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CONVERGENCE OF AN EQUILIBRIUM FINITE ELEMENT
MODEL FOR PLANE ELASTOSTATICS

IvaN HLAVACEK
(Received December 8, 1977)

INTRODUCTION

In a recent study [1], an analysis of a dual variational procedure for a scalar
second order elliptic equation has been presented. Using equilibrium finite elements
of Veubeke and Hogge [2] with linear functions on triangles, we have proven some
a priori error estimates, provided the solution was sufficiently smooth.

It is the aim of the present paper to extend the main idea of the article [1] to
boundary value problems of plane elastostatics. A weak version of the Castigliano
principle is established in Section 1 and an approximate variational problem defined,
using equilibrium stress fields.

There exists a rich variety of equilibrium stress models, based on the triangular
or quadrilateral elements (see [3], [5], [6] a.0.). To the author’s knowledge, the
only theoretical convergence analysis concerning equilibrium finite elements has been
given recently by Johnson and Mercier in [8]. They apply a mixed variational for-
mulation of Reissner’s type.

In Section 2 we choose the triangular self-equilibriated “‘building block™ element
of Watwood and Hartz [3] and investigate its approximating properties. By means
of a projection mapping, a quasi-optimal a priori error estimate O(h?) is obtained
in L,-norm, provided the solution is smooth enough. On the basis of some density
theorems, presented in Section 3, the convergence of the proposed finite element
procedure is justified even in the general case, i.e., without any regularity assumption.

For the algorithm and the computational point of view, we refer the reader to the
paper [3].

1. PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY

In the present section we introduce a weak form of the well-known Castigliano-
Menabrea principle in plane elastostatics. Then a corresponding approximate problem
will be defined, which enables us to employ finite element procedures.
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Let us consider a bounded polygonal domain Q < R?, with Cartesian coordinate
system x = (xy, x,). Let the stress-strain relations be

€;; = bijklakls ihj=172,

where e;; and o,;; are components of the strain tensor and stress tensor, respectively,
b;j; are bounded measurable functions in  and a repeated index means summation
over the range 1, 2. Assume that

bijkl = bklij = bjikl
and a constant ¢, > 0 exists such that

bijui(X) Sijsy 2 €o8ijsij Vsij=s

ij Jji
holds almost everywhere in Q.

Let the boundary dQ = I consist of two mutually disjoint parts,
r=r,ofl,, r,nr,=290,

where I', and I', are either open in I' or empty. On I', and I', the displacements and
the surface tractions will be given, respectively.

Henceforth LZ(M) denotes the space of square-integrable functions in the set M,
W7-3(Q) the Sobolev space of functions, the derivatives of which (in the sense of
distributions) exist up to the order j and belong to L,(Q). Let body force vector F; €
€ L,(Q), a surface load vector T, € L,(I',) and a displacement vector uy; € W'3(Q)
be given. We define the space of symmetric stress fields

H = {oce[L,(Q)]* I 0i; = 05

and the set of statically admissible stress fields

f oije(v) dx = J Fv;dx +f Ty;ds Vve V} ,
Q 2 Ie

V= {ve[w Q)

Apr = {a eH

where

v=0onTI,}
is the space of virtual displacements and
e;(v) = 3(dv;/ox; + dv;ox;) .

Theorem 1.1. (Principle of minimum complementary energy.) Let there exist
a weak solution u of the mixed boundary value problem under consideration,
ie, ue[W"¥Q)]? such that u — uy e Vand

f i €j(U) e (v) dx = f F;dx + j Tuv;ds VYveV,
Q 2} I'e
(where [¢;j;] is the matrix inverse to [b,j,])-
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Then the functional (complementary energy)
1 -
F(0) = = | bijuo;jondx — | o;;e;(uy)dx
2)e o
attains its minimum over the set Ag r, if and only if

Oij = Uij(") = Cijki en(u) .

For the proof — see e.g. [4] or [1], where an analogous theorem is proven in
detail.

Next we transform the variational problem by shifting the affine hyperplane
Ap p < H into a linear space A, , = H. To this end, let us have a fixed stress field
G € Ap . Then

Appr =06+ Ago, Ao = {‘[GH

f 'r,-je,-j(v) dx =0 Vve V} s
(o]

i.e., every o € Ap p can be written in the form ¢ = ¢ + 1, where 7€ A, ,. Con-
sequently,

1 _ _
F(o) = EJ DT Ty dX +I Ti(bijuibi — e;;(uo)) dx + N(a, u,) ,
Q Q
where N(&, u,) does not depend on 7. Let us introduce the scalar product

(T’, T”)H =j bijklf;'jf;(’z dx
2
and the functional

d’(f) = Jf(f’ u — f(1),

where
f(f) =I T.‘j(eij(“o) - bijkl&kl) dx .
2

Then we may replace the minimum problem of Theorem 1.1 by an equivalent prob-
lem: to find t° € A4, o such that

(1.1) ?(1°) < (1) Viedy,.

Let he(0,1)> be a parameter and let {S,} be a family of finite-dimensional sub-
spaces of A, . We define the following approximate problem:

to find 10 € S, such that
(1.2) (1)) < #(r) VreS,.

Theorem 1.2. For any h e (0, 1) there exists precisely one solution of the problem
(1.2). It holds

(1.3) [° = h|u < inf |° — 7||y.

TESh
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Proof. The existence and uniqueness of r,(,’ is obvious. Moreover, from the con-

ditions
(% )y = f(r) Viedy,,
(th, ) = f(1) Vres,

we obtain
(P =11y =0 VreS,.

Consequently, 7y is the orthogonal projection of t° onto the subspace S, in the
Hilbert space H and the assertion (1.3) follows.

2. AN EQUILIBRIUM STRESS FIELD MODEL

The crucial point of the dual variational approach is a proper choice of the finite
element with a self-equilibriated stress field, i.e., the construction of subspaces S, <
< Ag 0. Several studies have been accomplished (see e.g. [3], [5]), where criteria
for suitable finite elements have been proposed.

In the present paper we restrict ourselves to one of the simplest elements, namely
to the triangular “building block™ element consisting of three subtriangles (see
Fig. 1), with piecewise linear stress field, which was proposed by Watwood and Hartz
in [3]. Let us emphasize that the single triangle with linear stress components cannot
be employed, in contrary to the problems for scalar second order elliptic equations
(cf. [1], [2]) In fact, the single triangular element violates an important criterion
(see [3]), as follows.

a

Fig. 1.
1g a1
Let us define a set of self-equilibriated linear stress fields over the triangle K:

(2.1) MK) = {t]|te Pi(K), crlex; =0, k=1,2},

i
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where
Pi(K) = {re [PI(K):H Ty = Tl

and P,(K) is the set of linear functions defined on K.
It is easy to derive that 7 € .#(K) if and only if

(2'2) Ty = By + Baxy + Bix,,
Tos = fa + Bsxy + Bexz,
Tip = Tay = B7 — BeXy — Baxy,

where f,, m = 1,...,7, are arbitrary real coefficients. Thus t//(K) is a seven-
dimensional linear set.

Obviousiy, the stress vectors #,(t) = t,;n; for T e.7Z(K) are linear on every side
of the triangle K. They satisfy three overall equilibrium conditions

(2.3) j h(1)ds =0, k=1,2,
CcK

(2.4 j [x: 12(7) — x5 t4(r)] ds = 0O,

as a consequence of the equilibrium equations and of the symmetry of the tensor 7.
The stress vectors, however, are constrained by two more (redundant) conditions,
which follow from the symmetry and continuity of the stress field at the vertices (cf. the
Lemmas 2.1 and 2.3 in what follows). Hence the element has not enough independent
stress modes on each side to balance an arbitrary self-equilibriated loading which is
linear on every side, thus violating a criterion, established in [3]. (The same require-
ment is necessary for the existence of a proper projection mapping, as we shall see
later — cf. Theorem 2.2).

The above defect can be overcome by bisecting the vertex with a “‘cut” across
which the continuity of the stress vector only is maintained (instead of the con-
tinuity of the stress tensor). Thus the triangular “building block™ is generated. It is
worth of remark that this element is dual of the triangular element of Clough and
Tocher, if the duality is considered in the sense of the so called “‘slab analogy” (see
e.g. [5], [6]), using the Airy stress function.

Let K be a triangle with vertices a, a,, a; and set a, = a,. We shall use the
following notation:

C{(K) = {te[COK)]*| ©1 =15y}, j=0,1,2,

where CY(K) is the space of functions, the derivatives of which up to the order j
are continuous in K and have continnous extensions to K. Further

W(K) = {re [l’l'j'z(K)]“l Ty = Toq) -
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We introduce the norms

[7lcixy = max max |D* 7, (x)|,
r,s=1,2 xekK
lal 5j
2
Il = CX Tenlfe)? -

1]

r,s=1

Moreover, on every side a;a;+, we introduce the basic linear functions 4} e Piaa;.,),
k =1, 2, such that

0,
1.

Ala;) =1, }"il(ai+1)
AE(“;’) =0, ;Lg(ai+1)
Let n be the outward unit normal to the boundary K. Thus n = n(x,, x,) = n'e R?
is constant along the side a;a;,,, i = 1,2, 3. Let [; denote the length of a;a;, |,
h = max [; for i = 1,2, 3. Denote a. b the scalar product a;b; of any two vectors
a,beR?.
For the stress field T € W'(K) we define the stress vector on a,a;

(2.5) t,f(‘c) = Tkjn} , k=12.

Lemma 2.1. Let te C°(K), (i.e. continuous on the closed triangle K). Then for
any i =1,2,3
(2.6) 142(a;) = 124(ay)
holds if and only if
(2.7) t(1)(a;).n"" =t (1) (a;) . 0
(where we set i — 1 =3 for i =1).

Proof. Let t,, = 7,, at the vertex a;. By virtue of the definition (2.5),

.o = goninTt = uninitt = goniniTt = ¢ ot

On the other hand, let (2.7) hold at the vertex a;. Then

_ i pi-1 -1 i _ ii-t -1 i _
0=t .t -t n=g mn" —n ng = (1, — 121) Diqgis
where
i1 ni-1’
Di_y;=det| Y > 7 | =sing*0.
ini,ony |

Hence (2.6) follows.

Lemma 2.2. Let twelve “external” parameters T, T, (i = 1,2,3;i 4+ 1 =1
for i = 3; k = 1, 2) be given, which satisfy the following three conditions

(2.8) Téni™' — T ini =0 for i=1,273.
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Then there exists precisely one tensor v € P{(K) such that
(2.9) T = tli(f) (a:), T = t/f(f) (ai+ 1)

i=1,2,3, k=12.
Moreover, it holds

6./2 L
(2.10) el = &Y% max (|7, [
Sllla ik

where o is the minimal angle of the triangle K.
Proof. Using (2.5), we write the equations (2.9) for a vertex a;:
Tkj(“i) n; = Tki'i s
tfa)ni™t = T

(k = 1,2). Inserting 7,, = 7, (and omitting the argument a;), we obtain the system

(2.11) ny, 0, ny L T
0, ns, 1“ | Ty
. 5| = 1
nll 1 0 n12 1 TZ T]‘ i
0, ny~t opitt 12 Ti-ti
Denote

ni] = max {|n}], [ni]} .

As 2 ]n,f[z > 1, we have ]n,ﬁl > ./2/2.
1°. Suppose nj = n{. From (2.8) it follows that the third equation in (2.11) can
be omitted. For the corresponding determinant of the remaining system we obtain

o [ns i H
2.12 i, Ry =z 2sina;,
(2.12) Jllnzl,nxif_\/
where o; is the angle at the vertex a;.
2°. Suppose nj = nj. Then (2.8) implies that the fourth equation in (2.11) can be

omitted. For the determinant of the remaining system it holds

|
i
Ryl i1

i i
n n
Dy =3 /2sing
ng -, ny

(2.13)

From (2.12), (2.13) and (2.11) we conclude that there exists a unique array {r,(a,),
752(a;), 745(a;)}, satisfying (2.9) and for any r, s = 1,2 we obtain

] = $32 max (7, |12
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Since every component t,, € P;(K) is uniquely determined by its values at the vertices,
and
s r’ s = 1, 2 ’

max [1,(x)| £ max |r,{(a;)
xeK i=1,2.,3

the assertion and the estimate of the lemma follow.

Lemma 2.3. The stress field © belongs to .#(K) (see (2.1)), if and only if the fol-
lowing conditions hold simultaneously:

1,,€Py(K), rs=12,
(2.14) ti(r)(a;).n"" =t (1) (a)). 0", i=1,273,

@.15) J' (o) ds=0, k=1,2.
oK

Proof. Let 7€ .#(K). Then

0= f 07,;/0x; dx =J Ty ds = [ t(r)ds.
K oK Jox

From Lemma 2.1 the conditions (2.14) follow.
Let 7€ [P,(K)]*. Using Lemma 2.1 and (2.14), we conclude that 7,,(a;) = 7,,(a;),
i =1,2,3. Thus 1,, = 7,; on K and we may write
(2-16) T30 = By + Baxy + Bsx,,
Ta2 = Ba + Bsxy + Pexa,

Ti2 = Tp1 = B + BeXy + Poxz.
From (2.15) we obtain

0 =J‘ ty(z) ds =j Oty;/0x; dx = j (B2 + Bo) dx,
oK K K

0 =f tz(‘t) ds =J asz/axjdx =f (ﬁs + ﬁ6)dX .
oK K K

Consequently, Bo = —f, and fg = — B can be inserted into (2.16), thus obtaining
te M(K) — cf. (2.2).

Let us divide the triangle K into three subtriangles K;, connecting the center of
gravity 0 with the vertices (Fig. 1). Consider the set A'(K) of self-equilibriated,
piecewise linear stress fields in every K, i.e. denote

(2.17) H(K) = {t = (', 7%, %) MK‘, =teMK;), i=123,
t(t) + (') =0 VOa,, i=123}.
The last condition in the definition of #°(K) means that the stress vectors are con-

tinuous across any side Oa;.
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Lemma 2.4. Let re./V(K). Define twelve “‘external stress vector parameters”
by the relations

(2.18) Ti = 1) (a), To' = () (aies) »
i=1,273, =1,2.
Then the following three conditions of overall equilibrium hold:
3
(2.19) ST+ T ) =0, k=12
i=1

(resultant forces vanish) and

(2.20) ii [xo(T524(s) + T '25(s)) —

— x,(T{Ai(s) + T 1Ai(s))] ds = 0
(resulting moment vanishes).

Proof. Using the definition of 4/'(K) and .#(K;), we may write

3 3
0=3% j Onyylox;dx =) | tyn;ds =
K

i=1 i=1) ok,

Mo

DAL G f0ai<tk<f">+rk<r"-*»ds=§1 [ e, xmr2,

aidi+1

i

Inserting N
() = T+ T,

we obtain (2.19). To derive (2.20), we write (using & for the Levi-Civita tensor)

3

0=

i=1

3 .
j (tia — i) dx =Y | esu(OumTjm + Xk 3t pf0x,,) dx =
K: i=1 Jg,

3 0 3 .
-y . _ i _
=2 | e P (Tjmxi) dx = 3 &3 kT jm Xl ds =
i=1 Jg, = 0Xp i=1 ) ok,

I
™Mo

3 . .
J‘ €3k tj':(t’) X, ds + 21 63jk[tj(‘[') + ti("l~ l)]xk ds.

Oai

i=1

The last term vanishes because of (2.17) and (2.20) follows easily.

Theorem 2.1. Let twelve external parameters Tk"’i, T*Y pe given, (i =1,2,3;
k = 1, 2), which satisfy (2.19) and (2.20).
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Then there exists precisely one stress field 1e #(K) such that (2.18) holds.
Moreover, there is an estimate

i=

(2.21) max o] g, = o) max {| ] [T
=5 Js

where c(a) > 0 depends on the minimal angle o of K only.

Proof. Denote n* n°, n® the unit normal vectors to the sides Oa,, Oa,, Oa,.
Introduce twelve auxiliary parameters S,’;.i, S,‘;O on Oa;, i = 1,2,3,k = 1,2, such that

St =1t (a) = vi;'ni*?, S0 = 0(r1)(0) = ;' (0)nit?;

kj " J 4
let i +2 =06 for i=1.

Denote the length |Oa;| = d,, i = 1,2, 3.

The “transversal” conditions of continuity (2.17) on Oa; can easily be satisfied by
changing only the sign of Si, Si°. With respect to the conditions (2.14), (2.15),
applied to K, we set
(222) —dy(Si' + S0 + dy(SPP + SO + LT+ T =0, k=12,
(2.23) —Sinl = —TMnt, S2nl = T!%n},

(2.24) —S5%n¢ = —S!%} .
A similar set of five equations can be written for the triangle K, and K3, respec-

tively. Thus we obtain a system of 15 equations for 12 parameters Sy, SI°, i =
=1,2,3, k=1,2

A4S = FT,
where
—d, 0, —d,, 0, dy, 0, d,, 0 0, 0 )
0, —d,, 0, —d,, 0, dy, 0, d, O, 0
0, 0, —d,, 0, —d,, 0, dy, 0, ds, O
0, . 0, —d,, 0, —d,, O, dy, 0, d,
d,, 0, d,, 0O, 0, —dy, 0, —dy, 0
0, d,, 0, d,, O 0, —d;, 0, —d,
n}, ny, 0, 0
oA = nd, n3, O, 0
0, 0, ni, ni, 0, 0
0, ... .. 0, nf, ni, 0, ... 0
0, ... .. 0, ni ni 0, O
0, ... . 0, nd, n3, O, 0
00 0, ny, ni 0 0, —nb —ns O 0
0, ... . 0, n;, n3 0, 0, —nt —nt
| 0, 0 ni, n} O ... .. 0, —ns, —nd

— 11 11 10 10 22 22 20 20 33 33 30 30\T
s_(Sl 9S2 ’Sl 1SZ ;Sl ,S2 7S1 )SZ 951 rSZ5S1 ,SZ) >
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o oo O C

p ,
—ny, —n;, 0

B
6

o

0 .
0, 0, ~n‘f, ——n‘zt, 0, ...

o, ... ... 0, —nf, —n3, 0,

0, ... 0, —ni, ~n§, 0,
0, ... 0, ‘nf, —n3, 0,
0

[=NeoNoNeRol -

11 11 12 12 22 22 23 23 33 33 31 31\T
T = (71 > 7} H ]} s 7E H 71 > 7} ) 7} s 7} H] 7} s 7} s 7} 5 7} )

From the three conditions (2.19), (2.2()), it follows that we can omit three equations
of the system, namely e.g. (2.22) and the last equation for K, i.e.

Sion; — S3%¢ =0.
In fact, if the center of gravity O coincides with the origin, we may write

n'"? = (=xy(a;)[d;, xi(a))/d))

(where i + 2 = 6 for i = 1). Multiplying the equation of the type (2.22) for K; by
—[x2(a;) + xy(a;s )] if k =1, and by [x,(a;) + x;(a;+,)] if k = 2, equations of
the type (2.23) by (—d,l;) and (—dl;), respectively, and equations of the type (2.24)
by (i(i’gd,-), we find the linear dependence of all the fifteen equations, using the
moment equilibrium condition (2.20) for the right hand sides.

Finally, the sum of three equations of the type (2.22) forK;,i =1,2,3, k= 1and
k = 2, respectively, vanishes by virtue of the force equilibrium conditions (2.19).

To obtain dimensionless coefficients, we divide the remaining equations of the
type (2.22) for K; by I,. Then the remaining system has the form

(2.25) #s = F(T),
where
(2.26) |det 8| = sin® o sin o, sin ay dydyl,15%05" > 0.

We can find a lower bound for d;

(2.27) d; = 3hsin*a, j=1,2,3

J
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(where h = max I;). In fact, denoting ¢; the length of the axis of center of gravity,
(2.28) d;j =%t; 2 3l sina,
min = Imax Sin 0 = hsin a

and (2.27) follows.
Inserting the estimates (2.27), (2.28) into (2.26), we obtain

(2.29) |det B| = sin* « $h* sin® al,;,h ™3 = Ssin’ .

Consequently, the system (2.25) has a unique solution S € R'?. The entries #;; of
the matrix # are bounded above, as follows

(2.30) |#,| < sin"ta, ij=12..,12.

In fact, In;| <1 and d;fl; £ h (hsina)™* = sin"* o. From (2.29) and (2.30) we
obtain for the matrix ! inverse to %:

|85 < 3 1sin™ 200, @, j=1,..,12.

Moreover, F{(T) are linear forms in T;', T)"'*", two coefficients of which only are
nonzero, being bounded by one. Consequently, we obtain

(2.31) mix {IS’*;"I’ lSlicol} <24, Z(]“) sin ~2% & makx {lTlfil’ lTki,i+ll} )

Now Lemma 1.2 yields the existence of a unique stress field t‘ e Pﬁ(K,-) such that
for any i = 1,2, 3 (2.18) hold and

Si=tifa)ni*?, S =1 (0)ni*?,

(i+2=6 for i=1),
Ty ) 00, SN0 = Tlij(o) n
By virtue of Lemma 2.3 and the system of conditions of the type (2.22), (2.23), (2.24),
we conclude that t'e #(K;), i = 1,2,3, and © = (7', 7%, ) e /(K).

Moreover, we deduce on the basis of (2.10) and (2.31)

i+3
j .

Si+1,i+1
k

. 6./2 o o . o
3) el = S max st [s2), Istr ][5t 9] 1, 7441 <

sin ag k=

< ﬁﬁ 54(111) sin™2° . max {|T¢], [T/ '|}, i=1,2,3,
sin o Jk

where o, is the minimal angle of the subtriangles K, K», K.
It is easy to derive the following estimate

2.33 sino, = tsinda.
0=}
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In fact, without any loss of generality we may write
. 1dy .
sin gy = - —siny,
1

where y is the angle between a,a, and the axis Oa;. From the relations
P>o; 2o, siny=sina, dySh

and (2.27), we arrive at (2.33).
From (2.33) and (2.32), the estimate (2.21) follows. Q.E.D.
Let us introduce the set

U(K) = {te W(K)| ot;;[ox; = 0, i = 1,2} .

Theorem 2.2. Let 1€ U(K) and let the array of twelve external parameters
T/, T"'*! be determined by the conditions

(2.34) J (TE2 + TH4128) 21 ds =J (e) 24 ds |

aidi+y

kkm=12, i=123.

Then the external parameters satisfy the overall equilibrium conditions (2.19),
(2.20) and there exists a unique stress field It € A'(K) such that (2.18) holds for
(<) instead of k.

The mapping IT : U(K) — A (K) is linear and continuous. Moreover,

(2.35) max [(IT7)[coky = Cof) max [[7']corx,
i=1,2,3 i=1,2,3

3

holds for any teU(K)n[] C%K,), where Co(x) > O depends on the angle «
i=1

only and

(2.36) It =t Vred(K).

Proof. By conditions (2.34), the parameters T, T;j"**! are uniquely determined,
the matrix

A, =J Adds, j,m=1,2,
aiai+y
being regular (det A = [7[12). If 7 € U(K), for k = 1, 2 we have

3
(2.37) 0= J Tn; ds = Z

oK

3
t(r)ds = 3 Y I(T{ + T,
=

ai@i+1
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where (2.34) has been used. Furthermore, (cf. the proof of Lemma 2.4),
(2.38)
3
0 =J (ty2 — 7T2y) dx =J €3k T jmmXy ds = '21 (t5(7) x; — 13(7) x;) ds .
K oK r=

aiai+
Since we may insert
X = x(a;) 4+ xaie) Ay k=1,2,

from (2.34) we deduce that
(2.39) J ti(t) x, ds = j (T{A) + T 125) x, ds,

jk=12.

From (2.38) and (2.39) the condition (2.20) follows. Theorem 1.1 implies the
existence and uniqueness of the stress field IIt e #/(K), satisfying (2.18).
The linearity of IT follows from the linearity of the mapping W"*(K) —» L,(a;a;+,),
(2.5), (2.34), (2.25) and (2.11).
To prove the boundedness of IT, we estimate the right-hand sides of (2.34). If
3
7€ U(K) n [] C°(K;), then the upper bound is

i=1
(2.41) i3 max [ ok, -
From (2.34) we deduce easily
(2.42) max {|T|, [T} < 26 max |7/ corg,y -
ik i
Inserting (2.42) into (2.21), (where < is replaced by (IT)’), we obtain the boundedness

of IT and the estimate (2.35), respectively.

To prove (2.36), we first realize that for t € .#(K) the stress vectors ti(t) are linear
along aa;,,, consequently T} = t{(t)(a;), T{'"*'=ti(r)(a;+,). Next defining
‘L',K_. =1, i = 1,2, 3, we conclude that ' € .#(K;) and verify the conditions (2.17).
Then (2.36) follows from the “uniqueness assertion” involved in Theorem 2.1.

Theorem 2.3. Let e U(K) n C*(K). Then
(244 max [ = (19 s, = 4(6) 2 el
where c,(o) depends on the minimal angle o of K only and h is the maximal side
of the triangle K.

Proof. Let x, € K be an arbitrary point. Taylor’s theorem implies for x € K
(2.45) Ti1(%) = 7i5(x0) + D 1i5(x0) (x — Xo) + D% 7;(9) (x — xo)*,

i,j = 1,2, where € x,x.
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Denote 7,,(Xo) + D 7;,(Xo) (x — Xo) = Lif(x),
1D 1,(9) (x — xo)2 = Qij(x).
Since we have L e /#(K) = U(K) n C*(K),
Q =t — Le U(K) n C}(K).

Applying the mapping IT to (2.45) (i.e., t = L + @), using its linearity and (2.36),
we obtain

(2.46) Me=L+1Q.

Consequently, by virtue of (2.45), (2.46") and (2.35), we may write © — IIt =
-0 - 109,

i:“}f‘i;}“f U max 12" = (M) cox, =
= max [0 cocksy + max 110 ok, =
= {1+ ¢o(w) m?x 10 oy = (1 + o(®)) [ Q] cork) -
Moreover, on the basis of (2.45) we obtain
Qo = 2 el
and the estimate (2.44) follows. Q.E.D.
Theorem 2.4. Let 1 e U(K) n W*(K). Then it holds
(2.46) [v = tiefox = Ch2[fox
where h = diam K, C depends on the minimal angle o only.
Proof. We shall need the following result on the equivalence of norms.

Lemma 2.5. Let Q be a bounded domain with Lipchitz boundary, # = #(Q)
the subspace defined in (2.1), q the class of equivalence from the quotient space
W3(Q)|.4 with the usual norm

H‘?H W@y = i“f Hquwltfu
qeq
and
2
lalaa = (X X IDq]5.0)" -
lal=2i,j=1
Then a positive constant C exists such that

(2.47) 1wy = Clq|2,ﬁ
holds for all q € G € H|.M, where

H=WYQ2)nUQ).
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Proof. Let us introduce the functionals g;: W*(2) » R!
g4{4q) =f dqlo%;dx, i=1,2.
Q
We shall prove that the space W2(Q)/.# is complete with the following norm

(2.48) lal = (|af3.5 +élg?(q))” z.

It is readily seen that
ge W Q), |q|' =0«=qe.u.

Let {g,} be a Cauchy sequence (with the norm (2.48)). Hence it is a Cauchy se-
quence with the seminorm l |2 5, as well. It holds

(2.49) lalweayp@ = Clal2a Vaede w Q)P .

(The proof of (2.49) is parallel to that of Theorem 7.2 in [7].) Consequently, to any
4, € d, there exists p, € P}(Q) such that

rn:qn+pn—)q in WZ(Q)'
Then for f, e W*(Q)[. it holds
e el (P U L [ 1/ Al M

which implies that {p,} is a Cauchy sequence. Since

(3, a3p)

is a norm in a finite-dimensional space P}/.#, we have p, — p in Pj/.# and in
W2()[ .

Then G, - § — p. In fact §, = 7, — p, and

liu= B0 @ = D < I~ all + 5= B S Irn = alas + [ — Bl = 0.
(Note that
(2.50) Ip|" = ClBlwe@ya Ypebe Wi R)H).

Hence the space W?*(Q)/.# with the norm (2.48) is complete.

Consider the identical mapping from the space W?(2)/.# with the usual norm onto
the same space with the norm (2.48). By virtue of the Banach theorem on isomorphism
and (2.50) we obtain that

”ﬁn - ﬁ

clldwayu < |al’ -

Since g/(q) = 0, i = 1,2 for all g € H, the assertion (2.47) follows.
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We also employ a modification of the Bramble-Hilbert lemma.

Lemma 2.6. Let Q, H, 4 and Ilzg2 be the same as in Lemma 2.5. Let a linear
functional F € H' be given such that

(2.51) [F(a)] < Cifla]2.a
(2.52) Fip)=0 Vpe.#(Q).
Then there exists a constant C, such that
(2.53) |F(q)| £ CiCslq|:.a YgeH.
Proof. From (2.51), (2.52) and Lemma 2.5 we obtain
|F(a)] = |F(@)] = Ci|dllwzu £ CiCaldl2a VaedeH| .

Let us choose a reference triangle K with vertices (0, 0), (1, 0) and (0, 1) in the
(%1, ®2)-plane and introduce a linear one-to-one mapping % : K - K,

(2.54) x=F(X)= Ax + b,

where
A= xi_xis x?—xi
Clx = xa X3 = X1
BT = (x!, x})
and (x{, x3), i = 1,2, 3 are vertices of K.
If the stress tensor 7 is defined on K, then the corresponding tensor defined on K is
(2.55) #(x) = A" f(F(R)) (A7),

(i.e. the correspondence between contravariant tensors).
Making use of (2.55), the relation

1€ U(K) < % € U(R)
can be verified by direct calculation.

Next let us set in Lemma 2.6 Q@ = K,

(2.56) F(8) = (@ = 113, r)o ¢
where r e W(K),
(q! r)O.K = { q;,«rudx .
R

It is easy to verify (2.52). In fact, if p € .#(K), then p e #(K) and p = ITp by virtue
of (2.36). Consequently, we have p = I/I\p and F(p) = 0.
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We may write
N
(2.:57) [F@)] = [r[o.x(allo. + [T4llo.c) -
Let us show that if § € W*(K), then
(2.58) 1300 < Ca]2.x -
In fact, we have § € C°(K), g e C°(K). Then (2.35) implies
N L. .
M = max [(MTg)|cox,y = max [[(Hq)corx,y =
i=1,2,3 i=1,2,3
< Colaflcok) = Cold]lcoey = Cilldll2 .5

P 2 ~ R
ITalie= 3 j (1T3)2 dx < 4M> mes R
j.k=1 R
and (2.58) follows.
The functional F is defined on H. In fact, § € H = g € U(K) and II is defined
on U(K). Obviously, F is linear and (2.51) holds, as a consequence of (2.57) and
(2.58), with C; = (1 + C) ||r|lo,x- From Lemma 2.6 we obtain that

(2.59) [F(@)| £ Co(1 + C) ok |dox VaeH.

~ . .
Inserting r = § — Iq into (2.56), from (2.59) it follows

(2.60) la = Malox < Clalox VaecH.
It holds
||w|]0’,( = [A|”2 H\?‘”O‘k Vwe Ly(K),
Wk < CRA|TV2 W],k Ve WHA(K)

(see e.g. [8]), where |A| is the Jacobian of the mapping (2.54).
Using these relations, the estimate (2.60) leads to the assertion (2.46) for g = .
Q.E.D.
Let Q = R? be a bounded polygonal domain, h e (0, 1), 7, a triangulation of Q.

Suppose that

h = max diam K .
KeTn

Let t(r)]K denote the stress vector defined in (2.5) by means of the stress field 7 e
e W!(K). Let K, K’ be two adjacent triangles in .7, with a commen side a;a;, ;.
We say that the condition (R) is satisfied, if

(2.61) t(t)|x + t()lx =0 on KnK =aa;,

for any interelement side a,a;,, € Q.
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Let us define
(2.62) U(Q) = {te[W"HQ)]*|t;s = 15y, 01/0x; =0, i = 1,2},
(2.63) N(Q) = {t|t|x € /(K) VK € T, © satisfies (R)} .

We say that a family {7}, h € (0, 1)> of triangulations of Q is regular, if there
exists a constant a, > 0, independent of h and such that all interior angles of the
triangles of 7, € {7,} are not less than «,.

For 7 € U(Q2) we define a mapping r, by the relation

(2.64) rtly = Mgr VKe T,

where [Ty denotes the mapping defined in Theorem 2.2.

Theorem 2.5. Let {7,}, he (O, 1>, be a regular family of triangulations of Q.
Then r, maps U(Q) into . N(Q), being linear and continuous, and it holds

(2:69) It = rcloe = C 2|tz ¥re U(Q) n[CHQ)T,
(2.66) [t = rytloe £ Ch?|t]2e VreU(Q)n WHQ),
where C is independent of h and .

Proof. Since
1eU(Q)=1ceU(K) VKeT,,

from Theorem 2.2 it follows that
ritlk = Hyt|x e #/(K).
Since the traces of 7;; from both sides of the interelement boundary coincide, it holds
t(t]x) + t(t]x) = 0.

Consequently, the right-hand sides of (2.34) change the sign only, when K is replaced
by K'. With regard to (2.18), the same is true for t(/Tx) and t(ITy, 7) and the con-
dition (R) follows. Hence r, : U(Q) — A7(®). The linearity and boundedness of r, is
a consequence of the analogous properties of the “local”” mappings IT.
To verify (2.65), by virtue of (2.44) we may write

It = meloe= X It = Hxelox <
KeJn
= Kg (mes K) Cih*|[c|éary < Cih*(mes @) |7 éxqay »

where C; = 2(1 + ¢, sin™?? o). The estimate (2.66) is a consequence of Theorem 2.4.
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Remark 2.1. Any field t € 4,(Q) satisfies the equation div v = 0 in the sense of
distributions. In fact, let 7 € A47(Q), ¢ € [CT(Q)]*. Then

{divt, @) = — tkjgp—"dx =— | yiee)dx = - Y T,‘j%dx =
0x; o k 0x;

0 XJ KeIp j

3 0ty ;
=3y 3 o —2dx — | 1une.ds|.
Kezwi=1| Jg, 0x; oK,

Using the conditions (2.17) and (R), the sum of all integrals over dK; vanishes.
Since 07;;[0x; = 0 in every K;, we obtain {div T, ¢) = 0.

3. APPLICATION OF THE SUBSPACE /7,(2) TO THE DUAL
VARIATIONAL SOLUTION

Let {7}, h € (0, 1) be a regular family of triangulations of @, satisfying moreover
the following requirement: the “endpoints” of I', coincide with some vertices of J,.
Defining

Sp=NQ) " Aoy,

it is easy to show that
Sy ={re /()| t(r)=0o0nTI,}.

Recalling the definitions (1.1) and (1.2), we can establish the foliowing

Theorem 3.1. Let 1° € W*(Q). Then for any regular family of triangulations it
holds

I° = @fo.0 = CH?|7°2,0,
where C is independent of h and °.
Proof. 1° We can show that i',,ro € S,. In fact,
e [CHQ)]* n 45,0 aJ‘ e (v)dx =0 VveV<
2
oryfox; =0 in Q,
¢>{ ;=0 on T,

Consequently, t° € U(Q), Theorem 2.4 implies that r,t° € A7,(2) and it remains to
verify that t(r,z°) = 0 on I,

Let a;a;,, €T, be a side of a boundary triangle K € 7,. Since t(z°) = 0 on
a,a;, , from (2.34) we obtain T{' = T***' = 0, k = 1, 2, which results in ¢(ITz°) =
= 0 on a;a;,,. Consequently, t(r,z°) = O on I',.
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2° Using Theorems 1.2 and 2.5, we obtain

Cil?® = oo = [ = wllu = [° = r®l <

IIA

CZHTO - rhTOHO,Q =G h2||7-'0“2,9 . Q.E.D.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then for o(u) = G + 1°,
" = & 4+ 10 we have the estimate

lo(u) = 6"o.0 = O(h?).

Let us recall the transformation of the problem #() = min over the set Ay ;
into the equivalent problem (1.1). We supposed that a stress-field ¢ € A; ; was
available. In praxis, however, this requirement may be difficult to satisfy. Therefore,
suppose that we can find a G € Ap - where 7 is close to T in some sense. For example,
let us have a ' € H such that

dojfox; + F; =0, i=1,2

(note that ¢}; can be found by integrations of F; only). Let us set T = T — t(c')
and suppose that t(c') € [L,(I',)]*

Let I', = U a;a; . Assume that we can find a o> € #7(Q) such that
i=1

J. (t(o?) = T)Mds=0, j=1,...,m; kn=12,
aja;+

(i-e., (%) are orthogonal projections IT T, of T} into Pi(a;a;,y)).
Let us define ¢ = o' + 0%, 7 = (o’ + 0?). Then 6 € Ay 4,
|7 = Tl = [tfe?) + AT, - f14(e*) - ] <
< [a(e?) — mu(eh)| + AT - T, .

Consequently, J is an approximation of T.
Define the problem to find % € 4, o such that

D5(t5) £ D) Viedy,
and the approximate problem to find % € 4" () such that

(1) < (1) Vies,,
where

‘pf(T) = %(r, T)H “f Tij[eij("o) - bijm&kz] dx,
2
v 6y =6+ 1%, a'}=6’+r’}.
Then we have the following
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Theorem 3.2. Let t5 € WX(Q) and T, t(¢*) e [W>*(T,)]* for any side I',, of the
polygonal I',. Then for any regular family of triangulations it holds

Jofu) — o,

0.0 = Ch?,

where C is independent of h.
Proof is based on the inequality

“6(") - ‘7'}“11 = HG(U) - o‘%

n+ Hag— - U’;'HH .

The last term can be estimated using Corollary 3.1. The term o(u) — 6% can be
treated like an analogous term in Section 3 of [1].

4. CONVERGENCE OF THE EQUILIBRIUM FINITE ELEMENT MODEL
IN A GENERAL CASE

In Theorems 3.1, 3.2 strong regularity assumptions were imposed upon the solution
of the dual variational problem. A question arises about the convergence of the
method in a general case, when the regularity of 7° cannot be justified. The main
point of the following convergence analysis will be a proper density theorem. We shall
distinguish the cases: (i) I' =T, (i) I' = I', (iii) I' = I, u I',. In what follows,
we use the notations:

2

”””1,9 =(X “%Hf,n)”z >

k=1

Iolla.r = (3 Julin o)

(i) Let I = I',. We have V = [W;%(Q)]%,

Aoo(@) = {1 e [La(Q)]* | 7y = 1 J

765(v)dx =0 Vve [WOI’Z(Q)]Z} .
2
Theorem 4.1. The set
40,o(2) N [CH(Q)]*
is dense in Ay o(Q) (with the topology of [Ly(2)]*).

Proof. Let Q* < R? be a bounded domain with a Lipschitz boundary such that
Q* o Q. In case that Q is a domain of connectivity m, we choose Q* of the same

connectivity. Then Q* - Q = |J G;, where G; are doubly-connected domains.
i=1

Let 1€ Ao,0(42) be given. We construct an extension Et € A,0(Q*), Et|, = 7 as

follows.
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In every G; let us consider the following auxiliary problem: to find

weV(G;) = {ve[W"}G)]? | v =0 on 0G; =~ 0Q}
such that

(@.1) J e(w) en(v) dx = — j cuea(PV)dx W e V(G)),

where Pv is any extension of v e V(Gj) such that
PveV{(Q) = {ve[W"3(Q)]? l v=0on dQ = dG;},
Pv =v on 0Qn dG;.

The right-hand side of (4.1) is independent of the kind of extension from V(G))
into V,(Q). In fact, since Pv — Pv = 0 on 9Q n dG;, Pv — Pve[W,*(Q)]* and

j tyeq(Pv — Pv)dx = 0
2

follows from the definition of 7 € A, o(Q). :
There exists a linear mapping of [W'/?(0Q n 8G)]* into V,(Q) such that (cf.
[7] — chpt. 2, §5)
[1Pvllie = Clv]12,00m06, < € Cil[V] 1.6, -

Consequently,

j Tyen(Pv) dx
2

< Cltfoe [PV 1.2 = Coftloe [Vl1a,

and the right-hand side of (4.1) is a linear bounded functional on [W!%(G))]>.
Using the Korn’s inequality for v e ¥(G;) and Lax-Milgram’s theorem, we arrive
at the existence and uniqueness of the solution w of (4.1).

Setting Et = ¢(w) in G; V), Er\n = 1, we show that Ete A,, O(Q*) In fact, let
 ve[Wy}(Q*)]*. Then

J;(EI)“‘ ex(v)dx = J\Q‘rik eq(v) dx +J§1 IG eu(w) ew(v) dx .
Since
WS @9 = v e W@ |v = 0 on 26, = 22 ),
v|s,e V(G)) Vi,

m

ve (W Q)PP=v =) w,, w,eV(Q)),
i=1
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we may write
J‘ (Et)i enlv) dx = ), I:f Ty ea(w) dx +j ei(w) eq(v) dx] =0,
s Jji=1 0 Gy

because w; = Pv, w; = v on Q2 n 0G,; Vj.
Let us regularize (Et); by means of a kernel ,(x — y), where

zZl < x

for |z{ = x,

(4.2) A1 o (z) = {gxp (|z|2/(|z|2 — x%)) for

A = const > 0, x < dist (0Q2*, 0Q). We obuain t}; = R,(E1);; € C*(Q),

(4.3) (x) = Jﬂw,{(x —y)(Ex)i(y)dy, i,j=12,

(44)  orlox(x) = — J a—i— oy — x)(Et); (y)dy VxeQ, i=12.

By virtue of the fact that o, € C3(Q*) = Wy *(Q*) and

o,

wx
dy = [ (E7);; P
o

(4.5) J{‘Q.(ET) i %

J

J

where
o, =(0,,0) for i=1,

o, =(0,0,) for i=2
has been defined, and using the definition of A4, o, we are led to the equations

(4.6) gj—c"—f=o in Q, i=1,2=1edy,.

J
Moreover, we have for x — 0
(4.7) 7 = t]o.e £ | = Etfo,0e > 0. Q.E.D.

(ii) Let I = I',. Assume that Q is a starlike domain, i.e., a point A € Q exists
such that each ray from A intersects the boundary I' in one and only one point.

Theorem 4.2. If the domain Q is starlike, then the set

A0,0(Q) n [C7(DQ)]*
is dense in A, o(Q).
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Proof. We have V = [W'3(Q)]?,

Aoof®) = { L@ 1= [ myeufh)dx =0 we[wHH@)].

Q2

Let T € A, o(Q) be given. We extend it onto R*> = Q by zero function. The extended
function will be denoted by Ezt. Let us put the origin into the point A and define

Ti(x) = Et, (1 + ¢)x), > 0.
Lemma 4.1. For any o € C$(Q) it holds
[6° = 6loo— 0 for 0.

Proof. Using the mean value theorem we may write

f (o~ o) dx = [ [o((1 ) ) — o] dx =

o

Jo.

2 2
= j [ Y ——(9x) exm] dx £ 82j |grad o(9x)|? |x|? dx < &2 C(Q) o] E1q) »
olm=1 6xm 0
where the constant C(Q) depends on the domain only.

Lemma 4.2. If © = 0 outside Q, te L,(Q), there exists a sequence t"e CJ(Q),
such that

I7* = (o0 > 0
for n — oo uniformly with respect to ¢.

Proof. Denoting 1 + ¢ = k, we have for the sequence 1" — 7 in L,(Q):
1 .
j [x(kx) = P(n)]* dx = J [x(y) — “(y)]? dy <
Q k2

< [ [«(y) — ="(y)]?dy = 0 if n— oo,

because both 7 and t" vanishes outside Q.

Lemma 4.3. If © = 0 outside Q, 1€ Ly(Q), then
Ht‘ - 1'||0,Q -0 for ¢-0.
Proof. Using Lemma 4.2 and 4.1 (for ¢ = "), we have for ¢ - 0

I = <llo 1 = (@l + 1) = o + [ = <lo 0.
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Lemma 4.4. The function 1° belongs to A, o(Q) and supp 1° = Q.

Proof. Let us consider an arbitrary ve [W'*(Q)]>. Then v(y) = v(y/k) belongs
to [W"*(kQ)]* and we may write

L’Z’ e;(v) dx = J E 7;(kx) e;;(v(x)) dx =

which yields that ©° € 4, o(Q).
Since the domain Q is starlike, the function t° vanishes in the “boundary layer”
0= k'Q= 08 Q.E.D.
Now we are able to finish the proof of Theorem 4.2. Let us regularize the func-
tion 1%, defining (cf. (4.2), (4.3))

R, 7,(x) = f ox — y)Tiy)dy, ij=1.2.
Q

By an argument similar to (4.4), (4.5), we deduce, using Lemma 4.4, that

(4.8) OR,Tylox; =0 in @, i=12.

ij
Moreover from Lemma 4.4 it follows that
(4.9) R,7T(x) =0 Vxel, Vx < dist(0Q, supp’).

From (4.8), (4.9) we obtain that R,1° € A, o(®), using integration by parts.
Finally, by virtue of Lemma 4.3

It = Retlloe £ v = o + |7 = Ret*[lo.0 = 0

for e > 0, % — 0. Q.E.D.
(iti) Let ' =T, U T,

Theorem 4.3. Assume that there exists a point A e R* such that if A coincides
with the origin, then for k = 1 + ¢ and ¢ > 0 sufficiently small, either

1) k[, = R*~Q or

(1) k[, <= Q,
where kM denotes the image of a set M by means of the “dilatation” mapping
y = kx.

Then the set

_ 40,0(2) 0 [C*(Q)]*

is dense in Ag o(Q).
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Proof. Let 7 € A4, o(Q) be given. First we extend it as follows.
1° Let Q* o O, Q* be a bounded domain with Lipschitz boundary. Let 0 < 2d <
< dist (0Q, 0Q*) and denote (see Fig. 2)

* = {x¢Qdist(x, [,) < d} = US;, ")

Q, = QuG*,
Q, =0 =9, .
Consider the following auxiliary problem: to find w e V,,

V,={ve[W"(Q)]*|v =0 on 0Q*}
such that

(4.10) [ e (W) e (v)dx = — J‘ 7 e{(Pv)dx VYveV,,
J e (2]

where Pv is (a restriction of) an arbitrary extension of v € V, into [ W **(Q*)]2.

The right-hand side of (4.10) is independent of the kind of extension P. In fact,
Pv — Pv = 0 on 0Q, for any two extensions P and P.

Since I', < ¢Q,, it holds

Pv —Pv=0 on I,=(Pv— Pv)geV,
f 1 e{Pv — Pv)dx = 0.
2

) Sj are sectors of sufficiently small angles with vertices at the points 1, N [, = B;.
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A linear extension P : V, — [ W, *(Q*)]? exists such that

IPv] .00 £ Clv] 1.0, -

(For the proof of this assertion see e.g. [7] — chpt. 2, Th. 3.9). Consequently, the
problem (4.10) has a unique solution w.
Let us define the extension Et as follows:

0 in G*,
(4.11) Et =<e(w) in Q,,
T in Q.

By virtue of (4.10) we have for any v e [ W, 2(2*)]?

(4.12) '[ (B0 e fv) dx = J efv)dx + J ey () dx = 0.

e

2° Let us transform Et, using the dilatation mapping
1(x) = E t(kx) in case (I),
1(x) = Et(k™'x) in case (II).

It is easy to see that Lemma 4.1 remains valid in case (Il), too.

Lemma 4.5. Let teL,(Q), Ete Ly(Q*), 0 <& < ¢, < co. Then there exists
a sequence 1" € C(Q) such that " — t in L,(Q) and

I = (@) lo.e = |7 = tlo.0 + [Etfoso-0)
Sor the case (1). In case (11) the last norm is to be replaced by ||Et|o x-1g-q-

Proof. For the sequence, satisfying t* — 7 in LZ(Q), we obtain in case (I):
f [E «(kx) — v(kx)]? dx = k-2 f [Ey) — “(y)]? dy <
(2] k2
< f (r — ") dy +.[ [Et]* dy.
2 kQ=Q

In case (1) it suffices to replace k by k™' to obtain the same estimate.

Lemma 4.6. Let 7€ L,(Q), Ete L,(2%), 0 < ¢ < &,. Then
[t = 1]l =0 for £¢—0.
Proof. Using Lemma 4.5 and 4.1 (for o = 1), we may write

Ie* =<l = = = @) + 1@y = =] + [+ = <] > 0.
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Lemma 4.7. There exists ¢, > 0 such that for 0 < ¢ < g,

S kKT'GF L (1
=0 in a.netghbourhood {kG* } of I'; in case {(II).

Proof. From the geometrical assumptions it follows that a positive ¢, exists such
that for 0 < ¢ < g,

I, < k™'G* incase (I), (I, = kG* in case (II)).
Then for x € k™'G* (x € kG*) we have 7°(x) = 0 by virtue of (4.11).

Lemma 4.8. Let Q, = {x|dist (x, Q) < d}. Then there exists £, > 0 such that
for 0 < & < g one has

[[semax=o werm @y
4

Proof. Let v e [W, *(2,)]*. Define in case (I) ¥(y) = v(y/k). Since kQ, = Q* for
sufficiently small ¢ and v e [W, *(kQ,)]?, we can extend v by zero to obtain Pv €
e [Wg*(@*)]* Then

J 75 (V) dx = k—zj Et,(y) e;(v(y)) dy = k_z-[ Et;je;(Pv)dy =0
Q4 kQa

o*

by virtue of (4.12). In case (II) the proof is parallel.
To finish the proof of Theorem 4.3, let us regularize °. By an argument similar
to (4.4), (4.5), we obtain for » < d that

aﬂLﬂ{) = — J T el.j(o)x) dx =0 VxeQ.
0x; Qa4

J
Using Lemmas 4.7 and 4.8 one deduce easily that for sufficiently small »
Rsa;=0 on TI,.

Integrating by parts, we obtain that R,t° € A o(2). The Lemma 4.6 and the well-
known property of regularization yield that

[R® = t]o.0  [Ra* = o0 + |° = T]o.e =0 for x>0, e—0.
Theorem 4.4. Let us consider the cases:
() r=r.,

(if) I' =TI, and the domain Q is starlike (see Theorem 4.2),
(iti) I = I', u I', and the assumptions of Theorem 4.3 hold.
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Then for any regular family of triangulations and for ¢ € A r,

ouy=6+1, o =é¢+r1,,
one has

(4.13) “a" — 0(”)”0,9 -0 for h—-0.
Proof. On the basis of Theorem 1.2, we have

(4.14) c,

6" — o(U)lo,0 = Ciflti = o0 = [° — wlln =

< inf ”10 - r”H.
1€Sh

Let an ¢; > 0 be given. From the density Theorems 4.1, 4.2 and 4.3, there exists
a Rt® e [C”(Q)]* N A4,0o(2) such that

[t — R%| 0.0 < &, .
Applying Theorem 2.4, we obtain

|R<® — r,.(RTO)Ho,Q < Ch*| R caaye -

Then r,(Rt°) € S,, (see the proof of Theorem 3.1) and
(4.15)  |I7° = ry(RO)|m £ Co([z° = R%|0,0 + |RT° = ry(RT°)]0.0) < &

follows for h sufficiently small. Finally, from (4.14), (4.15) we obtain (4.13).
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Souhrn

KONVERGENCE JEDNOHO ROVNOVAZNEHO MODELU METODY
KONECNYCH PRVKU V ROVINNE PRUZNOSTI

IvaN HLAVACEK

Rovnovazny blokovy trojuhelnikovy prvek, navrzeny Watwoodem a Hartzem [3]
je podroben analyze a dokdzédna jistd jeho aproximacni vlastnost. Odtud plyne za
piedpokladu regularity feSeni kvazi-optimdlni odhad chyby pfiblizného feSeni
kombinované Glohy pruznosti dudlni metodou (tj. na zdklad& Castiglianova variac-
niho principu).

Je poddn dukaz konvergence i v obecném piipadé, kdy feseni neni reguldrni.
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