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SVAZEK 24 (1979) APLIKACE MATEMATIKY cisLo 2

ON THE APPROXIMATE SOLUTION OF THE
MULTI-GROUP TIME-DEPENDENT TRANSPORT
EQUATION BY P,-METHOD

STANISLAV MikaA

(Received August 3, 1977)

The P, -method, sometimes called the spherical-harmonics method, is one of the
most powerful tools available for solving the neutron transport equation especially
for the steady-state one-velocity equation. This paper deals with a study of the
P,-method for an approximation of solution of the multi-group time-dependent
neutron transport mixed problem with three-dimensional geometry.

1. INTRODUCTION

Denote by N(1, x, o, ¢) the neutron density function, which represents the flux
of neutrons at the time ¢ at the position x = (xl, X,, X3). The velocity of the moving
neutron is denoted by c (it is sometimes interpreted as an energy of neutron) and the
direction of the motion of the neutron is denoted by the unit vector & = (wl, ®,, @3).
We consider the following integro-differential equation (see [1], [2])

(1.1) %N + co.grad N + coN =
t

o "
= j J\ a(x. ¢) h(x,¢', 0 = o, ¢) N(t,x, 0, ¢')do’ d¢’ + F,
aldo 47

where a(x, c), ay(x, c) are total and differential cross sections for scattering neutrons
(characterizing the medium — o(x, c), o (x, c) is the probability per unit time that
a neutron in position x with speed ¢ will undergo a collision), F = F(t, X, 0, c)
represents extraneous neutron sources, h(x, c,o - o, c) describes the transfer
of neutron energy, (h(x, ¢, ® - o, ¢)dwdc is the probability that a neutron in
position x, with energy ¢’, moving in the direction @’ after collision is moving in the
range of directions <{w, o + do) = {w,, 0, + do;) x {w,, W, + dw,> X
x (w3, w3 + dw;) and velocities {c¢, ¢ + dc).
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We shall now assume that in our medium there are only neutrons with discrete
distributions of velocities (energies) ¢; < ¢, < ... < ¢, and that h depends only on
the angle of the directions w, @' (precisely on cos (@, @) = pp = ©,0] + w05 +
+ w30%).

After a rearrangement of some terms in the equation (1.1) we obtain the usual
multi-group transport equation (see [6], [16]) (j = 1,2, ..., I):

1 du;

(1.2) ;?t—’+w.graduj+aj(x)uj=

J ai(x) hpo) wilt, x, ') do’ + f; .
2

MM~
IH <.

SN

k=1 4T

it

Here u; = uj(t, X, w) = ¢;n;, where n; is the neutron density of the j-th velocity
group of neutrons with a speed ¢; > 0, f; = f;(t, x, ®) is the source function, o,(x),
o’(x)are the total and differential cross sections, respectively, related with the velocity
group j, h; represents a probability that after a collision the neutrons pass from
the k-th velocity group to the j-th velocity group. For example, if in our medium
two nuclear reactions are taking place — scattering and fission — then instead of
of(x) hy, we have oi(x) b5 (o) + ofvi(x) hY (v is the mean number of secondary
neutrons per fission in the group k). From the physical assumptions it follows that

% = 0 for j > k and therefore for scattering the 1-st — j-th terms in the sum (1.2)
can be left out.

Our approach to the problem is based on some results of [5], [7], [8].

2. STATEMENT OF THE PROBLEM

Let us denote the region of the medium by G and assume that G is a bounded
convex domain in the three-dimensional Euclidean space R; with boundary 4G,
consisting of a finite number of sufficiently smooth hypersurfaces with the outward
unit normal vector n = n(x) = (n,, n,, n3), @ — the unit sphere with the centre
at x € G is a set of directions w.

Assuming an [-group formalism, u, @, f are vectors of order [ with components
uj(t, x, ), ¢;(x, ®), f(t, x, ), we consider the equation (1.2) in the form

(2.1) Du=Lu—- Hu=f,

where the operator L is diagonal with elements L;, where

1 Ou; .
(2.2) Ljqu;—-E+w.graduj+ajuj, ji=1,2,..,1,
J
and
(2.3) Hu = J‘ Sf)(x, po) u(t, X, w') do',
Q
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where the j-th component of vector Hu is
1 r
Y —G~"(—x)J hi(po) ui(t, x, ) do .
k=1 4n Jgq

I-dimensional vector-valued function Hu is given by the sum of integrals in the
equations (1.2).

The boundary condition to be imposed in the present paper is that no neutrons
enter G from outside through the surface 0G. Define

Ir=r,url.=0xQ,
I ={(x,0)edG x Q,n.0 <0},
Iy ={(x,0)edG x 2, n.0 = 0} .
Then this boundary condition is expressed by
(2.4) u(t,x, &) =0 on <0, T) x I'_.
The initial condition will be
(2.5) u(0, x, ©) = ¢(x, ®).

We further introduce the abbreviations:

(u,v)) =J ut,x,0)i(t, x, 0)dtdxdo; Q=(0,T)x G x Q,
Q

1 !
[u,v]e = ,Zl(“f’ v)o: [uv]= Zlu,-vj»
Jj= Jj=

Denote by 6% = #%5(<0, T); L,(G x Q)) the cartesian product (taken I-times) of
spaces C% = C¥<0, T); L,(G x Q)) with the norm

uj

k
2.6 - j
(6) Judes =3, sup |2

a=0te0,T)

L2(G %)

Then
ullese = (X e -

The cartesian product of spaces C(G x Q) or C(Q) will be denoted by ¢(G x Q)
and %(Q) respectively.
Analogously %, will be the cartesian product of spaces L, with the norm

= (o).

We introduce the following Hypothesis:
i) o, 03 € Lo(G), k =1,2,...,1,

|
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ii) o7(x) = 0, g,(x) > 0 and there exist constants gy, > 0 such that o,(x) > o4,
k=1,2,...,1,

i) [Lh5(uo) dpo < 00, hulue) 20, jk=1,2,...,1.

Lemma 2.1. Under the Hypotheses i), ii), iii), suppose that ue #,(G x Q) for
all t € {0, T'). Then for all te 0, T)

Hue £,(G x Q) and ||Hu|,,gxq < const |u

| L2(G %) *
Proof. Using the results of [4],
1
(a) J Ihjk(.“o)lz do' = 2”J. hfk(ﬂo) duo
o -1

and Holder’s inequality we have

2

dxdo £

J ai(ic—) (o) wi(t, x, @) do’
o 4n

J‘GX!Z

< constf |ui]? dx de [j |hjx(o)]* de dw’:l .
Gx0 axe

Corollary. For ue % it is Hue %% and |Hu|4. < const |ufx.

Let u;, v; € W,(G) (for fixed (1, ®) € €0, T) x Q), then Green’s formula (generally
for complex-valued functions) holds

(2.7) Jwvj.grad u;dx = —J ou; . grad v; dx +J n.oup;ds,
G G G

where the derivatives should be taken in the sense of Sobolev and the surface integral

for traces. If u;, v; and 0G are sufficiently smooth, then (2.7) is obvious via the

integration by parts. Hence it is valid also in W, (G).
The formula (2.7) will play an important role hereafter.
We define a diagonal matrix-operator A with elements A, where

Au;=ow.gradu; +ou;, j=1,2,..,1,
with the domain #(A) given by
L(A) = {ue L,(G x Q); Aue Z,(G x Q), Vte0,Ty; u;e C'(Q)
for j = 1,2, ..., 1 and satisfies the boundary condition (2.4)}.

Obviously, the range of A = %. The closure of £(A) in €} will be denoted again
by Z(A). A is a densely defined closable operator in this space. We denote its closure
again by A.
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Lemma 2.2. Under the assumption ii) A is dissipative on L(A), i.e.
(2.8) Re[Au,u]g,o =0, ueZ(A).
Proof. According to the identities
Re (i1; grad u;) = Re (u; grad ii;) = Reu; grad (Re u;) +
+ Im u; grad (Im u;)
and (2.7) we have

1
Rej ﬁjw.gradujdxdw=~f o . grad (u;i;) dx do =
GxQ 2 GxQ

:-]—J\ n.ouji;dsdo .
2 oG X
It follows that

Re (Ajuj, )6 xa = Ref

ujow.grad u;dx do + Ref oujiu;drydo =
GxQ

GxQ

= 1J n.oujiijdsdo + [ ouji;dx de .
G xQ

2 Jexo

Using the hypothesis ii) and the boundary condition (2.4) we have

f n.wujﬁjdsdwzf n.oujii;dsdeo =2 0 because n.w =0 on I, ;
G x 2

[ s h
f ouji;dx do gajof ujﬁjdxdwzajOJ‘ [(Reu;)* +
GxQ GxQ GxQ
+ (Imu;)*] dxdo = 0,
which was to be proved.
Remark 2.1. In the course of proving Lemma 2.2 we obtained
(2.9) Re (Ajuj, tj)gxo Z 0oL, xa) -

Remark 2.2. If (2.8) holds we will say that the boundary condition (2.4) is dis-
sipative.
Denote

(2.10) D* = L* — H*,

where L* is formally adjoint to L, therefore L* is also a diagonally matrix-operator
with elements L}, where Ljv; = —(1/c;). (0v;/0t) — o . grad v; + ov;. Similarly
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to H, the operator H* is a matrix-integral operator

(2.11) H*v = J 95*(x, po) ¥(t, x, 0) do
Q

where the j-th component of the vector H*v is

é 4l x )ng’kj(l‘o) (1, x, 0) do .

3. SOLUTION OF THE PROBLEM. A PRIORI BOUND

In order to study the solution of Problem (2.1), (2.4), (2.5) we use the following
notation

A(D) = {ue®l; u(0, x,0) = ¢(x, ), pe L,(G x Q); u(t, x,w) = 00n 0, T) x
x I'_ (in the sense of traces); o . grad uj e C,, t € 0, T},
A(D*) = {ve%(Q); v.e ¢(Q), o . grad v; € C(Q); ¥(T, x, ®) = 0; ¥(1, x, ) = 0 on

€0, Ty x I',}.

The problem (2.1), (2.4), (2.5) can be formulated as follows: To find u e (D)
such that

(3.1) [u, D*v], — [€7 ', ¥(0, X, ®)]gx0 = [f. V]g, VveZ(D*).

If, moreover, u is a sufficiently smooth function on Q (for details see [16]), then
itis a solution in the classical sense (¢! is the diagonal matrix with the elements 1/c;).

In [13] conditions are given for the existence and uniqueness of the solution of
general time-dependent multi-velocity transport equation in the space Z,(Q) and
a construction of the solution is given by a successive approximations. Analogous
results by methods of integral equations are obtained in [17], [18]. Our considera-
tions are based on similar ideas which were used for mono-velocity time-dependent
transport equation in [5]. For the solution of Problem (2.1), (2.4), (2.5) we shall
obtain an a priori estimate for u, which is based on an energy inequality.

Theorem 3.1. Let fe %5, 9 € Z,(G x Q), ¢(x, ) = 0 on I'_, hy(uo) € Ly(—1, 1)
and let u be a real solution of Problem (2.1), (2.4), (2.5) in the sense of (3.1); then

() Julle = + 1) + alfls
1
03)  [rowuloun 2 2ule, {7 fude, + ool + o)
Vte<0,T).

The constants y,, x, depend only on sup aj(x), I, T, Cpays inf a9 > O.
k,x k
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Proof. We multiply Eq. (2.1) by the function 2u and integrate over G x Q (as-
suming ¢ fixed). We estimate the form [Du, u]g.o = [Lu, u]g.o — [Hu, u]gq.
We have (using (2.3))

[Hu, ulg .o = [u, Hulg,n = [uj

H(x, po) u(t, x, ') dw’] =
o

G xQ

=LW i w)z j th,k(uo) ui(t, x, ) do dx do.

By Schwarz’s inequality and the result (a) used in the proof of Lemma 2.1 it follows

i) ui(t, x, @) | hulpo) uit, x, o) dw’> drdo| =
Gxo\ 4n [

= sup 0i(*) Mjellus| oo o - [t oo 2y 5

- 1 1 5 1/2
hjk = (5'( hjk(lio) d#o) .
-1

From here and from the assumptions i)—iii) it follows that

where

[Hu, u]g.p = SJZE O',';(x)j}:l: H“J” Lz<cxm2i ]| o x 2y <

= L max (sup ai(x) h; = loy|ul|Z,@xn) -

By the obvious inequality 2| ] Ibl (1/e) a* + eb* (e > 0, a, b real), we further
obtain

2[f, u](,XQ <

By (2.9) we can write
[Au, ufo 2 min oj0lu]Zu6x0) = ool|ull, -
J

Then

1 d
by, ul; o= — — |ul?
[ ]G Q cmax dr i
(it is easily shown that |ul|%, is differentiable with respect to t).
By combining these results we obtain (for all ¢t € €0, T))

+ 200 [ u]%,

S Julf. = ofull, + 22 Ml o = u(2abl = 205 + )
dt

(we take such an ¢ to guarantee o* > 0).
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The integration and [|u(0, x, ®)|%, = |0]%, leads to

(3.4) lulle: = mlel%. + ),

where
=V x = \/(C—m%(eo‘7~ 1)) for o* > 0.
e
Applying this procedure to the equation Du, = f, we get
(3.5) ludle. < xi]@lle, + 22]f, s,
where @ is defined by

1.
Z-_ QDJ-(X, w) = —o.grad uj(O, X, w) - ajuj(O, X, w) +
J

1 r,
+3 g"_(i) hjk(ﬂo) uk((), x,0')do’ + [0, x, w) :
k=1 47 [o]

From (3.2) and from the equation (2.1) in the form

(3.6) c*10—E+Au=Hu+f,
ot

we get by an analogous procedure (3.3) (¢~ ! is the diagonal matrix with the elements

epj=1,2,..,1).

Theorem 3.2. Let f, @, hj, satisfy the hypotheses of Theorem 3.1 and let the as-
sumptions i)—iii) hold. Then the solution u of Problem (2.1), (2.4), (2.5) is uniquely
determined and depends continuously upon the data f, @, oy, oy.

Proof. See [16].

4. CONSTRUCTION OF AN APPROXIMATE PROBLEM BY P,-METHOD

In this section we shall construct an approximate problem in the following form

(4.1) D®u®™ = f® on Q,
(4.2) u™(0, x, w) = @™(x,®) on G x Q,
(4.3) u® e N~(3G)

where f™, ¢{” are approximations of f and ¢ respectively. Condition (4.3) is an
approximation of the boundary condition (2.4) in the Marschak-Viadimirov sense.
The solution of Problem (4.1)—(4.3) will be an approximate solution of Problem
(2.1), (2.4), (2.5). The convergence u™ to u depends on the boundary space N (6G)
as well as on the convergence of f® o™ and D™ to f, @ and D respectively.
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As Qs a unit sphere, we shall characterize w € Q2 by a couple of angle coordinates
39, ¥ in the sense of the sperical coordinate system. Then equation (2.1) or (3.6) can
be written in the form

0

.
(4.4) M ou
at

0 .
+\/(1_“2)COSI//‘:+\/(1“‘MZ)SIDIPE——}—'LL—————F
O0x 0x, 0x3

1 2n
+ou = f f S, o) ult, x, 1, ') Ayt Y+ (4, %, 1, 0)

-1J0

where €' and ¢ are diagonal matrices with the elements 1/c;, o;(x) respectively,

p=cosdu=ult,x, m ) o =0.0 = + /(1 - p*) J(1 — p?)cos(y — ¥).
We shall consider the system of (n + 1)2 base functions (spherical harmonics)

(4.5) (€0, CY,CY, .., CY CL, Chy ooy Cos ST, Shy ety Shs e
CnlSnISuICnS

nlv n—1»

;ChC
Cr=Cy(u, ) = Py"(w)ycosmp; p=0,1,2,...n; m=0,1,2,..,p
St o= Sh(u, W) = PY(w)sin mp; p=1,2,..,n; m=12,...,p;

qm

d
P(m)([.l) — (1 — )m/2 d - Pp(ﬂ) , D >0, m <p;

P (1) are Legendre polynomials.

Applying the Galerkin procedure to the velocity variables in Eq. (4.4), 1.e. multi-
plying each term of the j-th equation of system (4.4) by base function (4.5) and
integrating over (—1, 1> x <0, 2r) (see [1], [2], [16]) we obtain, after some rear-
rangement, a first order system of partial differential equations

1, ou; 2

(4.6) Lg%, va, U’+chU

i at =t X;

1
Zkz_‘lijUk'f‘Bij; _]= 1,2,...,1.

Here U; = U/(t, x) are vector-valued functions with (n + 1)* components (ordered
by (4.5))

UEm = Ue(1, x) = j J (1, 3, 1) C(ks W) du dy

2n
03 = 000 = [ [ ) 50 ) ey
-1

0

(analogously for F; = F(t, x)). It can be easily shown that B; (for all j) is a diagonal
and positive matrix and A;; are symmetric (for details see [16]) Hj = to7(x) BH

141



Hj. is a diagonal matrix with (n + 1)* elements (ordered again by (4.5))
RO M Moy ooy W My W oy B By By ooy s
s B R WY R R R
where
by = J-l hjk(#o) Ps(ﬂo) dpo
-1
and we denote

" 525 + 1

G = ZO""z—‘ i Py(ko) -

B;, A;; are constant matrices, too.
If
U=(U,U,..U); F:= (Fy Fyy oo FY),

1

- 1

B=>Y®B;,, B.=) @ — B,
Jj=1 ji=1 Cj

1 1
B,=)@®0oB;, Ai=Y®A;, i=123
j=1 j=

(direct sum of matrices), then we can write (4.6) in the form

3 P
(4.7) Bc§9+2Aiﬂ+RU=BF,

ot i=1 ax,-

where R = B, — E. The matrices B, A, E are square matrices of order o = I(n + 1)?

and B;, A;;, H;, are their submatrices.

We shall seek the solution U = U(t, x) of (4.7) in the cylinder (0, T) x G satisfying
the initial condition

(4.8) U0, x) = &(x), xeG
and the boundary condition
(4.8) Ue #7(0G),

where the boundary space will be prescribed by a boundary matrix (see (4.12)).
Function @ is determined by ¢(x, ) as a vector-valued function with the components

(ordered by (4.5))

@;75(x) =J j (s ) Coot ) di
®;75(x) ='f f (5 1 W) STk, ) dit dy
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The equation (4.7) forms a symmetric hyperbolic system (see [ L1], [ 14]).
We shall now describe the construction of the boundary space A"~ (0G) or N (0G).
As is well-known, the solution u = (uy, u,,...,u;) € %#(D) of Problem (2.1),
(2.4), (2.5) may be represented in the form

z L 2p+1 (p—m) .
u; 1: X, I, = T — T T U“'m t, X Cm 5 +
A ) p{\;’o mg'o 21(1 + d,0) (p + m)! it %) Colk, )

S o 2+ 1(p—m)

!
+ 3 DS x) 8™, )
PZ! mgl 2n (p + Wl)! J.p( ) p(‘ P)

or formally
uj(t> X, [, lib) = Zgli Uj/f(ta x) Yﬂ(,ua ll/) ’
B

where Y, f=0,1,2,..., represent spherical harmonics base functions (4.5), U,
are Fourier coefficients of u, ¢, are numerical coefficients dependent on p, m.
As an approximate solution of the problem (2.1), (2.4), (2.5) we shall take

(4.9) u(n)(t’ X, U, tﬁ) = (u(l")’ u(zn)’ ey uﬂ"’) ;
u(t, x, 1, ) = 2y Ujp Yyl ¥)

(sum of (n + 1)* members).
In this expression the approximations f®, @™ of f, ¢ in (4.1), (4.2) will be re-
presented by

(4.10) £t x, 1) = ﬂzs,, Fi Y5 oP(x, 1, 4) = %s,, DY, .

To be able to formulate the boundary condition (4.8") for equation (4.7) we must
take the weak Marschak-Vladimirov condition in the form

(4.11) J‘ (n. o) 1 u(1, x, 0) Cypp(0) do = 0,
o-

f (n. )" U1, x, 0) S3p-p(0)do =0,
o-

(tx,0)e0, Ty x I'_; j=1,2,..,1; m=0,1,2,...,2p — 3q; p=2q, 2 + 1
2q + 2, ..., [nf2] + 2[(n + 1)[2] — (n + 1): g = 0 for n odd, ¢ = 1 for n even
We integrate over those directions w € Q for which n. @ < 0 holds (» = n(x) is the
outward unit normal vector at the point x € dG).

After substituting from (4.8) into (4.11) and integrating we obtain the matrix
form of the boundary conditions

(4.12) M7U; =0, te(0, Ty, xedG.
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The elements of the matrix M; are independent of j and are calculated by means
of integration formulas for spherical harmonics. This procedure is described also
in [7] and others.

Let us denote by M Z @ M; a quasidiagonal matrix with blocks M; on the
=4
diagonal. Then
N (G)={U=U(,x)y MU=0 on <0,T) x dG}.

We further introduce the adjoint boundary condition to (4.11)

(4.13) J (. ) 01, x, @) Clp (@) deo = 0,
Q+

f (. ) o1, x, @) ST, (@) do = 0,
o+

(t, X, w) €0, Ty x I',. (we integrate over those directions w € Q for whichn.® = 0
holds). The other conditions are the same as in (4.11).

In (4.13) we assume
ot x, W) = Yeg VpYylp ) -
[z
The conditions (4.13) can again be written in the matrix form as

(4.14) M7V, =0, 1ted0, Ty, xedG.

1
Denoting M* = %" @ M’ we define

i=1

A H0G)={V=V(,x); MV =0 on <0, T) x G} .

Let (U, V) = Z(Uj, V,> be the usual inner product of a-dimensional vectors

(= 1In+ 1)%). Usmg clementary rearrangements (see [16]) we have (Y is a vector
with (n + 1)* components Y, i.e. (4. 5))

(‘") = (B;U;, ¥ (n) = (0;8,U;, Y05
J‘ of(x) W' (1o) ui (1, x, @) do’ = ¢ Z HyU Y 5
47! k=1 k=1

3 U;
o.gradu + ol + 1 = <Z Q* + 0;8;U; Y>

where

" L —-—m+2 — ausy
o = 1 {;5[ (= m2) oy (=t ] =,

(n + m)! (n + m)! dx,
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u - 2 _ —_ | aUg,m
+ Z 1 ('1 ._’717‘?—,7) S::'+ 11 + ({I_¥ni S:," ++11 vy
ol S e
+ L i (n=m+2)! gy " (n — m)! e ] OUGY .
2m {m=0 IR R () TR B
+ i - ’1> (Vrleilp_i}) (on 11 + (i_%—_wr]j)‘ 1 Us - n oy
m=1 (n —+ ’7’1) (n + m)' n+1 axz
LG ) g SV Sk ) V)
2 (m=o0 ( + ;n)l " ax3 = (n + m)' n ax3

By these identities, after multiplying every equation of the system (4.6) by Y. we get
G=12..,10

(4.15) — L+ o.gradu” + ou” + " =

Ly f 0i(x) (o) i doo” + £,

47'[ k=1
whose operator form is (4.1), where

_, 0u®
c SR

(416) D(")u(") = -+ Au(") + r('l) _ H(n)u(n) ,

ot
(m) (
v = (K, ).

For the integral operator H™ Lemma 2.1 holds under the same hypotheses on the
kernel a(x) h$(1o) instead of o(x) h, (1to)-

On the other hand, it is not possible to extend the validity of Lemma 2.2 to
u®, as u™ ¢ Z(A) (the boundary condition is not fulfilled).

We say that u e N7(3G) if the corresponding Ue 4 ~(0G) and vice versa.
Similarly we define the boundary space N*(9G).

D™* is defined analogously as D*:
(ny* (m) 1 ov” () m _
(4.17) D" = — — —i — @ . grad v\ + o0}

c; Ot

- o )Jv h(uo) v(2, x, @) dov
that is

H ™%y — [ H™*(x, po) v, x, 0) do .

v 2

For Yu®, vi" ¢ Z2(Q) we have

[H(n)u("), v(")]Q — [u(n)’ H(n)*v(n)]Q
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5. SOLUTION OF PARTICULAR SYMMETRIC HYPERBOLIC EQUATIONS

Let the operator K be defined by

3
(5.1) KU=BC%1+ Ai‘f—U+Ru, (1,x)e<0, T) x G,
i=1 i

and let K* be the adjoint operator of K:

D 3
(5:2) K*V = ~BCQ’_2A,.57-':’+RTV,

ot =1 0x;

where RT denotes the transpose matrix to R (in the case of complex valued co-
efficients this is to be replaced by conjugate transpose).

Let €, , = (<0, T); Ly(G)) be the cartesian product of a = I(n + 1)* spaces
C(€0, Ty; Ly(G)) and %) = %1(<0, T> x G) the cartesian product of the spaces
C'(K0, Ty x G).

For (real) vector-valued functions U(t, x), ¥(t, x) with o = I(n + 1)* components,
ordered by (4.5), we define

(5.3) U, V5, =f<u, Vydxs (U, Vg, = f (U, vy ds,
G oG

where (U, V) is the usual scalar product of a-dimensional vectors.
We will make use of the following lemmas by Friedrichs.

Lemma 5.1. For any functions U, Ve%i((O, T) x G), where G has a smooth
boundary 0G, we have:
(5-4) (KU, V><o,1>xc - (U, K*V><0,T>xc = (B, U(T, x), V(Ta x)>c -
— (B, U(0, x), ¥(0, x)>¢ + (AU, V>4 1yxa6 3

here o/ = n Ay + nyA, + niA;, n = (ny, ny, ny) being the unit outward normal.
The matrix o is called a boundary matrix.

To prove (5.4) it is enough to use Green’s formula — the integration by-parts
for the functions U, V. It is clear that (5.4) can be proved for the function from W3.

Lemma 5.2. For any function Ue %3(<0, T x G) we have
(5-5) (KU, U)o ryx6 = (R + RT) U, U ryxe +
+ (B, U(Ta x), U(t, x)>G — (B, U(0> x), U(O: x)>G + (AU, U6 ryx06 -

Proof. By Lemma 5.1.

Lemma 5.3. The boundary spaces A ~(8G), /" *(0G) are sZ-orthogonal, i.e.
(5.6) (AU, Vo rxos = 0, for Ue #(3G), Ve #*(3G).
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Proof. It is sufficient to prove that the spaces N ~(8G), N*(0G) are «/-orthogonal.
If u® v are given by U, V by means of (4.9) (4.14) then for all te <0, T) (for
details see [16])

(5.7) (AU, Vo = [n.ou™ v ] o0 =0.

The following result is based on Lemma 5.4 concerning the polynomials.

Lemma 5.4. Let Q,,(p), Q,,(u) be arbitrary polynomials of degree < n satisfying
the relations (m < —1) )

ro

(5.8) p(1 — @®)" T(p?) Qu(w) dpe = 0,

J -1

~l )
w(t = )" T(1?) 0 (w)dp =0, 1=0,1,2,...,r;0=2r +1,

JO
ro

(5.9) 11 = @) T(W?) Quw) du = 0,

o —1

ri

A= @2 T(p?) 0()du =0, 1=0,1,2,...,r —1;n=2r,

JO

where T(u?) are arbitrary polynomials of argument p* of degree < r. Then

(5.10) _r w1 = 1" Qulp) Oulp) du = 0,

-1
1
(5.11) J Wl = 12 Q2w)dn 2 0.
-1
Proof. If we consider the functions u™(t, x, w), v*"(1, x, @) as functions of the
arguments @ = (&, 7, ), & = cosy sin 9, t = siny sin 9, pu = cos 9, where &2 +

+ 7% 4 p® =1, we can express u{"(f, x, ) as a linear combination of the harm-
onic polynomials Y,(9, y):

ufl(t, x, 0) = K(& 1, 1) = Y «, Y,(9, %) .
p=0
Then (4.11) can be written (for n odd) as
(5.12) J 1EK(E 1, 1) Lyy(E, 7, pdo =0,
o-
where L, (&, 7, ) is a polynomial on the unit sphere of an even degree satisfying
Lz-‘(é’ T “) = LZs(_ 6: -1 '—#) .
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The integral (5.12) can be expressed as a linear combination of integrals of the types
(5.8), (5.9). Hence (5.10) implies (5.7). The details of the proof of this lemma can
be found in [7], [8], [16].

Lemma 5.5. The boundary space & ~(3G) (or N™(0G)) is dissipative, i.e.
(5.13) (AU, Uye = [n. 0u®, u®]s5,0 20, V1e0, T,
for Ue 4 7(0G) (or u™” e N™(0G)).

Proof is based on (5.11) since

1

1
(AU, U)aG = Z <AjUj, U_,->ac; s Aj = Z ”iAji .
j i=1

Jj=1

The boundary conditions (4.3) or (4.9) are called dissipative (non-negative for K
or D(")) if at every point of the boundary, the matrix &/ is non-negative over the
boundary space A4 7(0G), i.e. if the inequality (5.13) holds. Under this assumption
the space .#"~(0G) is the maximal one on which the matrix & is non-negative.

According to the results of [8] we can easily prove that the matrix &/ does not
change its rank on G.

The domains of the operators K, K* are as follows:
W(K) ={Ue%,,n ¥ (3G); O(O, x) = d(x)},
W(K*) = (Ve %! n #*(G); V(T,x) = 0}.
We say that U € W(K) is a weak solution of the problem (4.7)—(4.9) if
(5.14) (U, K*V) 0.1y x6 = (B, (0, X)) = (BF, V(0,1

for all V e W(K¥).
We say that Ue W(K) is a strong solution of the problem (4.7)—(4.9) if there
exists a sequence UN € 6! of functions satisfying the boundary conditions M~UN =
= 0 at every point x € 0G, such that
[U" = Uy, ., > 05 [UY0, x) = &(x)] 2,0~ 0
|KUY — BF

6., 0 as N— 0.

Friedrichs [11] proved the existence of a weak solution. He also proved the equi-
valence of the strong and weak solutios for the mixed problem for the symmetric
hyperbolic system under the following assumptions:

i) the boundary 8G is sufficiently smooth,
ii) the boundary condition is maximally dissipative,

iii) the rank of the boundary matrix « is constant on 0G.
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If there exists a constant ¢, > Osuch that R + RT = ¢l on G, where [ is the identity
matrix, we shall show, using (5.5) and (5.13) that

(5.15) [Uls... = vi[ @], + 72[F

and the uniqueness follows.

Ca,2 0

However, for our purposes it would be more important to have an analog of (5.15)
with u™, @™, f® instead of U, @, F. Applying the same procedure to the equation
D™u™ = f® a5 was used in the proof of Lemma 3.1, we obtain the inequalities

(5.16) [0 = wil([ @2, + [07]) + waf e,

min

(5.17) [n. 0u®, 4@, p < 2u®],, {,L (U, +

+ op[u®

2+ ||f<")|ii,z}, Vie0,T).
The function @ is obtained by substituting ¢ = 0 into (4.15).

Lemma 5.6. If Ue W(K) is a weak solution of the problem (4.7)—(4.9) in the
sense (5.14) and u™ is defined by (4.9), then

(5.18) [u®, DW*v®], — [ '™, v™(0, x, ®)]gxq =
[f™, vy, forall v e w®*,
where D™* is given by (4.16) and
WO = (v e €1(€0, TY x G x Q) n N*(9G); v*(T, x, 0) = 0} .
Proof. It can be proved by the following identities (for details see [16])
(U, K*V> = [u(n)’ D(n)*v(n)]g; (B,®P, V(O, x)) =
= [ '™, v?(0, x, )], -

Remark 5.1. We say that u™ e W™, if and only if U e W(K).

6. CONVERGENCE OF THE P -METHOD

Theorem 6.1. Let us assume that fe €5, @€ £,(G x Q) and the hypotheses
of §2 hold. Let u € #(D) be the solution of the problem (3.1) and u™ the solution of
the approximate problem (4.1)—(4.3) by the P, -method. Then u™ converges weakly
to u in the sense
(6.1) lim [u® — u,w],, Ywe%s(Q).

n— o
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Proof. Let us denote by index ¢ the regularized function [3] with radius of re-
gularization g; for example 0,,(x), o3,(x) are the regularized coefficients of the equation
(2.1). The transport operator D with these coefficients is denoted by D,. The same
notation is also used for D}.

Let us formulate the following problem:

(6.2) Div=w, we%;(0),
(6.3) VT, x,0)=0, (x,0)5G x Q,
(6.4) v(it,x,0) =0 on <0, T) xT,.

From the regularity conditions which are proved to be valid for the monoenergetic
boundary-value transport problem in [5], we conclude that v e 22(D*) (see §3 — v is
a solution of the problem (6.2)—(6.4)). If ¥(T, x, ®) = 0 then V(T, x) = 0, where V
is the a-dimensional vector-valued function representing the partial sum of the expan-
sion of the function v into a Fourier series using the spherical harmonics. Hence
v®(T, x, ®) = 0. Furthermore to guarantee v € N*(9G) we have to put restrictions
(4.13) upon the Fourier coefficients of v.

From (4.15) and (4.1) we get

(6.5) [DDu™ v], = [f",v], .

According to (4.16), (4.17) and by Green’s formula (2.7) we have

(6.6) [D™u®, v], = [u®, D®*v, — [¢ '™, ¥(0, x, ®)]gxq +
+ [n.ou™, V] ryxogx0 + [F™ V]

If we put (6.6) into (6.5) and use the following identities

D®*y = D*y — (H(”)* — H*) v; f — f 4 (f(n) — f);
0P = ¢+ (0™ — @); v =v" 4 (v— v®),

it will be

(6.7) [u™, D*v], — [c” e, ¥(0, x, ®)]gxn =
= Vg + 6 — €] + [0 — @), %0, % @)l —
- [n . wu("), V(")]<0,T> xXoGxQ
- [n . wu("), vV — v(n)]<0’T>x0GxQ +
+ [u("), (H(")* _ H*) V]Q + [r("), V]Q .

That is

(6.7) [u™, D*v], — [ 'o, ¥(0, x, ®)]gx0 = [f, V]o + Tu,

where 7, denotes all the members on the right hand side of (6.7) except [f, v],.

150



After subtracting (6.7') and (3.1) and substituting D*y — Dfv + (D*v — D}v)
we obtain

(6.8) [u® — u, Div], = 7, + [u” — u, D}v — D*v],,

foru e W™, u e #(D), v e 2(D*).
Since D¥v = we %5(Q), it is sufficient to show that

lim {7, + [u® — u, D}v — D*v]}Q =0.

n-*oo

Using the component form of D*v and D}v:

10 1
D;Uj:—._i_a) grad v; + a,v; ~—~Z (x)[hkj(uo)vkdw’,
c; ot
D*v. — 1 Ov; d . ,
o= — C—J i o.grad v; + 0;0; — a kgla”(x) ﬂh,q-(u(,) v, do’,

we have

1
[u™ — u, Dfv — D*v], =j;(“5'") — u;, DR, — Djv;)g =

! n 1 ! r r ’ ’
:,21_’. (1 — u)) {(aﬂ —0j)v; + " kzl(aj - ajs)-[ hyj(1o) valt, x, w)dw} do.
= 1) = Q K

Using the boundedness of |u™ — ul|4,: and Schwarz’s inequality we can write
|(”5'") — u;, D}v; — DJv))| < const (|loy, — lLae) +
+ [0} = ] aor) -

We choose the radius of regularization ¢ = const/n“, a > 0, where the constant
depends on the initial condition and on the diameter of the region G. Then [u®™ — u,
D}v — D*v], - 0, for n — 0. Since f, f™ € ¢}, v e #(D*) = 6(0), we have

[f” = f.v) Z (f("’ - f)) v;dt dx do <4nTmesGZlIv,llc<e> 157 = Fillesr -

That is
lim [f® — f,v], = 0.
Similarly
[c7 (@™ — @), V(0. x, ®)]gx0 =
1
<Y L[ (08 - 0) 0.5 @) dx do =

i=1Cj Jexa

1
- ,Zl HUJ(O: X, “’)"acm) “‘PE") = @il Laoxa -
=
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Because B
lim |v — v g0 =0, Vv e #(D*) < 4(Q),

the continuity of the function v — v on Q and the boundedness of the function u®
on 9G for all (1, ) e 0, T) x Q guarantee that

lim [n. ou®™, v = V70 1yxo6x0 = 0.

n— o

It is clear that
[u®, (H™* — H*)v], =

1 1
=3 J ui(t, x, ) ;1_ > "5(*)‘[ (h;c?(llo) ~ hyj(po)) vilt, x, ') doo’ dQ .
=1 Jg T k=1 Q

From the hypotheses i) ii) iii) and from the boundedness of the functions v,, u{”
we obtain

1
[u®, (H®* — H*) v], < const Zl 155 = higlZa-1.1) -
k=
From (5.10) it follows that

[n. 0u® v™] o ryusexo =0 for v™ e N*(3G), u™ e N™(3G).

The following identities for the spherical harmonics

lim i (2”‘*”1 (L‘J"_)!y/z J QC:'n(w) 2w)do =0,

nrwom=0 \ 1 + 5,"0 (n -+ m)‘

n

(n — m)\'/?
lim Y <(2n + 1) ——-—) ‘[ Si(w) z(w)do =0, zeL,)(Q),
n—-owom=0 (n + m)' Q

when used to the components of 0Udx; i =1,2,3, instead of z(w), give
[r™, v]g = 0, for n — oo (it is necessary to use the component form r{” of r®

(see §4)).

From this consideration it is seen that lim 7, = 0 and the proof of Theorem 6.1
is complete.

7. REMARKS

The questions of the strong convergence of the P, -method for the time-dependent
mono-velocity transport equations were studied in [15]. The authors obtained esti-
mates of the rate of convergence for the spherical symmetry and slab geometries.

For the steady state neutron transport equation S. Ukai shows in [19] the order
of convergence 0((1/n)**'/?) for the transport solution in W;**(G x Q).
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For the slab geometry it can be shown that

(1
[2]
31
[4]

[5]

[6]

7

[8

—

[

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[r'™, v;]p < const \/g (see [10]) .
n
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Souhrn

PRIBLIZNE RESENI /-RYCHLOSTNI NESTACIONARNI
TRANSPORTNI ROVNICE P,-METODOQU

STANISLAV MIiKA

V ¢lanku je vySetfovan [-rychlostni model obecné linearni nestacionarni transportni
rovnice. Pfedpoklada se, Ze pravdépodobnost reakce (rozptyl, déleni) zavisi pouze
na uhlu smérli pohybu netronu pfed a po reakci. Je podana zobecnéna formulace
problému a jsou odvozeny apriorni odhady. Dale je provedena konstrukce pfibliz-
ného feseni P -metodou. U ziskaného symetrického hyperbolického systému je uka-
zana dissipativnost a «Z-ortogonalita prislu§nych hrani¢nich prostort a souvislost
s jednorychlostnim modelem transportni rovnice vysetfovanym v [5], [7], [8]. V za-
véru prace je proveden dikaz slabé konvergence pfibliznych feseni k pfesnému.

Author’s address: RNDr. Stanislav Mika, katedra matematiky VSSE, Nejedlého sady 14,
306 14 Plzen.
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