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SVAZEK 24 (1979) APLIKACE MATEMATIKY CisLo 4

WEAK PERIODIC SOLUTIONS OF THE BOUNDARY VALUE
PROBLEM FOR NONLINEAR HEAT EQUATION

VENCESLAVA STASTNOVA, SVATOPLUK Fucik

(Received August 18. 1977)

1. INTRODUCTION

Let w > 0. Suppose that f(t, x) is an w-periodic function in t. Let g : R' - R!
be a continuous real valued function defined on the real line R*. In this paper we shall
investigate the existence of a solution of the problem

(1) uft, x) — un(t,x) — g(u(t, x)) = f(t,x), (t,x)e Q =R" x (0,m),
u(t,0) = u(t,n) =0, teR',
u(t + o, x) = u(t,x), (t,x)eQ

under the assumption that there exist finite limits

9(%)

po=lim =27, y = lim ==
oo e &

We shall work with the concept of weak solution of (1). This notion is introduced
together with the approrpiate function spaces in Section 2, where we shall also sum-
marize the basic properties of the periodic solvability of the linear heat equation
(i.e. of the problem (1) with g(&) = A%).

In Sections 3 and 4 we consider the case
U=v=2a.
We distinguish two different cases. The regular case is defined as the when the problem
(2 v ut, x) — u(t,x) — Au(t,x) =0, (t,x)eQ
u(t,0) = u(t,n) =0, teR’
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u(t + o, x) = u(t,x), (1,x)eQ

has the trivial solution only. If (2) has also a nontrivial solution then we say that the
singular case occurs.

In Section 5 we consider the case
nEv.

The proofs in the whole paper are based on the Schauder fixed point theorem and on
the properties of the Leray-Schauder degree. The method is essentially the same as
that used in the investigation of solvability of the Dirichlet problem for the second
order ordinary differential equation

—u'(x) = g(u(x)) = f(x), xe(0,m),
u(0) = u(n) = 0
(sec e.g. [4], [5], [6], [21. [7], [8)).
In writing this paper the authors were influenced by reading the manuscript of the
prepared book by O. Vejvoda et al. [17]. The paper extends in a certain sense the

results from [16]. Many assertions included below may be generalized (see Section 6).
Some of these generalizations will be published later.

This paper is a part of the first author’s thesis.

2. PRELIMINARIES

2.1 Notations, basic definitions

2.1.1. Denote by N the set of all positive integers.

2.1.2. All functions will be assumed real-valued. If u is a function defined on the
set A then denote

ut iy max{u(y),0}, yed
(the positive part of the function u) and
u” tyrmax {—u(y),0}, yed
(the negative part of the function u).
2.1.3. Integration will always be taken with respect to the Lebesgue measure.

2.1.4. Let X and Z be two vector spaces. If F is a mapping defined on X with
values in the space Z (we write F : X — Z), denote by Im [F] the set of all values
of the mapping F, i.e.

Im [F] = F(X).
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2.1.5. Let L: X — Z be a linear mapping. In this case we denote by Ker [L] the
null-space of the operator L, i.e.

Ker [L] = {ueX; Lu =0} .

2.1.6. Suppose that X and Z are real Banach spaces. Let F : X — Z. Then F is
said to be completely continuous on X if for each bounded subset M of X, F(M) is
a relatively compact set in Z and F is continuous on X.

2.1.7. Let X and Z be two Banach spaces; then X is continuously imbedded in Z
(we write X Q Z) if

(a) X = Z, and

(b) every convergent sequence in X is also convergent in Z.

Thus the imbedding operator i : X — Z defined by i : u — u is a linear continuous
mapping and hence there exists a positive number k such that

lulz < klu|lx, ueX.

The space X is said to be compactly imbedded into Z (we shall write X QC Z)
if the imbedding operator i : X — Z is completely continuous.

2.2. Function spaces

In the sequel Q denotes the set R x (0, ).

2.2.1. Denote by Hy(Q) the space of all functions u(t, x) defined almost every-
where on Q which are w-periodic in the variable ¢, i.e.

u(t + w, x) = u(t, x) for almostall (1,x)eQ,

and which are square integrable over (0, ) x (0, 7). Introducing

Jufo = (J:fou(t x) d dt)uz,

H?(Q) becomes a Banach space with the norm ||u,.

2.2.2. Let the derivatives mean the derivatives in the sense of distributions. Put

Hy(Q) = {ueH(Q); u,u.cHI(Q)},
Hy2(Q) = {u e HY(Q); uy, uy, uy € Hy(Q)} -
If we define

o= U f :(“2"’ x) + ui(t, x) + w(t, %) dx dx>‘”
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and

0

lulli.2 = (J(Dj:(uz(‘» x) + ui(t, x) + ui(t, x) + un(1, x)) dx dt)l/z

we obtain easily that |ul|; and |[u], , are norms on H(Q) and HY*(Q), respectively.
Moreover, the spaces H,(Q) and H)*(Q) are Banach spaces (with respect to the just
defined norms).

2.2.3. Denote by °H,(Q) the closure in HA(Q) of the set of all infinitely con-
tinuously differentiable w-periodic functions u(t, x) on Q satisfying

u(t,0) = u(t,m) =0, teR'.

2.2.4. Tt is easy to see that the norms [u],, |u, ., [|u]o induce inner products
{u, v)y, {u,v)y ,,<u, vyo in the corresponding spaces and so the spaces HS,(Q),
H(Q), H.*(Q) (and also °H)(Q) with the norm |ul|,) are Hilbert spaces.

2.2.5. Ttis (see [15]) HL*(Q) Q 4.(Q), where %,(Q) is the space of all continuous
functions u(t, x) on Q which are w-periodic in the variable ¢ (the space €,(0Q) is
equipped with the norm

lule = max  |u(z,x))).
(t,x)e[0,0] % [0,n]

Denote by m the norm of the imbedding operator from H*(Q) into ,(Q).
2.2.6.
HyYQ) GG HY(Q)
Hy(Q) QQH(Q)
(see e.g. [15]).
2.3. Definition of the weak solution
By a weak solution of the problem (1) we mean a function u € H},*(Q) n °H(Q)
which satisfies the equation (1,) almost everywhere on Q.
2.4. The linear heat equation
The following theorems are included e.g. in Chapter 11X of [17].

2.4.1. Theorem. Let 1 # n*, ne N. Suppose that f e H)(Q).
Then the problem

(3) ut, x) — u(t, x) — Au(t,x) = f(t,x), (.x)eQ,
u(t,())-—zu(t,n)=0, te R,
ut + o, x) = u(t,x), (t,x)eQ

has a unique weak solution ue HL*(Q) n °H(Q).
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2.4.2. Theorem. Let A = n? for some n € N. Suppose that f € H(Q).
Then the problem (3) has a weak solution ue H\*(Q) n °H(Q) if and only if

J‘ [f(t,x)sinnxdxdtzo.

0JO0

2.5. The operator L

2.5.1. For the sake of brevity, denote
X = Hy*Q)n°Hy(Q),
Z = H)(Q)

and suppose that the space X is equipped with the norm |ul, , (X with |ju], , is
a Hilbert space). For 1 € R! introduce the operator

(4) L(A)turu, — u, — Au.

xx

Evidently, L() is a bounded linear mapping from X into Z.
Theorem 2.4.1 and 2.4.2 it immediately imply

2.52. If A % n? ne N, then L(A) : X - Z is a one-to-one mapping.

253. Im[L(n®)] = {fe Z; [§ [ f(t, x) sin nx dx dt = 0}.
It is easy to see that

2.5.4. Ker [L(n?)] = {asin nx; x e R'}.

2.6. The operator S

For fixed fe Z put
(5) Stumf—You,

where  : R® > R! is a given continuous and bounded function on R!. Obviously,
S : X — Z and with respect to 2.2.6 and the main theorem on the Némyckij operators
(see e.g. [11]) the mapping S : X — Z is completely continuous.

3. THE REGULAR CASE

3.1. Theorem. Let y : R' - R be a bounded and continuous function and let
A+ n2, neN. Suppose that f € Ho(Q).
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Then the problem
(6) u(t, x) — u (1, x) — Au(t,x) + Y(u(t, x)) = f(t,x), (t,x)eQ,
u(t,0) = u(t,7) =0, teR',
u(t + w,x) = u(t,x), (1,x)eQ
has at least one weak solution u e H*(Q) n °HL(Q).

Proof. With respect to 2.5.2 and the Banach open mapping theorem the operator
L(%) defined by the relation (4) has a continuous inverse L™'(1):Z — X. As the
function ¥ : R - R' is bounded there exists a constant ¢ > 0 such that |Sul, < ¢
for any u € X (the operator S is defined by (5)). The weak solvability of (6) is equi-
valent to the existence of a solution u € X of the equation

(7 u = L") Su.

In order to prove that the equation (7) has at least one solution we use the Schauder
fixed point theorem (see e.g. [10]). Put

Fiu—L'A)Su, ueX.

Then F : X — X is completely continuous (since L™ '(1) is continuous and S is com-
pletely continuous) and there exists ¢ > 0 such that for arbitrary u € X we have

[Fulli2 = [L7' @] Sulo = ()] ¢ = 2.

Thus the operator F maps the closed ball {u e X; |u[,, < ¢} into itself and the
Schauder fixed point theorem together with the above argument implies the assertion.

4. THE SINGULAR CASE
4.1. Results of the Landesman-Lazer type

4.1.1. Theorem. Let  : R* - R be a bounded and continuous function. Let
ne N. Then the problem

(3) u(t, x) — u(t, x) — n?u(t, x) + Y(u(t, x)) = f(t,x), (1,x)eQ,
u(t,0) = u(t,n) =0, teR",
u(t + o, x) = u(t,x), (1,x)eQ

has for f € H)(Q) at least one weak solution u € Hy*(Q) n °H(Q) provided

9) lim sup (&) n(sin nx)* dx — lim inf y(¢) Jw(sin nx)” dx <
§—= = -

[ 0
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< I—J f f(t,x) sin nx dx dt < lim inf w(é)j (sin nx)* dx —
@Jo Jo

- 0
— lim sup v,l/(é)f (sin nx)”™ dx .
[ 3adse] 0

(For example [§ (sin nx)” dx = 2[n . [n[2] for n > 1.)
Proof. (i) Let P be a mapping defined on the space Z by
2 (6] n . .
(Pu)(x) = — <J f u(t, y) sin ny dy dt) sin nx .
o \Jo Jo

Obviously, P is the orthogonal projection from Z onto Ker [L(n?)]. Denote P : u —
+—u — Pu, ue Z. The mapping P¢ is the orthogonal projection from Z onto the
space Im [L(n?)].
(i) Let K(n?) : Im [L(n?)] — P°(X) be the right inverse of the operator L(n?), i.e.
K(n*)z = u ifand onlyif L(n*)u =z,z €lm [L(nz)] u e P (X).
The mapping K(n?) : Im [L(n*)] — X is continuous.
(iii) We shall investigate the solvability of the operator equation
(10) L(n*)u = Su .
The equation (10) can be rewritten to the equivalent system
PL(n*)u = PSu,
P L(n*)u = P°Su .
As u = Pu + P°u we denote w = Pu, v = P°u and thus we have a new system
(11) P L(n*)w + P L(n*)v = PS(w + v),
P L(n*)w + P L(n*)v = P°S(w + v).

For w e Ker [L(n?)] we have L(n*)w = 0 and for ve X it is L(n*) v e Im [L(n?)].
Thus P L(n*)v = 0 and P° L(n*)v = L(n*) v and instead of (11) it is possible to
write

(12) PS(w +v) =10,
v = K(n*) P°S(w + v).

To be able to use the fixed point theorem, we rewrite (12) to a more convenient form.
1t is easy to see that (12) is solvable if and only if for some ¢ > 0 the system
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(13) w — ePS(w + K(n?) PS(w + v)) = w,
0 = K(n?) PS(w + v)
is solvable.

Thus the operator equation (10) has a solution if and only if the system (13) has

a solution. The system (13) is now prepared for using the Schauder fixed point
theorem.

(iv) In Y = Ker [L(n*)] x P9(X) we introduce the norm

(w, v) > Jollo + [olls.2 -

For ¢ > 0, define an operator V, on the space Y by
V,:(w, v) > (w — ePS(w + K(n?) P°S(w + v)), K(n?) P°S(w + v)).

It is easy to see that V, maps the space Yinto Y.

To prove that the equation (10) has at least one solution it is sufficient to prove
that for some ¢ > 0 the operator V, satisfies the assumptions of the Schauder fixed
point theorem. As the operator V, : Y — Y is completely continuous, it is sufficient
to show that there exists ¢, > 0 and a nonempty convex closed bounded set ¥~ < Y
such that V, () = . Denote

sup [|S(w + v)]o = ¢ < 0,

(w,v)eY

sup [K(n?) P°S(w + v)||,, = ¢, < 0,

(w,v)eY

sup [|PS(w + v)l[op = ¢, < 0.
(w,v)eY

Using the Fatou lemma and the assumption (9) we have

[Sad-

lim inf {S(& sin nx + o, x)), sin nx), = J j f(t, x) sin nx dx dr —
0 0

— lim sup‘[ J Y(& sin nx + o(t, x)) sin nx dt 2
0JO

[k

> fw.[nf(t, x) sin nx dx dt — lim sup wanw(é sin nx + v(t, X)) .
0 0

0Jo b

[Sadcd

.(sin nx)* dx dt + lim supJ J Y(& sin nx + o(t, x)) (sin nx)” dx dr =
0JO

> _r),rf(” x) sin nx dx dt — lim sup ¥(¢&) J'wjﬁ(sin nx)* dxdt +
0 0 (4] 0

Sl

+ lim inf lp(é)J.wjn(sin nx)~ dxdt >0

[ttt 0Jo
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and

lim sup (S(&sin nx + o(t, x)), sin nxyy < 0

-

uniformly for v e P(X), |v];. < ¢;.

We can find a sufficiently large t, > 0 and then a sufficiently small § > O,
such that if ve PY(X), |v],, ¢, and weKer [L(n?)], |w|o = to[2 then
{S(W + v), wyo = 8to[2. This implies that for an arbitrary we Ker [L(n?)] with
152 = ||w|o £ 1o and for & > 0 such that & £ dt,/c3 it is

[w — ePS(w + K(n?) P°S(w + v))|[§ = |w]|5 — 26<S(w + K(n?) P°S(w + v)), wpo +
+ &2||PS(w + K(n?) P°S(w + v))|§ < t5 — &bty + e%c} S 15
For ve P(X) and w e Ker [L(n*)] with |w|, < to/2 and for an arbitrary & > 0
such that ¢ < to[2c, it is
|w — ePS(w + K(n?) P°S(w + v))||o < |wlo +
+ &|PS(w + K(n?) PS(w + v))|o < to2 + &c; = 1o
Put

go = min {8t,/c3, tof2¢,}
and

H = {(w0)eY; |wlo = to, o1z = i}

Then the above calculation yields Veo(Jif ) < A". (Obviously # is a nonempty convex
bounded and closed subset of Y.)

4.1.2. Theorem. Let \/ : R' - R be a bounded continuous function. Let ne N.
Then the problem (8) has for f e Ho(Q) at least one weak solution u e H*(Q) n
N °Hl(Q) provided
(14) lim sup l//(é)j

)

0

sin nx)* dx — lim inf Y(&) | (sin nx)” dx <
¢

0

< ij ff(t,x)sinnxdxdt<

®JoJo

< lim sup y(¢) J‘n(sin nx)* dx — lim inf Y(£) J.n(sin nx)” dx.
{ow 0 [ Sadmie]

o
Proof. The proof follows from Theorem 4.1.1 by considering the equation

—L(n*)u = —Su
instead of (10).
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4.1.3. Corollary (see [1]). Let y : R' - R" be a bounded and continuous function
such that

(13 I 4(©) = ¥() <R,
(16) lim y(¢&) = y(—o)eR'.
>~

Then the problem (8) has at least one weak solution u € Hy*(Q) n °H (Q) for
f e HYQ) provided ,

(17) () f :(sin nx)* dx — (=) f :(sin nx)” dx <

< -‘J‘ f( ? )Sln nx dx (lt < l,b( :)j (S]n nx) dx l//((j\)‘[ (Sln nx) - dx

(18) Y(— ) J O"(sm nx)* dx — (o) f :(sin nx)” dx <
< ai) '[ : J:f(t, %) sin nx dx dt < y(co) j :(sin nx)* dx — Y(— o) ﬂ(sin nx)~ dx .

4.1.4. Theorem. Let y : R' - R! be a bounded continuous function satisfying
(15), (16) and

(19) Y(oo) < Y(¢&) < Y(—), EeR'.

Let fe H)(Q). Then the conditions (17) are necessary and sufficient for the weak
solvability of the problem (8).
If we suppose

(20) W= ) < U(E) < W(w), EeR®

instead of (19) then the conditions (18) are necessary and sufficient for the existence
of a weak solution of (8) with f e HJ(Q).

Proof. The sufficiency follows from Corollary 4.1.3. If we suppose that for
fe H)(Q) the problem (8) has a weak solution uo € H3*(Q) n °HL(Q) then Sug e
€ Im [L(n?)]. This means (according to 2.5.3) that (Su,, sin nx), = 0, i.e.

« n (2] n
J. f f(t, x) sin nx dx dt = J J Y(uo(t, x)) sin nx dx dt .
0J0O 0JO
The last relation together with the assumption (19) imply

fwjnw(uo(t, x)) sin nx dx dt < y(—o0) wfn(sin nx)* dx dr —
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— W) o f :(sin nx)” dx |

T n

(sin nx)* dx — Y(—0) wf (sin nx)” dx

0

r J “plug(t, %)) sin nx dx di > (e0) o j

0JO 0

and hence also the desired assertion.

4.2. Vanishing nonlinearities

The set of the right-hand sides f e H)(Q) satisfying one from the relations (17),
(18) may be empty e.g. in the case of

(21) (=) = (0) = 0

and thus the results from 4.1 have no sense in this case.

The idea how to prove the existence of a weak solution of (8) with  satisfying
(21) is based on the so-called method of truncated equations. We change the func-
tion  outside a sufficiently large interval (—a, a) so that we obtain a function
for which one of the conditions (17), (18) has sense. According to the assertions of
Theorems 4.1.1 and 4.1.2 the problem

(22) u(t, x) — u(t, x) = n?u(t, x) + P(u(t, x)) = f(t,x), (,x)eQ
u(t,0) = u(t,n) = teR!
u(t + w, x) = u(t, x) (t,x)e Q

will be weakly solvable. We shall prove that an arbitrary weak solution u € H,*(Q) n
N °H,(Q) of (22) satisfies

@) Jue <a.

Thus any weak solution of (22) is aiso a weak solution of (8). The main part of the
proof will be to establish the a priori estimate (23).

4.2.1. The first a priori estimate. Let ¥ : R > R! be a bounded continuous func-
tion on R* and let f € H)(Q). Then an arbitrary weak solution u € Hy*(Q) n °H(Q)
of (22) satisfies

=

(24)

u(t, x) — Es (J.wjnu(t, y)sin ny dy dt )sin nx
mo\JoJo
< m[K)| (IS ]o + 7*0? sup [FO)]) = ex(V. fn) = ¢, -
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Proof. Let the notation introduced in the proof of Theorem 4.1.1 be observed.
If ue H,*(Q) n°H(Q) is a solution of the equation L(n?)u = Su then Pu =
= K(n?) P°Su and thus

[Pz < KOO ISufo = IREI]- (1] + ' sup GlIE
eR!
The last inequalities together with 2.2.5 yield (24).

4.2.2. The second a priori estimate. Let / : R' - R! be a continuous and bounded
function, a > &, 2 0, fe H)(Q). Suppose

and denote

Let

<TI.

j jf(t,x)sin nx dx dt
0oJo

Then an arbitrary weak solution u € HY*(Q) n °HY(Q) of (22) satisfies

2 J J u(t, x) sin nx dx dt

Tw Jo Jo

< ca, i, f,n)=c, .

where

¢ =(a+cy)es,

o rr -1/2
j J £(1, x) sin nx dx dt > )
0JO

Proof. Suppose that there exists a weak solution u e H.*(Q) n °HA(Q) of (22)
such that

¢y = (I' + no sup |§(&)])"/? (F —
&eR?

C=~2——j ju(t,x)sinnxdxdt>(a+cl)c3.

mw Jo Jo

" Note that ¢; 2 1. Choose o > 0 sufficiently small and such that { > (a + ¢;).
(e3' = )7t Put

&= larcsin (3" —a).
n
Then

sin? ne <

J f f(t, x) sin nx dx dt | < I' cos® ne — nw sup |§(¢)
0Jo teR?

< I cos ne — 2new sup |ll7(€)l sin ne =
&eR?
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" n—1 (n/n)(k+1)—e .
=infJ(¢)w ). J‘ ]sin ny| dy — 2new sup In/z(ﬁ)l sin ne <
¢za k=0 J (n/myk+e ¢eR?!

= J J’ Y(C sin nx + P°u(t, x)) sin nx dx dt =
4] 0

= jwjnw(u(t, x)) sin nx dx dt = ijnf(t, x) sin nx dx dt

0J0 0

which is a contradiction.

Analogously it is possible to prove that { > —(a + ¢,) c;.

4.2.3. Theorem. Let  : R! - R! be a bounded continuous and odd function,
0<a<b, b—a>2,, feHYQ).

Then the problem (8) has at least one weak solution ue HY*(Q) n °HY(Q)
provided

() it 00)> oo (7o sup )] +

gela,b]
+b—c‘2 b——c_1>2_1““
a+ ¢ a+ ¢

Proof. Choose a < b; < b such that the function

jwjnf(t, x) sin nx dx df

0JO

i weE, g s by
Yl ‘l’(bl) > &> by
l//(~bl) ’ 5 < _bl

satisfies the following conditions:

(26)

ij.nf(t, x) sin nx dx dt | < 2w inf §(&) < 2w Y(b,),

040 {2a

by > ¢,(§, f,n) + coa, ¥, £, ).

Since Y/(o0) = Yi(b,) and V is odd, then according to the inequalities (26) and with
respect to Corollary 4.1.3 there exists at least one weak solution u eHL’Z(Q) N
N °H,(Q) of the problem (22). From 4.2.1 and 4.2.2 we conclude

u(t, x)| < by, (,x)eQ.

Thus the function u is also a weak solution of the problem (8).

In the following theorem and in Section 4.3 we shall give sufficient conditions
for the validity of the undecipherable assumption (25).
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4.2.4. Theorem. Let  : R'>R! be a continuous bounded and odd function.
Suppose a > 0 and

(27) lim &% min Y(t) = o .

too  tefad]

Then the problem (8) has at least one weak solution for any f e Ho(Q) with
f Jf(t, x)sinnxdxdr =0.
0Jo

Proof. If we multiply (25) by b* we obtain that the limit of the left hand side is
infinite and the limit superior of the right hand side is finite. Thus for sufficiently
large b the inequality (25) holds.

4.3. Expansive nonlinearities

4.3.1. Definition. A bounded odd continuous and nontrivial function  : R* —» R*
is said to be expansive if for each p,

0 < p < sup yY(¢),
&eR!
there exist sequences 0 < a, < by, lim bya; ' = o, such that
k—
lim min Y(&) > p.
k= o Selar,bi]

The following theorem extends the assertion of Theorem 4.1.4 to the case of
expansive functions which can have no limits (), y/(— ).

4.3.2. Theorem. Let \ : R' —» R! be an expansive function. Then

feHYQ), < 2w sup Y(¢)

ZeR?

(‘a} n
J j f(t, x) sin nx dx dt
o]

0

" is a necessary and sufficient condition for the weak solvability of the problem (8).

Proof. The limit ba~! — oo of the right hand side in (25) is

f J’ f(1, x) sin nx dx dt
0

0

1

2w

Thus we can choose k sufficiently large so that the assumption (25) holds with
[a, b] = [a, b]. The sufficiency follows from Theorem 4.2.3. The necessity is
obtained analogously as in the proof of Theorem 4.1.4.
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9. JUMPING NONLINEARITIES

5.1. Theorem. Let i, v e R* and suppose that

(28) g & pEt —vEm — Y(€), EeR!

where  : R' — R' is a bounded and continuous function. Put

M= {(,v)eR; p<1,v<1] uk\_)o{(p,v)e R* pu'? > k + 1, o(p''?) <

@
<12 < G (1)) O U (V) € RE 02 > K, G(it/?) < v'E < 9(ut)}

where
[(k+ D ve(k, 2k + 1)
j T—k
Sk(r)z L >
[A—~~E—~, 1e(2k + 1, )
—(k+1)
[~—’“ -, re(k+ 1, 2k + 1)
T—(k+1
wk(r)zik%—l)r '
—, 1€(2k + 1, )
lr—k
k() ke , te(k, ©).

T —

(i) If (1, v) € M and f € Ho(Q) then the problem (1) with g given by (28) has at
least one weak solution u € Hy*(Q) n °H(Q).

(ii) If (u,v)e R* — M then there exists fe Hy(Q) such that the problem (1)
with g given by (28) has no weak solution in H(}>Q) n °H}(Q).

5.2. Proof of Theorem 5.1
First of all we shall prove one simple and very useful lemma.

(i) Lemma. Let the function f € Ho(Q) be independent of t. Then any weak solu-
tion u e Hy*(Q) n °H(Q) of the problem
(29) ut,x) — u(t,x) — pu*(t,x) + vu~(t,x) = f(x), (t,x)eQ
u(t,O) = u(t,n) =0, teR!
u(t + o, x) = u(t,x), (t,x)eQ

is independent of t.
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Proof. Multiplying (29,) by u,(t, x) and integrating over (0, w) x (0, =) we obtain

J. Juf(t, x)dxdt =0
0Jo

uft,x) =0 foralmostall (1,x)e Q.

and thus

So u(t, x) = u(0, x) for all (1, x) e Q.
(ii) According to the previous lemma the problem

(30) udt, x) — ug(t,x) — pu*(t,x) + vu=(1,x) =0, (,x)eQ
u(t,0) = u(t,n) =0, teR
u(t + o, x) = u(t,x), (t,x)eQ

has a nontrivial weak solution if and only if the Dirichlet problem

(31) —u'(x) = put(x) + vu (x) =0, xe(0,n)

u(0) = u(n) = 0
has a nontrivial solution. The problem (31) has a nontrivial solution if and only if
(1, v) € OM (see e.g. [5]).

(iii) Denote J = L(0), T, : u > uu* — vu~. Obviously T, ., : X — Z is com-
pletely continuous. To solve

(32) Ju — Ty, u(u) + Uu = f

where U : u(t, x) — Y(u(1, x)) is nothing else than to seek the weak solution of (1)
with g given by (28). Recall that J : X — Z is an isomorphism.

(iv) If (u, v) ¢ OM then the equation Ju — T, ,(u) = 6 has only the trivial solution.
Thus for (u, v) ¢ 09 there exists ¢,(u, v) > 0 such that

(33) 1Ju = Tw@lo 2 e(u.v) [l ueX,
(this follows from the complete continuity and the homogeneity of T, ,,) and

Iz = T 2o 2 (V)| T '2]12 z€Z.

(v) To prove the assertion of Theorem 5.1(i) we use the Leray-Schauder degree
theory (see e.g. [10]). It is sufficient to show that the mapping
2z = T, (I '2) + U7 'z), zeZ
is onto Z.

Let { € Z be arbitrary but fixed. If (1, v) € M then denote by C the component
of M such that (y, v) € C. There exists (4, ) e C. Thus
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(34 dlz = T "2)s Ko(R), 0] = d[z = Ty, (7 '2); K(R), 0]

for any R > 0, where K,(R) is the open ball in Z centered at origin and with the
radius R and d[-; KZ(R), 0] is the Leray-Schauder degree of the given mapping
with respect to the set K,(R) and the point 0. The mapping z > T, ;(J 7 'z) is
linear and thus

(33) [z — Tn(0712); KyfR), 0] = 21

As

Iz = Tnf0712) + (U542 = Qo 2 e ) 197l = sup [y — el

we obtain that there exists R > 0 sufficiently large such that for an arbitrary z € Z,
Iz]o = R and any t€ [0, 1] it is

z — T(M‘V)(J"lz) + T(UJ_IZ — C) + 0.
From the homotopy property of the Leray-Schauder degree we have

(36) d[z — T, (J7'z) + UJ 7'z — {; K4(R), 0] =
— [z — TofI"2) Ko(R), 0]

From (34)—(36) we have
d[z — T, (J7'2) + UJ 7'z = [; K4(R), 0] = £1

and thus (with respect to the main property of the Leray-Schauder degree) we have
that the equation

z- T(u,v)(J_lz) +UJTz=¢

is solvable in Z. Part (i) of Theorem 5.1 is proved.
(vi) If (1, v)e R* — 9 then there exists fe #™([0, n]) such that the Dirichlet
problem
—u"(x) — put(x) + vu~(x) = f(x), xe(0,m)
u(0) = u(n) = 0

has no solution (see [2], [3]). Thus according to Lemma (i) the problem (29) has no
weak solution in H},*(Q) n °H}(Q). In other words, Im [J — Ti,.,)] * Z. According
to (33) the set Im [J — Ty,,] is a closed subset of Z. As the mappings J and Tiu,)
are homogeneous, there exists an open cone ¥ = Z such that Z — Im | J — T(N)] )
> V. As any point from Im [J — T, ,, + U] has a distance from Im [J — Tju]
not bigger than sup |Uullo we have Im [J — T, ,, + U] # Z and thus part (ii) of

UEX

Theorem 5.1 is proved.
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6. REMARKS

6.1. Using the same method as in Sections 3 and 4 we can extend the results to the
periodic solvability of abstract ordinary differential equations in Hilbert spaces and,
particularly, to the periodic solvability of boundary value problems for higher
dimensional nonlinear partial differential equations of the parabolic type

6wy L (0

a —“)—g<u(z,x))=f<t,x), (tx)e R x @
i,j=1 0X; 0x; )

u(t,x) =0, xedQ, teR!
u(t + o, x) = u(t,x), (tx)eR' x Q.
Also the nonlinearity g can depend on ¢ and x.

6.2. The function y in Section 3 (and also in the case of the generalizations
sketched in Section 6.1) can also depend on u,.

6.3. Instead of the boundedness of the function ¥ in Section 3 we can suppose
that y satisfies the growth condition

(38) ()| < o+ Blgf°, ¢eR!

where @ = 0, f = 0 and J € (0, 1), and we can prove (rewriting literally the proof of
Theorem 3.1) the same assertion as in Theorem 3.1. It is also possible to investigate
by the same method the case of ¢ = 1 in (38) under the assumption that the constant
B > 0 is sufficiently small (the smallness depends on the distance of A from
{n*; ne N}).

6.4. As an analogous assertion to that of Theorem 4.1.1 for boundary value
problems for partial differential equations of elliptic type was first proved by E. M.
Landesman and A. C. Lazer (see [14]) the results of such kind are usually called
“results of the Landesman-Lazer type”.

6.5. The method of the proof of Theorem 4.1.1 is essentially a special case of the
abstract method of proving solvability of operator equations Lu = Su with a non-
invertible linear L and a completely continuous S which is explained in [4]. It is
also possible to use Mawhin’s coincidence degree theory (see e.g. [12]).

6.6. Also in Section 4 it is possible to suppose (38) (of course with § sufficiently
small if 6 = 1) and y(c0) = o0, y(—0) = —co and we obtain the solvability of (8)
for an arbitrary f € H)(Q).

6.7. The results analogous to those from Sections 4.2 and 4.3 for boundary value
problems are proved in [7], [9]. Theorem 4.2.4 can be extended to the case of the
problem (37) if f is sufficiently smooth and the condition (27) is replaced by

lim ¢ min Y(z) = o .

{20 tela,é]
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6.8. The notion of the expansive function is introduced in [7] and further inve-
tigated in [9], [13]. Typical example of expansive function is

sin (log €)%, £2=1
/R 0, 0se<d
—y(=¢), E£0.

Also the generalization of Theorem 4.3.2 to the problem (37) if f is sufficiently
smooth is possible.

6.9. The boundary value problems for second order ordinary differential equations
with jumping nonlinearities were investigated in [5]. A generalization and an almost
complete description of various parameters p, v is given in [2] For further general-
ization see [6], [3].

6.10. It seems that to give such a complete result for the problem (37) as in Theorem
5.1 is impossible since it is very difficult to express the analogue of the set 9. We can
describe the situation concerning the solvability of the problem (37) with g given by
(28) for such parameters p, v which are near to the diagonal {(, 1) e R*; 2e R'}.
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Souhrn

SLABA PERIODICKA RESENI OKRAJOVE ULOHY
PRO NELINEARNI ROVNICI VEDENI TEPLA

VENCESLAVA STASTNOVA, SVATOPLUK Fudik

V praéci jsou dokazany véty o existenci periodickych feSeni u okrajové dlohy pro
rovnici vedeni tepla s nelinearnim ¢lenem g(u), kde g je spojita realna funkce a za
pfedpokladu, Ze existuji kone¢né limity lim g(é)/&, lim g(£)/¢. Diikazy t&chto vét

S

[Sadcsl

jsou zalozZeny na pouziti Lerayovy-Schauderovy teorie stupné zobrazeni.

Authors’ addresses: RNDr. Vénceslava Stastnovd, RNDr. Svatopluk Fucik, CSc., Matematicko-
fysikalni fakulta KU, Sokolovska 83, 186 00 Praha 8.

303



		webmaster@dml.cz
	2020-07-02T03:32:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




