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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

UNIVERSALLY OPTIMAL APPROXIMATION OF FUNCTIONALS 

MILAN PRAGER 

(Received December 9, 1976) 

1. INTRODUCTION 

The error of quadrature formulae is very often estimated by the norm of the error 
functional in a Hilbert space. This approach leads to a natural problem of optimiza
tion of quadrature formulae as minimization of the norm of the error functional. 
Let us mention here the comprehensive book of Sobolev [3]. Nevertheless, many 
other authors have considered the problem, too. 

In [1] it was shown that this approach can lead to very different results if the 
optimization in different spaces is performed. In the same paper, fundamental con
cepts of universal asymptotical optimality and universal optimality in order were 
introduced. In addition to quadrature formulae, functionals of integral type in the 
space Cln of continuous 27c-periodical functions were considered. In [2] quadrature 
formulae utilizing the values of derivatives in addition to the function values were 
studied in spaces of periodic functions continuous with their derivatives up to the 
order n. 

The present paper continues this investigation. We study a universal optimization 
of a general functional in the space of continuous functions as well as in the spaces 
of smoother functions. Our approximating formulae use only the function values. 

Further, the connection of this theory with spline and trigonometric interpolations 
is demonstrated. One result on convergence in the whole space C2n is also contained. 
In the conclusion some possibilities of application of the results to the computation 
of values of singular integrals (not necessarily of periodic functions) are shown. 

2. PERIODIC SPACES 

In this section we shall introduce classes of Hilbert spaces fundamental for further 
investigations, and their properties. For the reader's convenience we repeat here 
some results of [1] and [2]. By a Hilbert space we understand a complete Hilbert 
space. 
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We denote by C2n the space of complex-valued continuous 27i-periodic functions 
with the usual maximum norm. 

Definition 2.1. We shall say that a Hilbert space H is a periodic space if it has 
the following properties: 

(i) H <= C2„ 
(ii) H is dense in C2n (in the sense of the topology in C2n), 

(iii) for a function f e H and an arbitrary real number c, the function g defined 
by the equality g(x) — f(x + c) satisfies 

geH and \\g\\H = \\f\\H, 

(iv) \\f\\C2nSK\\f\\HforallfeH. 

The class of all periodic spaces will be denoted by #?. 

Definition 2.2. The set of all convergent series d — {dt}*l_(J0 with positive ele-
oo 

ments, i.e. dt > 0 and J . dt < + oo will be called the class 0. 
i— — oo 

Theorem 2.1. Let the series de&. Let us take a sequence {/fc}r=-a) °f complex 
numbers such that 

(i) E |A|2K< + *> 
holds. 

Then the series 
00 

(2) ^J^ 
converges for all x. 

The p r o o f follows easily from the following inequalities: 
1 / 2 co oo / 7 I" oo I r 12 oo " 1 1 / 

(3) | v. / ^ | < £ | f* | -^d Z ^ I 4 < +« . 
k-= — oo fc = — oo -v/ w ̂  [_fc = — oo a ̂  fc = — oo _j 

We remark that different functions correspond to different sequences. 

Theorem 2.2. The space O/ all functions of the form (2) is a Hilbert space if we 
introduce the scalar product by 

(f,g)= Z % 
k= — oo Ufc 

where / (*) = £ / . / - » , g(x) = >Zgke
ik-\ 

Proof. All properties of the scalar product are obvious (the triangle inequality 
follows from the Minkowski inequality). It remains to prove the completeness. Thus, 
let us have a Cauchy sequence of functions f(n\ i.e. ||/(M) — / ( m ) | | < s for m, n suf
ficiently large. This means that for sufficiently large m, n (independently of k) we 
have the inequality 

00 I /*(") _ f ( m ) | 2 

(4) £ ^ ^ + < 8 . 
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It follows that the sequence of numbers f^n) converge as n —> oo for every k. Thus, 
the limits fk exist. We shall show that this sequence satisfies (1). Passing to the limit 
in (4) we obtain 

co I r Am) 12 

£ K* Jk 1 < fi 
fc= — oo ak 

a n d 

^ l ^ J ! <g 2 X ^ * ~ / f c ( W ) | 2 + l^m>l2 < +oo . 

Definition 2.3. The Hilbert space generated by the series d e 0 in the way just 
described is denoted by Hd. The class of all such spaces will be called J^^. 

Theorem 2.3. The classes J4? and 2tf& are identical. 
For the p r o o f see [ l ] . 

Remark . It follows from the proof that the functions elkx belong to every space 
of JP (or J!??) for every k. Further, it holds \\eikx\\Hd = \\dk. 

The following theorem characterizes elements of spaces from the class 2tf. 

Theorem 2.4. A function fis an element of a space BeJf if and only if its Fourier 
series is absolutely convergent. 

The p r o o f is in [1]. 
In what follows, the following subclass of the class Jtf plays an important role. 

Definition 2.4. We shall denote by J^x the subclass of the class M" which contains 

spaces generated by series d e 0 with the properties: 

(i) dk = d„k, 

(ii) dk+1 ^dkfor k^O, 
oo i r~ — 

(iii) £ ^ ^ < D for all nandk^ -
t~ — oo uk 2 

Here, D is independent of n and k, but it can depend on d. The class of series with 
these properties will be called 0^. 

The first two properties are more or less natural. In the following we will need 
the restriction given by the third property, too . It can be shown in a way similar to 
Theorem 5A of [2] that the third property depends neither on the first nor on the 
second property. Putting dk = d_k and defining dk = 1/22 s for k = 22*,. . . , 22* + 1 — 1, 
5 = 0, ... and J_! = do = d1 = 1 we obtain a series satisfying (i) and (ii) but not 
satisfying (iii). 

Besides the classes introduced above, classes of Hilbert spaces with smoother 
elements will be used. 

We denote by C2
n„ the space of complex 27r-periodic functions with continuous 

derivatives up to the order n with the usual norm. 

Definition 2.5. We shall say that a Hilbert space is an n-periodic space if it has 
the following properties: 
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(i) H d Cx, 
(ii) H is dense m C ^ (in the sense of the topology in C(

2
n)), 

(iii) for a function f e H and an arbitrary real number c, the function g defined 
by the equality g(x) = f(x + c) satisfies 

geH and \\g\\H = \\f\\H, 

(iv) |/||cfe, S. KllflH. 
The class of all n-periodic spaces will be denoted by J^(n), 

Remark . It is JT(n) a #><*) for p ^ n and Jf{0) == #>. 

Theorem 2.5. For every space H e Jf(n) there exists a series d such that 
oo 

(5) £ k2".dk< + a> 
k~ — oo 

holds and H = Hd (in the sense of Def. 23). Conversely, every space Hd with d 
satisfying (5) is an element of J4?(n). 

The p r o o f is in [2]. 

Definition 2.6. We shall denote by Jf(n) the class of Hilbert spaces which is the 
intersection of the classes J^f1 and M>(n). 

3. OPTIMAL APPROXIMATION OF A FUNCTIONAL 

Let a continuous functional $ in the space C2n be given. Therefore, <P is a con
tinuous functional over every space H e Jf. This is a consequence of the property (iv) 
of periodic spaces. Now, we shall try to approximate this functional by a linear 
combination of Dirac functionais S2nk/n on an equidistant mesh. We use the notation 
S2nk/n(f) = f(2nk\n). It is well known that there exists an optimal approximation of 
the given form for which the relation 

(6) ||$ - i akb^%d = min ||# - £ pkS
2«k%d 

fc=l Pi fc=l 

holds. We shall denote by /(<£, Hd, n) the norm of the error functional corresponding 
to the optimal approximation (i.e. the left-hand side of (6)). 

Now, we shall calculate explicitly the quantity #(#, Hd, n). Thus, let xk = 2nk\n, 
k = 1, ..., n be the equidistant mesh. Further, let cp = £<pfce

lfcx be the element of Hd 

representing the functional $ according to the Riesz-Fischer theorem, i.e. 

( / » « • „ = * ( / ) ^ all feHd. 

From this we obtain successively 

£^r= I/.<K-ta)> 
s— — 00 u „ s= — 00 

<ps = *(e t o ) .<f„ ft = 4>(eis*). ds (ds is real). 
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With the notation bs = <P(eisx\ we have cps = bs. ds. We note that the coefficients bs 

are bounded as they are Fourier coefficients of a distribution of the first order. 
The representing function \jj2nkin of the Dirac functional 52nk/n is therefore 

GO 

^2**/fi(x) = £ ^isix-lnk/n) 

s = — GO 

and as a special case 
00 

*°(x) = *2"(*) = S <t> is.x 
' s ^ 

s = — 00 

The functional <£opt of the optimal approximation in Hd is given by its representing 
function 

<p„P.w = is s«A2- s /"(x). 
s = 1 

Thus, it is 

*Uf) = (L «PoPt)Hd = i «x/> ^ - k = i « . / ( — ) . 
5=1 s=i \ n / 

In other words: the coefficients as are coefficients of the linear combination of values 
at the mesh points. 

The coefficients as are determined uniquely from the system 

i aW", ilf2«kln)Ha = (<p, <p2nkln)Hd, k = 1,..., „ . 
s = l 

This is a consequence of the projection property of the optimal approximation in 
a Hilbert space. In our case it means that the difference of the functional and its 
optimal approximation is orthogonal to all Dirac functionals. 

Utilizing the developments of the functions \j/2nk/n
 w e obtain further 

n 00 

Xfls E dje-2Wem«l. = £ bjd.e2«*J/n, fcaal) n 

S = 1 j = — GO j= — GO 

and 
oo n oo 

^ d ^ v 2 ' * ' - * = X fc,d,e
2-^/», it = it.. n 

j=-oos=l j=-oo 

Changing the order of summation and introducing the subscript l W e o r j t a i n 

oo n n oo n 

£ L d , „ + « E a s , 2 ^ - ^ " + '>/»= I I ^ . + r i > + 1ea-«-U- + « > / -
/ = - 00 / = 1 s = l j = - o o / = l ' 

oo n n oo H 

E I d y . + ,E^ 2 " ' ( *-* ) ° + , /" )= I l 6 y , + «dy.+ Ie--«0+l/-) 
j = - co I = 1 s = l j = — oo i = 1 ' 

oo n « co n 

j = - 00 J = 1 s = l j = - oo J = 1 

Using the short notation £ <*,„+- = Dh £ bjn+ldjn+l = & 
we have 

X i ãi.e
2яŕ('t-s)í/"ű( = E в|Є--*'/., fc = i,. 

1 = 1 s = l i = l '•» П 
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Multiplying by e 2ltiP^n

9 p = 1, ..., n and summing with respect to k gives 

I as t E ^«Ki-p)k/Bg-2«w«Dj = £ B | £ e2*_(i-p)»/« _ 

Since 

we obtain 

= 1 / = i fc=i 1 = 1 fe=i 

£ g2«''*/i» =. n for r = o (mod n) 
k=\ 

= 0 otherwise 

y 5 -2niSp/n = BŁ 

whence in a similar way we finally obtain 

al = -YJ

J^e-2"ilp!\ Z = l , . . . , n . 
W p = l Dp 

It is evident that the optimal coefficients depend on the space Hd. 
The norm of the error functional <P — <l>opt is given as the norm of the corresponding 

representing function (p — <popt in Hd. Since the projection property yields (cp — <popt, 
<?V) = 0, we have \q> - cpopt\

2 = \cp\2 - | |<po p t | |
2. We know that \cp\2 = 

oo 

= £ |b fc|
2 dfc. The quantity ||<popt | |

2 can be calculated directly from the explicit form 
k= — oo 

of the coefficients as. After some manipulations one has 
n co I n |2 

IkJI2 = II Es^2"'"!2 = I ^Ld,-. 
II ' ° P t l l II -•—' 6 T II -—-' r. 2 ^ 

s = 1 / = - oo D .• 

The last sum may be written in the form 
oo n I p | 2 

V V \nJ»+l\ A 
L Ltrx ,2

ajn+l-
j=-co i = i(Djn + l) 

However, it is easily seen that Djn + l = Dt and Bjn + l = Bt for all f so that we finally 
have 

oo n I D | 2 
X2(<Z>,iJ„n) = S I ^ . - Y ^ J L . 

j=-oo 1 = 1 Dl 

We repeat that this norm depends on the given functional (coefficients by), on the 
given space (coefficients dj) and on the number of mesh points n. 

Now, a natural question of the behaviour of the norm \\cp — <popt|| with n tending 
to infinity arises. We shall prove that the norm tends to zero. That will prove that 
our choice of approximating functional is appropriate. 

Theorem 3.1. For an arbitrary functional <P and an arbitrary space Hd it holds 
Urn \\cp - <popt|| = 0 
n-* oo 

oo n I D | 2 

Proof. From the expression ]T \bj\2 dj — £ J—-L we obtain 
j=-oo i=i Dt 
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(7) 
\B,\ 

[«/2] / co 

£ I LJ ri+m\ dl+nt — 
/ = - [ ( « - l ) / 2 ] \ ř = - o o Dz 

after easy manipulations. 
Now, we fix the subscript I and introduce the notation 

00 

£ |bz+„,|2 dz+,„ = K;, B; = Bz - bzdz, D\ = DL- dt. 
t= - oo , t *0 

The expression in parentheses in (7) can be written as 

\ь,\2d, + к\ 
M . + в\\ 

[\b,\2 d2 + \b,\2 d,D\ + d,K\ + D\K\ 
dt + D; dt + D; 

b,Jz|
2 - bxdxB\ - bzJzB; - |B ; | 2 ] ^ |b z |

2 D; + K; + 2|bzB;| 

and therefore 
[и/2] 

l k - < r \ > p t | 2 ^ E ( |b z | 2 D ; + K; + 2|b zB; |). 
/ = - [ ( / i - l ) / 2 ] 

It is not difficult to see that the right-hand term tends to zero for n tending to infinity. 

4. UNIVERSAL APPROXIMATION OF A FUNCTIONAL 

The results of the preceding section imply that the optimal approximation and 

its convergence behaviour depend on the choice of the space Hd. But, as shown in 

[1], the results obtained by using different optimal formulae in different spaces may 

differ significantly. Therefore, werareled to the approach introduced in [1], where 

we reduced our demands on the optimality of the approximation but required that 

the approximation be in a sense reasonable for a whole class of periodic spaces. 

We shall now deal with some further formulae, but we still retain the equidistant 

mesh. By a formula we will understand a triangular matrix of coefficients 

P = 

The rows of the matrix will be denoted by pn. 

For a given functional $ we denote by the symbol 

e(<p,Hd,p„)=\\<p-ip{"Vk/nlu 
k=l 

the norm of the error functional of the approximation by the formula P and with n 

mesh points. 

We now introduce basic definitions. 

\p\2) ń2) 

\P\3) ń3) ń3) 

• • Á n ) 

i 
ІÁn) ńn) ńn) • • • Á n ) 

i 
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Definition 4.1. We say that the formula P is asyjnptotically optimal with respect 

to a functional <P and a space Hd when 

l i m ^ ' H - ' f t ) = 1 
holds. ->°>x(*,Hd,n) 

Definition 4.2. We say that the formula P is optimal in order with respect to 
a functional <P and a space Hd when the estimate 

- * £ - ^ < K(*, Hd) 
*(#, Hd, n) 

holds for all n and the constant K does not depend on n, but may depend on <P 
and Hd. 

The first definition is based on the asymptotic equality, the second expresses 
a weaker requirement, namely, it admits that the formula optimal in order is by a mul
tiplicative constant worse than the optimal one. 

Further, we shall say that a formula is universally asymptotically optimal or 
universally optimal in order with respect to a class of periodic spaces if it is asympto
tically optimal or optimal in order for all spaces of that class. Our main task is to 
construct universally asymptotically optimal formulae in as large classes as possible. 
By that the risk of an inadequate choice of the space for optimization will be reduced 
to a minimum. Unfortunately, this cannot be achieved in many cases. Detailed 
results are in [1] . We recall here only those that are connected with our results. We 
shall say that a functional is of integral type if it is of the form 

in 

Ф(f)=\g(t)f(t)åt, gєL2(0,2n). 

0 

In [1] no more general functional are considered. It was proved that there exists 
a universally asymptotically optimal formula with respect to the whole class 34? if 
and only if the function a is a trigonometric polynomial. For functionals of integral 
type a universally optimal in order formula with respect to a subclass of 34? was con
structed in [1] . 

Our result contained in the following theorem deals with general functionals. 

Theorem 4.1. Let a continuous functional <P over C2n be given. Let us denote, as 

previously, h = Ф(eikx). Then the formula P with 

(8) 
1 [я/2] 

ńn) = ~ E ь^e-^ 
П s = - [ ( n - l ) / 2 ] 

where 
bín) = Ъs for Ы < -

1 1 2 
and (in the case of an even n) 

ь„% = \(Kt2 + ъ_nl2). 
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is a universally optimal in order formula for the functional <P with respect to the 
class J»f j . 

Proof. We know the norm of the optimal approximation. We have to calculate 
the norm of the formula given by (8). The representing function for this formula in 
the space Hd is 

n _ oo oo n 

(9) <Pr,n(*) = _. P f I dke-^'"e^ = £ dk( £ p<"V-"'-"") *<-* . 
s = 1 k= — oo fc = — oo s = 1 

For the norm of the corresponding error functional we have successively 

e2(<*>, fl,, P) ---- || E M**"* -
fc= — 00 

oo / " 1 C"/21 \ 

1! f̂c ( X. E 60.)g2«i|w/»|c-2«tt,/»cttx||2 _ 
fc=-oo \ s = l ft p = - [ ( n - l ) / 2 ] / 

oo oo [n/2] 

= II 2 M*-"*- E I dta+«. 
fc=-oo fc=-oo / = - [ ( « - l ) / 2 ] 

( [n/2] n i \ 

V b ( n ) y Le2*KP~W* \ eKkn+l)x\\2 _ 
p = - [ ( n - l ) / 2 ] s = l ft / 

ex) [n/2] [n/2] 
- II V V d (h - V h(n) X \pi(kn+l)x\\2 _ 
— II 2Lf 2 . afcn+r\0fcn+/ 2 . ° P • ^ p / / e 

fc=-oo / = - [ ( n - l ) / 2 ] p = - [ ( n - l ) / 2 ] 
oo [n/2] 

- V V lb - b(M)l2 d -
~~ Li L \ukn + l ul \ akn+l ~ 

k= - oo Z = - [ ( n - l ) / 2 ] 
oo [n/2] 

= 1 I (K+,\2 - bkn+1b
(r - bkn+lb™ + \b\-f) dkn+1 = 

k= - o o / = - [ ( n - l ) / 2 ] 
oo [n/2] [n/2] __ 

= I E K + ;|
2 dfa+, - 2 (ft^Bi + 6.")B. - l^ ' l 2 D.) • 

fc=-oo / = - [ ( « - l ) / 2 ] / = ~ [ ( n - l ) / 2 ] 

Let us now consider the difference 

Q2 ~ I2 = T f"^- - b\n% - W% + \b\"f D,) = 
/ = - [ ( n - l ) / 2 ] \ Dl J 

C " f lfc(«")Di ~ B>\2. 
/ = - [ ( n - l ) / 2 ] D, 

With the notation D\ as before and B'[ = Bt — dfi^ we obtain 
[«/2] |L(n) r)' _ D"|2 r)' 

---Jf--- £ 1̂  \ g'l .£-. 
/ = - [ ( n - l ) / 2 ] D , Dz 

For a fixed /, the Schwarz inequality gives in the case / 4= nj2 (i.e. for all / with n odd) 

\b\n)D\ - B'[\2 

± (b(rdkn+l - bkn+ldkn+l)\
2 

fcФO 

D; 
_ . ^Jfeя+Z 

fc = - 00 
fcФO 
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< V \h(n) — h I2 d - V lr)(n) h I2 d 
= Li \Ul ukn+l\ akn+l — Li \°l °kn+l\ akn+l' 

k = — oo k= - oo 

The subscript k = 0 in the last sum gives a zero contribution and may be therefore 
included in the summation. 

The case I = n\2 for an even n is treated analogously and for the sum we have the 
estimate 

[n/2] oo rv / i \ 

<?2-*2= E s i M " , - ^ + M , I + , . ^ ( i - i y 
Z = - [ ( n - l ) / 2 ] / c = - o o Dj V DJ 

whence finally 
QIX S -JD 

which completes the proof. 

5. FURTHER PROPERTIES OF OPTIMAL AND 
UNIVERSAL APPROXIMATIONS 

In this section we shall state further properties of our types of approximation. In 
the first place we shall show the connection between the optimal approximation and 
the approximation (8) and the spline and trigonometric interpolations, respectively. 
We shall briefly call the concept of the abstract spline interpolation in a Hilbert 
space. Let Q be a finite set of functional^ coh i = 1, . . . , n over a Hilbert space H. 
Let kh i = 1, ..., n be the corresponding representing elements. Denote by K the 
linear hull of the elements kh i = 1, ..., n and by Sn the projector onto K. 

Definition 5.1. Let an arbitrary element f e H be given. The element S„f will be 
called the spline interpolating element of f with respect to the set Q of functionals. 

It is evident that the element S„f has the characteristic properties of a spline inter-
polant, namely 

(ot(Snf) = coif), i = h...,n, 
\\Snf\\ ^ ||g|| for all g e H satisfying cot(g) = cot(f), i = 1, ..., n. In what follows we 
choose cok = d2nk/n in all spaces Hd e <f£. 

Let us further denote by Tn the operator of the usual trigonometric interpolation 
with an equidistant mesh. We suppose the polynomial T„fto be in the form 

[«/2] 

Tnf(x)= I Fte
ilx 

J = - [ / . / 2 ] 

and for an even n we demand in addition F_,,/2 = Fn/2. 
00 

Let f(x) = £ feikx. The equalities 

ld ' H 2 " M T ) ' - ' 
yield 

£ Fle
2nH8,n = f fke2niks/n 9 s = 1 ? ^ n 

/ = - [ „ / 2 ] / c= -oo 
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For an odd n, we can transform the right-hand side into 
oo [n/2] in/21 oo 

E I fkn+fi2nils/n = E E fto+,e""«H, 
/ C - - 0 0 J= ~ [ « / 2 ] J = - [ / l / 2 ] fc = - o o 

whence we have 

^j = E An + j for |/| < - . 
/c= - 00 2 

For an even n we obtain in a similar way that the right-hand sum is equal to 
[ o / 2 ] - l oo oo 

E e2nis,ln E j*B + ( + i E An+nn(ei2nis/n)"'2 + e< ~ ™ " / 2 ) , 
/ = - [ n / 2 ] + l fc=~oo / c - = o o 

whence we have the same expression as for an odd n for Fh |/| < n/2, and in ad
dition we have 

00 

- M / 2 = 2" 2 J Jkn + n/2 • 
fc= — 00 

Let the functional of the universal approximation given by the formula (8) be 
denoted by $univ. The relation of the approximation and the interpolation can be 
now formulated. 

Theorem 5.1. For the optimal approximation <Popt and the approximation <£univ 

Of a given functional <P over C2n the following equalities hold: 

*op«(/) = HSnf) , 

<!>u„iv(j) = $(TJ) > 

where Sn and Tn are the operators of spline and trigonometric interpolations, 
respectively. 

Proof. Let <p and cpopt be the representing functions of <2> and <Popt, respectively. 
The first equality can be rewritten as 

(f> <Popt) = (Snf> <P) • 

The validity of this equation is obvious because of the symmetry of the projector Sn. 
The second equality will be proved only for the case of an odd n. For an even n the 

proof is similar. Thus, let n = 2m + 1. With the use of the representing function 
of #univ in Hd given by (9) we obtain 

00 П 

<l>u„iv(j) = (f, <PP,n) = E L(E P<"V"7 S /") 
j = - 00 s = 1 

oo n i m 

= y f-Y- Y b{n)e~2nisk/ne2niJs/n) — 
j = — oo s = l n / c = — m 

m oo и <i m 

= E E LB+,-E- E We2^1-^ -
j = ~ m ř = — oo s = l ř l / < ; = — m 

m oo m m oo 

= E E LB+y E frř}-^- E E LB+yl>f-
j = — m ř — — oo fc = ~ m j=—mř=—oo 
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On the other hand we have 
m ГŢ» rr m oo 

Ф(T„/) = (T„/ <?) = E ^ ! = 1 £ /II1+,. 5, 
/ = - m flz Z = - m t — — oo 

The equality holds. 
Now, we will pay our attention to another fact. The spaces from the class 3tf x do 

not contain all continuous functions. Nevertheless, we may ask whether our universal 
formula gives a convergent approximation of the given functional for an arbitrary 
function of C2n. A partial result is given by the following theorem. 

Theorem 5.2. Let a functional <P be given by 
2n 

Чf) - f | 9(t)f(t) 
2тгJ 

dř 

with g e L2(0, In). 
Then the formula given by (8) is convergent for all functions from C2n. 

Proof. We have, in fact, to prove weak convergence of a sequence of functionals. 
The proof will be based on the Banach-Steinhaus principle of uniform boundedness. 
We know that the convergence takes place for a dense set of functions in C2n, e.g., 
for an arbitrary space HdeJflm The only thing we must prove ist he uniform 
boundedness of norms of the approximating functionals given by the quantities 

I \ň 001 

k=í 
We have 

(£K1)2 = «-2>ln) 

1 n [n/2] [n/2] [n/2] 

nk=í s = - [ ( n - l ) / 2 ] j = - [ ( / i - l ) / 2 ] s = - [ ( n - l ) / 2 ] 

Because of the independence of the norm \\g\\L2 of n we have the result needed. The 
theorem is proved. 

Although the creation of the theory of universal optimality was motivated by the 
possibility of avoiding the classical error estimates which include a certain power of 
the mesh step and the maximum of the corresponding derivative of the function, the 
relation of the universal formula to the trigonometric interpolation enables us to 
establish such a classical estimate. Let the given function f be from C(/J and \etf(p+1) 

exist and be bounded by Mp+1. Further, let g be the trigonometric polynomial of 
degree at most n of the best approximation off in C2n. Then, the equality 

f- Tnf = f - g ~ Tn(f-g) 
yields the estimate 

K j ) - *»M-(/)| = |*(/ - TJ)\ g \\<P\\cJ\f - TJlc^ rg 
^Hk'(|/-t7lc..+ |-,-(/-l7)|cJ. 
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The Jackson theorems (see [4]) give us 

1*00 - *uf) i g B*|C„. • 12P+!f!p+i (i + ^ , 
n 

where Xn is the norm of the interpolation operator Tn. It is known (see again [4]) that 
Xn < A + B In n with some constants A and B. Summarizing, we have an estimate 

\$(f) ~ *„„i-(/)| _i max | f (*+ 1 )(*) | . ft'+1(A' + B' In ft) , 
< 0 , 2 T T > 

where A' and B' are constants independent off. 
It is easily seen that Theorem 4.1 remains true if we replace the space C2n by the 

space C(
2n and the class j ^ 1 by the class J f (n\ The proof is entirely identical. The only 

thing we must realize is that the function cp = £bfcc4e'kx representing the functional <£ 
(bk — &(eikx) as before) is an element of the space Hd e 2tf{n). The coefficients bk as 
coefficients of a distribution of order n are not bounded any more, we have only the 
estimate \bk\ :g B|k|". On the other hand the sequence defining the space Hd satisfies 
the condition Xk2/Idfe < +oo. So, we obtain \\(p\\Hd = E \bk\2 • dk ^ £B 2 |k | 2 " dk < 
< +00 . 

Thus, the formula (8) gives a universal approximation in the space C(
2n employing 

the function values only. In such spaces the values of derivatives of various orders 
may also be used for approximation, but we do not deal here with such problems. 
This knowledge about the approximation in the space C(

2n enables us to approximate 
(using the function values only) distributions of finite order. In this way the set of 
functionals that are approximated by the formula (8) is essentially extended in 
comparison with the set of functionals over only the space C2n. 

6. APPLICATIONS 

As an application we shall approximate by the formula (8) the functional of prin
cipal value which, in fact, is no functional over C2n. 

Let us compute v.p. \_\ (f(x)jx) dx for a function defined in the interval < — 1, 1>. 
We make the substitution x = cos t and obtain 

v.p. J-±-t dx = lim ( + J/(cos t) . sin t/cos t dt. 
J - l X * - 0 \ J 0 J(7t/2) + £/ 

Now, we can view the function f(cos t) as a periodic function defined on the interval 
<0, 2ii). Therefore, we consider the expression 

r{n/2)-e / ŕ(n/2)-в Çn \ 

lim ( + j g(i) sin t/cos t dt 
£ _*°\Jo J(n/2) + £/ 

for a function g e C(n)
n, where n ^ 1. It is easy to see that this limit exists and that it 

represents a linear functional over C(n
n which we denote by 0. 

418 



Tndeed, we can write 

<*>(/) = lira 
(я/2)-

t/cos t dt = ) g(0 sin 
J (n/2) + e,J 

fin / fi(n/2)-e fin \ 

= G(t) dt + lim ( + )g(nl-) sin t/cos t d t , 
J o £~*° \ J o J (n/2) + e/ 

where G(t) = (#(t) — g(nj2)) sin t/cos t. However, the function G is continuous and 
the corresponding integral is well-defined. The value of the limit on the right-hand 
side may be calculated explicitly and is equal to zero. It is evident that the functional <P 
is additive and homogeneous. Its continuity follows from the estimate 

!*(/)! 
" g(t) - g(nl2) t - nj2 „ 

t - л cos / 

\m\ t - 7l/2 
sm t 

cos t 

d ř = Wc, 

sin t dt 

t - 7C/2 
sm t 

cos t 
dt . 

In order to apply our formula we calculate first the coefficients bk. According to 
the definition we have 

fi(n/2)~E 

Ф( ."*•*') = l i m 
£ ^ 0 

+ 
(n/2)+e 

elкt sin t/cos t d t . 

These values can be found explicitly, we have, e.g., b0 = 0, bx = 2 etc. In this case, 
the functional is real, i.e. it has a real value for a real function. We can therefore 
calculate only the real parts of the coefficients bk. From these values the coefficients 
p(

k

n) of the formula (8) are computed on a computer. We then obtain a linear combina
tion of function values at the points of the whole interval <0, 27i>. Because of the 
prolongation of the function f(cos t) many of the necessary function values repeat. 
All these properties were taken into consideration when the programme was written. 
The fast Fourier transform may be also used for the computation. 

The following table gives the absolute errors of the approximation and the exact 

values of the singular integral f(x)jx 6x computed for five different functions. 

m л fг /з u fs 

2 5-67 - 2 300 - 1 1-32 - 1 5 81 - 1 106 - 1 

6 2-53 - 4 2-78 —2 9-65 - 6 4-80 - 3 1-53 - 4 

10 1-28 - 6 2-78 - 2 7-60 - 1 1 2-52 — 6 4-58 - 7 

14 6-52 - 9 2-33 - 2 8-80 - 1 4 6-60 - 8 1-67 - 9 

18 3-35 - 1 1 1-96 - 2 1-65 - 1 0 6-52 - 1 2 

exact 
value 

-0-54931 0-52325 1-89217 1-24944 1-29584 
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The computation was performed on the IBM 370/135 computer in double precision 
for the following functions: fv = l/(x + 2), f2 = \x\ . In (x + 2), f3 = sin x, f4 = 
= In (x + 2) . sin ex, f5 = x . In (x + 2). The number of points was rc = 2m + 1. 
With the exception of the function f 2 , the convergence is very good and the error 
has exponential behaviour. The last approximate values may be influenced by round
off errors. The application of the formula (8) to the function f2 is, however, illegal, 
becausef2 does not belong to C^. The corresponding singular integral exists. 
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S o u h r n 

UNIVERZÁLNĚ OPTIMÁLNÍ APROXIMACE FUNKCIONÁLŮ 

MlLAN PRÁGER 

V článku je zkonstruována univerzální řádově optimální aproximace obecného 
funcionálu nad prostorem C2n spojitých 27r-periodických funkcí. Tím jsou zobecněny 
některé výsledky uvedené v [1]. Vyšetřují se některé základní vlastnosti uvedené 
aproximace. Efektivnost postupu je ilustrována numerickým příkladem výpočtu 
singulárních integrálů. 
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