such that K n g0 f 4= 0 but K 4= Q0f. Let us set Q0t

h = 
= Sot n g0 f . Then 

(ц - ф) div (z* - zA) dx 
KeG 

P 

= 1 

|м — <p div /* — div Xh\ dx á 

|u - cpi Idiv x* ~ div Xh\ dx . 
Ö O t 

Ifu-cpe Hk(Q0t), dk"1ldn*"1(u - <p) = 0 on F0f n Q and F0f n g is sufficiently 
smooth, then (cf. [1]): 

(3.10) 

Using (2.5) we obtain 

<P\\o,Qot + * = Chk\\U - ^ l l f e . Q o f 

(3.11) j|div z * - div z,.||2.e..*- ^ I |div Z* - div Xh\\lK S ch2m|div z*|*,Qot- • 

The term b(A* — A*, x* — Z&) n a s b e e n estimated in Theorem 3.1. (3.8) now follows 
from (3.2), (3.10), (3.11). 

Up to now, very strong regularity assumption concerning the solution of (0) and 
(&*) have been imposed. In what follows the convergence of k* to A* without the 
rate of convergence will be proved under the only assumption that Au e L2(Q). 

In the sequel, let us suppose that Q is a polygonal simply connected domain in R2.
x) 

1) After a slight modification of the following proof, one can easily extend the results to the 
case of multiply connected domains. 
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Lemma 3.1. Let x ' ^ o (Q)> d™ X ~ L2(Q) and let Q ~> Q be a simply connected 
domain. Then there exists a function x~L2(Q) with the following properties: 

(3.12) Z = Z in 6 ; 

(3.13) div£eL 2(<2); 

(3.14) d i v i ^ O in Q. 

Proof. Since div / e L2(Q), we can define x • ~ ~ H~1/2(dQ) by means of Green's 
formula: 

X . grad cp dx + div x <P dx = x • n& ds V^ e 9(Q) , 
J Q J Q J dQ 

where $dQ denotes the duality pairing between H1/2(cQ) and H~1/2(dQ). Let w be 
a solution of the boundary value problem 

- A w = g in Q - Q 

w = 0 on dQ 

dw/dn(1) = - / . n ( 2 ) on dQ, 

where g e L2(Q) is a given non-negative function, n (2) is the outward unit normal to 
dQ and n (1) = - n ( 2 ) . Let us set 

~ = / z in Q 
^ grad w in Q - g . 

From the definition of x> (3.12) follows. Let q> e @(Q) be fixed. Then 

<div / , (?) = - / . grad ^ dx - / . grad <p dx = 
JQ JQ-Q 

— grad w . grad (p dx = div x$ dx — # • n(2)<P d 
JQ-Q JQ J 8Q 

f Awcp dx - —— <p ds = \ qq> dx , 
Jfi-fl JaQ^ ( 1 ) Jg 

where 

/ d i v * e L 2 ( e ) 
q -AWeL2(g-e). 

Hence (3.13), (3.14) follows. 

Lemma 3.2. Jf^(Q) n [C°°(e)]2 is dense in ^ 0 ' (div , Q) = {A e ^ o (6) and 
div k e L2(Q)} in ihe L2(Q)-norm. 
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Proof . Let %ejV0(d\v, Q) be fixed, let % be its extension on Q <= Q, given by 

(3.12)-(3.14). Let us set 

Xh ~ \Xih> Xih) > 

where Xjh e C°°(6)> I = 1, 2 are the regularizations of Xj defined by 

Xjh(x) = Xj(y) o)(x - y, h) dy , h > 0 , I J G Q . 

co(x, h) is the usual kernel of the regularization (see [4]). It is known that 

\\Xj ~ Xjh\\o,Q -*0 for h -» 0 + . 

Let h > 0 be sufficiently small and x e Q. Then 

div XҺ(X) ~ — XIҺ + — X2Й = -
Gx! ĆЬc2 

X(y) . grad^ æ(x - v, h) dy -

div x(y) ы(x - 3;, h) dy S 0 

by virtue of the fact that co ^ 0. Finally, 

||div Xh ~ div X||O,Q ""* ° f o r A -> 0 + . 

Theorem 3.3. Let the solution u of (&) be such that Au e L2(Q). Then 

ll**-A?l|o.fl-*0, h->0+. 

Proof. div A* - AueL2(Q) and div 1° = ~-feL2(Q) yield d i v x * e L 2 ( g ) , In 

order to prove the convergence of 2* to A* (or xt to z) it - s sufficient to prove that 

there exists a space of smooth functions dense in ^VJ"(div, Q) (see [8]). Such an 

assertion follows from Lemma 3.2. 
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S o u h r n 

DUÁLNÍ ANALÝZA NEROVNIC II. ŘÁDU METODOU 
KONEČNÝCH PRVKŮ 

JAROSLAV HASLINGER 

V práci je studována duální variační formulace k okrajovým eliptickým problémům 
s nerovnostmi (překážkami) zadanými uvnitř oblasti. K numerickému řešení je 
navržena metoda konečných prvků. Užitím po částech lineárních rovnovážných 
prvků, zavedených v [3], se dokazuje řád konvergence Ritzových aproximací za před
pokladu jisté hladkosti přesného řešení. V dalším se předpoklady na hladkost řešení 
zeslabují. 
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