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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

CONVERGENCE OF AN EQUILIBRIUM FINITE ELEMENT 
MODEL FOR PLANE ELASTOSTATICS 

IVAN HLAVACEK 

(Received December 8, 1977) 

INTRODUCTION 

In a recent study [1], an analysis of a dual variational procedure for a scalar 
second order elliptic equation has been presented. Using equilibrium finite elements 
of Veubeke and Hogge [2] with linear functions on triangles, we have proven some 
a priori error estimates, provided the solution was sufficiently smooth. 

It is the aim of the present paper to extend the main idea of the article [1] to 
boundary value problems of plane elastostatics. A weak version of the Castigliano 
principle is established in Section 1 and an approximate variational problem defined, 
using equilibrium stress fields. 

There exists a rich variety of equilibrium stress models, based on the triangular 
or quadrilateral elements (see [3], [5], [6] a.o.). To the author's knowledge, the 
only theoretical convergence analysis concerning equilibrium finite elements has been 
given recently by Johnson and Mercier in [8]. They apply a mixed variational for­
mulation of Reissner's type. 

In Section 2 we choose the triangular self-equilibriated "building block" element 
of Watwood and Hartz [3] and investigate its approximating properties. By means 
of a projection mapping, a quasi-optimal a priori error estimate 0(h2) is obtained 
in L2-norm, provided the solution is smooth enough. On the basis of some density 
theorems, presented in Section 3, the convergence of the proposed finite element 
procedure is justified even in the general case, i.e., without any regularity assumption. 

For the algorithm and the computational point of view, we refer the reader to the 
paper [3]. 

1. PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY 

In the present section we introduce a weak form of the well-known Castigliano-
Menabrea principle in plane elastostatics. Then a corresponding approximate problem 
will be defined, which enables us to employ finite element procedures. 
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Let us consider a bounded polygonal domain Q c R2, with Cartesian coordinate 
system x = (xu x2). Let the stress-strain relations be 

eu = bijklokl, i,j = 1, 2 , 

where etj and G{J are components of the strain tensor and stress tensor, respectively, 
bijkl are bounded measurable functions in Q and a repeated index means summation 
over the range 1, 2. Assume that 

Dijkl = °klij — °jikl 

and a constant c0 > 0 exists such that 

°ijkl(X) SijSkl = C0SijSij VSij — Sji 

holds almost everywhere in Q. 

Let the boundary dQ = F consist of two mutually disjoint parts, 

r = ruuFa, runra = <D, 
where Fu and Ta are either open in F or empty. On Fu and FCT the displacements and 
the surface tractions will be given, respectively. 

Henceforth L2(M) denotes the space of square-integrable functions in the set M, 
WJ'2(Q) the Sobolev space of functions, the derivatives of which (in the sense of 
distributions) exist up to the order j and belong to L2(Q). Let body force vector Ft e 
e L2(Q), a surface load vector Tt e L2(ra) and a displacement vector u0i e W1,2(Q) 
be given. We define the space of symmetric stress fields 

H = {o-e[L2(fl)]
4|<-y--ay,} 

and the set of statically admissible stress fields 

Af 

where 

= ÌGЄH O~ІJЄІJ(V) áx = ҒІVІ áx + T-vt ás W є V i , 

[ JQ JQ J Гa J 

V = {v e [Wl'2(Q)]2 | v = 0 on FM} 

is the space of virtual displacements and 

eu(v) = i(dvildxj + dvjldxt) • 

Theorem 1.1. (Principle of minimum complementary energy.) Let there exist 
a weak solution u of the mixed boundary value problem under consideration, 
i.e., u e [JF1,2(£>)]2 such that u — u0 e V and 

Cijki etJ(u) ekl(v) dx = Fivi dx + T.v/ 6s Vv e V, 
J Q J Q J Ta 

(where [cijki] is the matrix inverse to [bijkl]). 
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Then the functional (complementary energy] 

1 
-*(*) = bijkPijVki d x ~ °"i1 eij(uo)dx 

attains its minimum over the set AFT, if and only if 

a.. = (ju(u) = cijkl ekl(u) . 

For the p r o o f — see e.g. [4] or [1], where an analogous theorem is proven in 
detail. 

Next we transform the variational problem by shifting the affine hyperplane 
AFT c: H into a linear space A00 <= H. To this end, let us have a fixed stress field 
a e AF T. Then 

AFT = G + A0>0 , A0,0 = i T e H T l7e f/v) dx = 0 Vv e V I , 

i.e., every a e AFT can be written in the form a = a + r, where T e A 0 0 . Con­

sequently, 

^O 7 ) = ~ biiklxi}Tkl dx + iiy(bijklGkl - el7(u0)) dx + N(G, u 0 ) , 
2 J« J# 

where N(<7, u 0) does not depend on T. Let us introduce the scalar product 

(*', t")н = bijuh/ki dx 

and the functional 

where 
#to = i(T,T)fí-f(T), 

/ ( T ) = TiAeij(uo) - biJklakl) áx . 
JÍ2 

Then we may replace the minimum problem of Theorem 1.1 by an equivalent prob­
lem: to find T° e A00 such that 

( i . i ) <*>(T0)^ <2>(T) VT6A 0 ) 0 . 

Let h e(0 , 1> be a parameter and let {Sh} be a family of finite-dimensional sub-
spaces of Ao.o- We define the following approximate problem: 

to find T? e Sh such that 

(1.2) Ф(т°h)ѓФ(т) VтєS f t . 

Theorem 1.2. For any h e (0, 1> there exists precisely one solution of the problem 
(1.2). It holds 

(1.3) 
xeSh 
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Proof . The existence and uniqueness of T° is obvious. Moreover, from the con­
ditions 

(T°, T)H = / ( T ) V T G / 1 0 ! 0 , 

K , T ) H = / ( T ) V T E S , 

we obtain 
( T ° - T ° , T ) „ = 0 V T 6 S „ . 

Consequently, T£ is the orthogonal projection of T° onto the subspace Sh in the 
Hilbert space H and the assertion (1.3) follows. 

2. AN EQUILIBRIUM STRESS FIELD MODEL 

The crucial point of the dual variational approach is a proper choice of the finite 
element with a self-equilibriated stress field, i.e., the construction of subspaces Sh cz 
c A0,o- Several studies have been accomplished (see e.g. [3], [5]), where criteria 
for suitable finite elements have been proposed. 

In the present paper we restrict ourselves to one of the simplest elements, namely 
to the triangular "building block" element consisting of three subtriangles (see 
Fig. 1), with piecewise linear stress field, which was proposed by Watwood and Hartz 
in [3]. Let us emphasize that the single triangle with linear stress components cannot 
be employed, in contrary to the problems for scalar second order elliptic equations 
(cf. [1], [2]). In fact, the single triangular element violates an important criterion 
(see [3]), as follows. 

Fig. 

Let us define a set of self-equilibriated linear stress fields over the triangle K: 

(2.1) 
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where 
R1(/C) = {T6[P 1 (A0r | T,., = T,,} 

and Pi(K) is the set of linear functions defined on K. 
It is easy to derive that T G J/(K) if and only if 

(2.2) T n = £ x + P2Xt + / ? 3 * 2 , 

T22 = h + /?5*1 + &>*2 , 

Ti2 = T2i = Pi ~ Pe*\ - Pl*2 > 

where /?,„, m = 1, . . . , 7, are arbitrary real coefficients. Thus J/(K) is a seven-
dimensional linear set. 

Obviously, the stress vectors tfc(T) = rkJnj for x e J/(K) are linear on every side 
of the triangle K. They satisfy three overall equilibrium conditions 

(2.3) f tk(r)ds = 0, k= 1,2, 

(2.4) I [*. t2(T) - x2 t.(t)] ds = 0 , 
J C?K 

as a consequence of the equilibrium equations and of the symmetry of the tensor T. 
The stress vectors, however, are constrained by two more (redundant) conditions, 
which follow from the symmetry and continuity of the stress field at the vertices (cf. the 
Lemmas 2.1 and 2.3 in what follows). Hence the element has not enough independent 
stress modes on each side to balance an arbitrary self-equilibriated loading which is 
linear on every side, thus violating a criterion, established in [3]. (The same require­
ment is necessary for the existence of a proper projection mapping, as we shall see 
later — cf. Theorem 2.2). 

The above defect can be overcome by bisecting the vertex with a "cut" across 
which the continuity of the stress vector only is mainiained (instead of the con­
tinuity of the stress tensor). Thus the triangular "building block" is generated. It is 
worth of remark that this element is dual of the triangular element of Clough and 
Tocher, if the duality is considered in the sense of the so called "slab analogy" (see 
e.g. [5], [6]), using the Airy stress function. 

Let K be a triangle with vertices al9 a2, a3 and set a4 = ax. We shall use the 
following notation: 

C\K) = (T e [C"\K)Y\ T12 = T 2 1 } , j = 0, 1, 2 , 

where C0)(K) is the space of functions, the derivatives of which up to the order j 
are continuous in K and have continnous extensions to K. Further 

WJ(K) = {re[W^2(K)Y\ Hi = r2l} . 
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We introduce the norms 

\\T\\CJ(K) = max max |D a T„(X) | , 
r,s= 1,2 xeK 

M.S.I 
2 

IITII - ( V IIT II 2 . , V / 2 

II MILK ~~ V 2 . | |Trs| |WJ.2(K)1 
r , s = l 

Moreover, on every side afii+i we introduce the basic linear functions kl

k e P1(aiai + x ) , 

k = 1,2, such that 

4 ^ ) = 1, Al(a i+1) = 0, 

Ai(a4) = 0, 40;+1) = 1 • 

Let n be the outward unit normal to the boundary dK. Thus n = n(x l 5 x 2) = n1 e R2 

is constant along the side afii+u i = 1,2, 3. Let lt denote the length of afii+u 

h = max lt for i = 1, 2, 3. Denote a . b the scalar product a-Joi of any two vectors 

aybeR2. 

For the stress field T G PV*(K) we define the stress vector on afii+i 

(2.5) l'(T) = xkjn) , k = 1, 2 . 

Lemma 2.1. Let r e C°(K), (i.e. continuous on the closed triangle K). Then fOr 

any i = 1, 2, 3 

(2.6) ^12^0 = ?2i(«.) 

hO/ds zf and On/y if 

(2.7) t i ( T ) ( a . ) . n i - 1 = t i - 1 ( T ) ( a i ) . n ' 

(where we set i — 1 = 3 fOr i = 1). 

Proof. Let T 1 2 = T 2 1 at the vertex at. By virtue of the definition (2.5), 

• n = %«J"* = ?jknknj = 'hjnknj = t . n . 

On the other hand, let (2.7) hold at the vertex at. Then 

0 = f . n 1 - 1 - t 1 " 1 . n< = T ^ n X " 1 - T ^ n j - 1 ^ = ( T 1 2 - T 2 1 ) Dt_Ui, 

where 

Di-Ut = det 

Hence (2.6) follows. 

n[~\ n ' - 1 

n[, n\ 
sin af Ф 0 , 

Lemma 2.2. Let twelve "external" parameters Tk

l,\ Tk

l,l + 1, (i = 1, 2, 3; i + 1 = 1 

for i = 3; k = 1, 2) be given, which satisfy the following three conditions 

(2.8) T ^ ' X " 1 - Fr1'1"^ = 0 for i = 1, 2, 3 . 
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Then there exists precisely one tensor x e PS(K) such that 

(2.9) ф ) ( в ( ) , T,Г + Í = tl(r)(ai+l) 

i = 1 , 2 , 3 , fe = 1,2. 

Moreover, it holds 

(2.10) llTl^.^maxflT^lT^1!}, 
sin a i,fc 

where cc is the minimal angle of the triangle K. 

Proof. Using (2.5), we write the equations (2.9) for a vertex a :̂ 

' / _ \ ,„ i — 1 n-i— 1 ,i 

(k = 1, 2). Inserting T1 2 = T21 (and omitting the argument a,), we obtain the system 

(2.11) 

n[-\ 0, 

0, « 2 ґ т м 

" 2 , 

0, ^ 2 2 = т 2

м 

j W - l . l 

«r , nГ _ T 1 2 _ rpІ~ 1 , î 
-* 2 

Denote 

nfr = max {ИИ»-|}. 
As 2 |/7 '̂|2 __ 1, we have \nl

k\ __ ̂ 2/2. 
1°. Suppose nl

k = n[. From (2.8) it follows that the third equation in (2.11) can 
be omitted. For the corresponding determinant of the remaining system we obtain 

(2.12) £ - 1 i - 1 __ i У/2 sin oti, 

where oct is the angle at the vertex at. 

2°. Suppose n[ = n\. Then (2.8) implies that the fourth equation in (2.11) can be 
omitted. For the determinant of the remaining system it holds 

(2.13) «i. n2 

n\~\ nr1 __ i yjl sin OÍІ . 

From (2.12), (2.13) and (2.H) we conclude that there exists a unique array {!__(«,), 
T2i(ai)> T\.i(ai)}> satisfying (2.9) and for any r, s = 1, 2 we obtain 

^ ( a O U ^ m a x d T ^ . I T r 1 ' ' ! } 
SIП 0Cik= 1,2 
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Since every component TTS G PX(K) is uniquely determined by its values at the vertices, 
and 

max |T„(X) | = max |T„(fl,)| , r, s = 1, 2 , 
xeK i = l , 2 . 3 

the assertion and the estimate of the lemma follow. 

Lemma 2.3. The stress field T belongs to J?(K) (see (2A)), if and only if the fol­

lowing conditions hold simultaneously: 

Trs e Pj(K) , r, s = 1, 2 , 

(2.14) V(T) (at). n ' 1 = t^x) (a,) . nl, j = 1, 2, 3 , 

(2.15) f rfc(T)ds = 0 , k = 1,2. 
JaK 

Proof. Let i e i ( 4 Then 

0 = dTkjjdXj d x = T^n^- ds = 

J K J dK 
tk(т) ds 

ÕK 

From Lemma 2A the conditions (2A4) follow. 
Let T G [PX(K)]4. Using Lemma 2A and (2A4), we conclude that T21(af) = T12(af), 

i = 1, 2, 3. Thus T1 2 = T 2 1 on K and we may write 

(2.16) T n = / » ! + ^ 2 x ! + £ 3 X 2 , 

^22 = H4 + /?5*1 + .#6*2 > 

?12 = T21 = P7 + /?8X! + /?9*2 • 

From (2.15) we obtain 

0 = | ^ ( T ) ds = j dxjdxj dx = j (j82 + j?9) dx , 
J dK J K J K 

(T) ds = j 3T 2 J /3X, dx = I (pB + j»6) dx . 

J K J K 
0 = ř2V 

dK 

Consequently, p9 = —/?2 and /?8 = —/?6 can be inserted into (2.16), thus obtaining 
T G ̂ T(K) - cf. (2.2). 

Let us divide the triangle K into three subtriangles Kf, connecting the center of 
gravity 0 with the vertices (Fig. 1). Consider the set JV(K) of self-equilibriated, 
piecewise linear stress fields in every Kh i.e. denote 

(2.17) JT(K) = {T = ( T 1 , T 2 , T 3 ) \x\Kt = xi G M(K f) , i = 1, 2, 3 , 

t(Tf) + t ^ 1 " 1 ) = 0 VOa;, i = 1, 2, 3} . 

The last condition in the definition of ^V(K) means that the stress vectors are con­
tinuous across any side Oa{. 
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Lemma 2.4. Let r e .yV(K). Define twelve "external stress vector parameters'* 
by the relations 

(2.18) Ti-1 = t'k(r') (a,) , T M + 1 = f'(t') (ai+i), 

i = 1, 2, 3 , fc = 1, 2 . 

Then the following three conditions of overall equilibrium hold: 

(2.19) Z U T r + Tk
M+1) = 0 , fc = 1,2 

1 = 1 

(resultant forces vanish) and 

(2-20) | f [Xl(T2'''Ai(s) + T2
M+1A2(s)) -

* 1 J aja. + i 

-x2(T1'-'A;(s) + T/-'+1AKs))]^ = 0 

(resulting moment vanishes). 

Proof. Using the definition of Jr(K) and Jl(K), we may write 

0 = Z ^W^x1dx = I WJ ds = 
i = = 1 J K . i=1JdKi 

= i f tk(x>) ds + | f (r*(r') + .,(+•-')) ds = I f tfc<) ds, fc = 1, 2 . 
, _ 1 Jflifli + i i ~ 1 j 0 f l . * 1 J a . a < + i 

Inserting 
ti(Tf)= Tt% + 7 T + 1 4 , 

we obtain (2.19). To derive (2.20), we write (using eijk for the Levi-Civita tensor) 

0 = Z (T12 ~ * 2 l ) d x = Z e3ifc(5*»TI» + ** d*jmldxm) d x = 
i = 1 J K . i = 1 J K t -

3 f a 3 r 
= Z £3,7. — - (*}«**) d x = £ I £ 3 yfc T }m^n m d5 = 

i = 1 J K i 6 X m i = 1 J d / i : . 

= i [ ^ 'j(t( ** ̂  + i f «3*[^o + 'X*'-1)]** ds • 
i~1 J aiai + i

 i = 1 Jofl, 

The last term vanishes because of (2A7) and (2.20) follows easily. 

Theorem 2.1. Let twelve external parameters Tk
l,\ Tk

l-l+l be given, (i = 1, 2, 3; 
k = 1, 2), which satisfy (2.19) and (2.20), 
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Then there exists precisely one stress field z e Jf(K) such that (2A8) holds. 
Moreover, there is an estimate 

(2.21) max |T ť | | C O ( j r i ) ú C{CL) . max {|T/"'[, |T '% J '+ 1 | } , 
i = 1 , 2 , 3 j,/c 

where c(a) > 0 depends on the minimal angle oc of K only. 

Proof. Denote nA,n5,n6 the unit normal vectors to the sides Oa2, Oa3, Oax. 
Introduce twelve auxiliary parameters Sk, Sl

k on Oah i = 1, 2, 3, k = 1, 2, such that 

S" = ttf-^aì) = %[] , S-0 = í f c (ť- 1 )(O) = TÍ7 1 (O)nr 

let 1-4-2 = 6 for i = 1. 
Denote the length |0a i | = dh i = 1, 2, 3. 
The "transversal" conditions of continuity (2.17) on Oat can easily be satisfied by 

changing only the sign of Sl
k

l,Sl
k°. With respect to the conditions (2.14), (2.15), 

applied to Kl, we set 

(2.22) -dt(S? + Sl°) + d2(Sl2 + Sf) + h(Ttl + Tk
i2) = 0, k = 1, 2 , 

- S ' 1 1 и 1 

-Э/V Пъ 
Lk nk 

^20 6 

c 2 2

м i т i 2 ^ 
V Пu = h ПL 

^ 1 0 4 
>fc nk 

(2.23) 

(2.24) - s r n , f t = -Sl"nl 

A similar set of five equations can be written for the triangle K2 and K3, respec­

tively. Thus we obtain a system of 15 equations for 12 parameters Sk, Sl

k , i = 

= 1, 2, 3, fc = 1, 2 

jtfS = e ^ T , 

where 

d\, o, -du o, t í2 , o, d2, o, o, 0 

0, -du 0, -du o, fl-2, o, d2> o, 0 

0, o, - d 2 , o, -d2, o, í!3, o, clз, 0 

0, o, - f l " 2 , o, " d 2 , o, d3, o, flз 

du o, du o, o, -d3, o, - d з , 0 

o, du o, du o, o, - d з , o, - f l " з 

»î. n\, o, 0 

»?, n\, o, 0 

o, o, n\, » 2 , o, 0 

o, o, »?, »?, o, 0 

o, o, »?, » 2 , o, 0 

o, o, »?, »!, o, 0 

o, o, »i. »î, o, o, -n6
u - » 2 , 0, 0 

o, o, »?, »!. o, o, - » í , - » í 
o, 0, »?, » 2 , o, o, - » î . - » ! 
Ç — lC11 C 1 1 C 1 0 C 1 0 C 2 2 C 2 2 C 2 0 C 2 0 C З З ç»33 oЗO O З O Ч T 
J "~ V ° l > ° 2 » ° 1 » ° 2 > ° 1 > ^ 2 > -*1 » --*2 > ò l > ^ 2 > ° 1 > ö2 ) 9 
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& = 

h, o, h, o, 0 

o, h, o, h o, 0 

0, o, h, o, Í2, o, 0 

0, h, o, /2, o, 0 

o, o, *з, o, h, 0 

o, o, /з, 0, h 
nt, -nl o, 0 

o, 0, - * ? , -n\ 

o, o, -nî, -nt, o, 0 

o, o, -пí, - n 2 , o, 0 

o, o. -nl -nl o, 0 

o, o, -nl -nl o, 0 

o, 0 

o, 0 

o, 0 

T _ lT11 T 1 1 T 1 2 T 1 2 T 2 2 T 2 2 T 2 3 T 2 3 T 3 3 T 3 3 T 3 1 T 3 1 \ T 
1 — V i 1 , 12 , 1 1 > J 2 > J 1 , -- 2 , i i , i 2 , * 1 , * 2 , ' 1 > j 2 j 

From the three conditions (2.19), (2.20), it follows that we can omit three equations 
of the system, namely e.g. (2.22) and the last equation for K3, i.e. 

Sl°ni-S3
k°nt = 0. 

In fact, if the center of gravity O coincides with the origin, we may write 

ni + 2 = (-x2(ai)ldi9x1(ai)ldi)9 

(where i + 2 = 6 for z = l). Multiplying the equation of the type (2.22) for Kt by 
— [x2(ai) + x2(«i+ i)] if fc = 1, and by [x1(^I) + x1(ai+1J] if k = 2, equations of 
the type (2.23) by ( — dJi) and ( — djj), respectively, and equations of the type (2.24) 
by (±didj), we find the linear dependence of all the fifteen equations, using the 
moment equilibrium condition (2.20) for the right hand sides. 

Finally, the sum of three equations of the type (2.22) for Ki9 i = 1, 2, 3, k = 1 and 
k = 2, respectively, vanishes by virtue of the force equilibrium conditions (2A9). 

To obtain dimensionless coefficients, we divide the remaining equations of the 
type (2.22) for K, by /,-. Then the remaining system has the form 

(2.25) 

where 

(2.26) det. 

^S = F(T) 

= sin2 a^ sin a2 sin a3 d^d^lj^ 2lъ

l > 0 

We can find a lower bound for d,-

(2.27) dj = f/î sin2 a , j = 1, 2, 3 
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(where h = max lt). In fact, denoting tj the length of the axis of center of gravity, 
i 

(2.28) dj = itj ^ilmin sin x, 

Anin = Lax S111 CC = h SiVL OC 

and (2.27) follows. 

Inserting the estimates (2.27), (2.28) into (2.26), we obtain 

(2.29) |det »\ £ sin4 a %h2 sin4 a/minfc"3 - % sin9 a . 

Consequently, the system (2.25) has a unique solution SeR12. The entries J \ 7 of 
the matrix & are bounded above, as follows 

(2.30) | % | = s in"1 a , ij = 1, 2, ..., 12 . 

In fact, \n)\ = 1 and df//y = h ( h s i n a ) " 1 = sin"1 a. From (2.29) and (2.30) we 
obtain for the matrix $~~x inverse to J*: 

l^r.1! < 111! sin"2 0 a , i,j = 1 , . . . ,12 . 

Moreover, F/T) are linear forms in Tk
l\ Tk

l,l + 1, two coefficients of which only are 
nonzero, being bounded by one. Consequently, we obtain 

(2.31) max {\S»\, \S?\) ^ 24 . | ( l 1!) sin ~2f> a max (|T»|, | T ' " + 1|} . 
i,k i,k 

Now Lemma 1.2 yields the existence of a unique stress field xl G P^K;) such that 
for any i = 1, 2, 3 (2A8) hold and 

Sr = T i / a . ) n } + 2 , S? = Tij(0)n)+2, 

(i + 2 = 6 for i = l ) , 

Si+1'i + 1 = ^ ( 5 £ + 1 ) n } + 3 , S i+ 1 ' ° = T ^ O ) n J + 3 -

By virtue of Lemma 2.3 and the system of conditions of the type (2.22), (2.23), (2.24), 

we conclude that T1' e J/(Kt), i = 1, 2, 3, and T = (T1 , T2, T3) e ^V(K). 

Moreover, we deduce on the basis of (2.10) and (2.31) 

(1 11\ IIT'II < v mnv f ig"! k f ° | | o -+ l ,»+l | | c .+ l,0| In-nil | r l " ' I ' + 1 U < 

(z.32) ||T \\co(Rt) ^ max (p f c , p fc , pfc |, p fc , |ifc , ifc |) s 
sin a0 fe=i,2 

< ^y/1 54(11!) s i n -2o a ( m a x ||Tfcjj|? | T / '1 + 1 | } ? f = 1, 2, 3 , 
sin a0 j,k 

where a0 is the minimal angle of the subtriangles Kv K2> K3. 
It is easy to derive the following estimate 

(2.33) sin a0 ^ -J sin3 a . 
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In fact, without any loss of generality we may write 

1 d3 . 
sin a0 = sin y , 

2d ! 

where y is the angle between axa2 and the axis 0a3. From the relations 

y > ot1 ^ a , sin y ^ sin a , dx ^ h 

and (2.27), we arrive at (2.33). 
From (2.33) and (2.32), the estimate (2.21) follows. Q.E.D. 
Let us introduce the set 

U(K) = (T e W\K)\ dxijjdxj = 0, i = 1, 2} . 

Theorem 2.2. Let T e U(K) and let the array of twelve external parameters 
i, t rp i , 

k ? ik Tk
iJ, Tk

i,i+1 be determined by the conditions 

(2.34) [ (Ti'X[ + Tf+1X2) rm ds = [ tl
k{x) X\n d s , 

J <*iai + l J a id i + i 

k, m = 1, 2 , i = 1, 2, 3 . 

Then the external parameters satisfy the overall equilibrium conditions (2.19)> 
(2.20) and there exists a unique stress field IIT E Jf(K) such that (2.18) holds for 
(TIT)1 instead of T\ 

The mapping U : U(K) ~» JV(K) is linear and continuous. Moreover, 

(2.35) max ||(ilT)'|| <*<*,> ^ C0(a) max ||T'||CO(K|) 
i = l , 2 , 3 i = l , 2 , 3 

3 

holds for any x e U(K) n \\ C°(K£), where C0(a) > 0 depends on the angle a 
i = l 

only and 

(2.36) HT = T VT e Jt(K) . 

Proof. By conditions (2.34), the parameters Tk\ Tk
i,i+1 are uniquely determined, 

the matrix 

Ajm = ^ m d s , j , m = 1,2, 
J a.a, + i 

being regular (det A = /f/12). If T e U(K), for k = 1, 2 we have 

(2.37) 0 = f Tkjnj ds = i f tfc) ds = i i l£T? + IT+ 1 ) , 
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where (2.34) has been used. Furthermore, (cf. the proof of Lemma 2.4), 

(2.38) 

0 = (T 1 2 - T21)dx = c3jkTjmnmxkds = £ (*S(T)*2 - f2(r) xt) ds 

J K J dK i"1 J a.-flj + i 

Since we may insert 

*fc = ^fc( î) A + **(<*»+1) ^2 - fc = 1, 2 , 

from (2.34) we deduce that 

(2.39) ť)(x) xk ás (T}% + Tj'i + 1 A-).x t ds, 

j,k = 1,2. 

From (2.38) and (2.39) the condition (2.20) follows. Theorem 1.1 implies the 
existence and uniqueness of the stress field IIT e ./V(K), satisfying (2.18). 

The linearity of IT follows from the linearity of the mapping W1,2(K) —> L2(aiai+1), 
(2.5), (2.34), (2.25) and (2.11). 

To prove the boundedness of IT, we estimate the right-hand sides of (2.34). If 
3 

T e U(K) n Y\ C0(K t), then the upper bound is 

(2.41) liy/% max ||T l*||co (^ f ). 
i = l , 2 , 3 

From (2.34) we deduce easily 

(2.42) max {|T^|, | T / J + 1 | } g 2 ^6 max | T ' | | <*<*,) . 
j,k i 

Inserting (2.42) into (2.21), (where T1 is replaced by (HV)1), we obtain the boundedness 
of IJ and the estimate (2.35), respectively. 

To prove (2.36), we first realize that for T e Ji(K) the stress vectors tl
k(x) are linear 

along atai + l i consequently Tk = tk
l(r) (a(), Tk

l'l, + 1= tl
k(x)(ai+1). Next defining 

T\KI ~ T'> * = 1> 2, 3, we conclude that T1 e J/(Kt) and verify the conditions (2.17). 
Then (2.36) follows from the "uniqueness assertion" involved in Theorem 2.1. 

Theorem 2.3. Let T e U(K) n C2(K). Then 

(2.44) max | |T' - (/TT),'||CO(Ki) = c^cc) h2 \\T\\CHK) , 
i = l , 2 , 3 

where cx(a) depends on the minimal angle oc of K only and h is the maximal side 
of the triangle K. 

Proof. Let x 0 e K be an arbitrary point. Taylor's theorem implies for x e K 

(2.45) T I 7(X) = T I 7 ( X 0 ) + D t l 7 (x 0 ) (x - x 0 ) + i D 2 T I 7 (S) (x - x 0 ) 2 , 

i, j = 1,2, where 9 e x 0 x. 
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Denote T I 7(X0) + D T I 7(X0) (X - x0) = Ll7(x), 

iD2T^)(x~x0)2 = efXx). 
Since we have L e J4(K) c U(K) n C2(K), 

Q = T - LGU(K)nC2(K). 

Applying the mapping II to (2.45) (i.e., T = L + 2), using its linearity and (2.36), 
we obtain 

(2.46') HT = L + TIQ . 

Consequently, by virtue of (2.45), (2.46') and (2.35), we may write T — HT = 

- e - He, 
max IT1" - (I7T)1"||CO(KO = max \Ql ~ (nQy\\co{Ki) g 

i = l , 2 , 3 i 

S max ||G'||CO(KO + m a x ||(i76)'||co(/.:O _ 
i i 

S (1 + c0(a))max fle'lcoc*,) = (1 + c0(a)) |6||CO (K) • 

Moreover, on the basis of (2.45) we obtain 

e || <T 0 ti2ll-rll 

||CO(X) _ z n | | T | | c 2 ( K ) 

and the estimate (2.44) follows. Q.E.D. 

Theorem 2.4. Let z e U(K) n W2(K). Then it holds 

(2.46) | | T - 77T||0 ,K ^ C / I 2 | | T | | 2 ) K , 

where h = diam K, C depends on the minimal angle a only. 

Proof. We shall need the following result on the equivalence of norms. 

Lemma 2.5. Let Q be a bounded domain with Lipchitz boundary, Ji -
the subspace defined in (2.1), q the class of equivalence from the quotient space 
W2(Q)\J( with the usual norm 

\\Q\\W2(Q)/J{ — m * | | q | | w ' 2 ( ^ ) 

qeq 

and 
2 

| J . _ ( y y I! r)a || 2 \ l / 2 
\(i\2,Q — \ L L \\U ^ij\\0,Q) 

|a | = 2 i , j-=l 

Then a positive constant C exists such that 

(2A1) \\MwHQ)/Ji ̂  C|g|2,Q 

holds for all q e q e H\J{, where 

H = W2(Q) n U(Q) . 
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Proof. Let us introduce the functional gt: W2(&) -> R:1 

g.(q) = dqjd&j dx , i - 1, 2 . 

We shall prove that the space W2(Cl)\ji is complete with the following norm 

(2-48) lk«' = (HU + I^ ) ) 1 / 2 -
i = l 

It is readily seen that 

qeW2(Q), \\q\\' = 0 o q E J? . 

Let {qn} be a Cauchy sequence (with the norm (2.48)). Hence it is a Cauchy se­
quence with the seminorm \'\2tS, as well. It holds 

(2.49) IqlwHnyPsm = C\q\2# Vqeqe W2(Q)\P\ . 

(The proof of (2.49) is parallel to that of Theorem 7.2 in [7].) Consequently, to any 
qn e qn there exists pn e P\(3) such that 

r.-qm + Pn-+q in W2(S). 

Then for pn e W2(&)\J{ it holds 

||A ~ AH' = \\rn - rm - (qn - qm)\' S \\r„ - rm\\' + \\qn - qm\\', 

which implies that {pn} is a Cauchy sequence. Since 

dettp))1'2 

i=l 

is a norm in a fmite-dimensional space P\\J(, we have pn ~+ p in P\\Ji and in 
W2(3)\J/. 

Then q„ -> q - p. In fact qn = fn ~ pn and 

\\h - A - (g - P)||' ^ ||r, - «||' + | |A - Pll' = \Vn - qlko + ||A - P\\' - o. 
(Note that 

(2.50) ||p||' = C\\p\\wH6)/J( Vpepe W\8)\Jt) . 

Hence the space W2(C£)\M with the norm (2.48) is complete. 
Consider the identical mapping from the space W2(Q)\J/ with the usual norm onto 

the same space with the norm (2.48). By virtue of the Banach theorem on isomorphism 
and (2.50) we obtain that 

c\\q\wHh),Ji = H I ' . 

Since g((q) = 0, i = 1, 2 for all q e H, the assertion (2.47) follows. 
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We also employ a modification of the Bramble-Hilbert lemma. 

Lemma 2.6. Let Q, H, Jt and |#|2.£ be the same as in Lemma 2.5. Let a linear 
functional F eW be given such that 

(2-51) I F ^ I ^ C . l q l l ^ , 

(2.52) F(p) = 0 Vp e Ji(&) . 

Then there exists a constant C2 such that 

(2.53) \F(q)\ ^ C.C.Iq l^ Va e H . 

Proof. From (2.51), (2.52) and Lemma 2.5 we obtain 

lf(<-)| = 1^)1 -̂  Cx\\q\\w2/M S C.C2|g|2.fi Vqeqe U\Jl . 

Let us choose a reference triangle R. with vertices (0, 0), (1, 0) and (0, 1) in the 
( î» #2)-plane and introduce a linear one-to-one mapping 3F : JL -> K, 

(2.54) x = ^(x) = Ax + b , 

where 

A = l * ~" Xu x i """ * i 
L'^2 — X2> X2 ~ * 2 J 

bT = (xl,x^) 

and (x\9 x2), i = 1, 2, 3 are vertices of K. 
If the stress tensor T is defined on K, then the corresponding tensor defined on K is 

(2.55) t (x )= A-1T(^(X))(A~1)\ 

(i.e. the correspondence between contravariant tensors). 
Making use of (2.55), the relation 

T G U(K) o t G U(£) 

can be verified by direct calculation. 
Next let us set in Lemma 2.6 Q = fc, 

(2.56) F($) = (4 - fiq9 r)0X 

where r G W°(£), 

(q»0o,K = qi/«1dx-

It is easy to verify (2.52). In fact, if p e J^(R), then p e Ji(K) and p = Yip by virtue 

of (2.36). Consequently, we have p = lip and F(p) = 0. 

443 



We may write 

(2-57) | F ( $ ) | g \\r\\oAU\\o,R+ ||tfq|o,s) • 

Let us show that if g e W2(K), then 

(2-58) | | i I q | | o , ^ C | ! $ | | 2 ^ . 

In fact, we have 4 e C°(K), a e C°(K). Then (2.35) implies 

M = max ||(JT^)*||c0(jKi) = max ||(i7^r)I||co(jK:.) :g 
i = l , 2 , 3 l i = l , 2 , 3 

^ Q)||g||cO(K) = Q)||g||c°(£) ~ Cl||^||2,«> 

ll^qllo,* = I f ( ^ ) y k
 d * ^ 4M2 mes £ 

L* = - JK 
and (2.58) follows. 

The functional F is defined on H. In fact, q e H => q e U(K) and II is defined 
on U(K). Obviously, F is linear and (2.51) holds, as a consequence of (2.57) and 
(2.58), with C! = (1 + C) ||r||0,£. From Lemma 2.6 we obtain that 

(2.59) |F(4)| g C2(l + C) ||r||0,* \q\2,K V$ e 11 . 

Inserting r = # — Tlq into (2.56), from (2.59) it follows 

(2.60), ||$ - Hq\\0tK ^ C\4\2,R V $ e H . 

It holds 

IM|ofj-
 = W1 INo.* VweL2(K), 

\MI,R ^ Ch2\A\~1/2 \w\2tK Vive W2'2(K) 

(see e.g. [8]), where |A | is the Jacobian of the mapping (2.54). 

Using these relations, the estimate (2.60) leads to the assertion (2.46) for q = r. 
Q.E.D. 

Let Q <= K2 be a bounded polygonal domain, h e (0, 1>, / ^ a triangulation of ;Q. 
Suppose that 

h = max diam K . 
Ke.Th 

Let t(t)|x denote the stress vector defined in (2.5) by means of the stress field x e 
e JV^K). Let K, K' be two adjacent triangles in 2Th with a common side atai+l. 
We say that the condition (K) is satisfied, if 

(2.61) t(r)\K + t(r)|K, = 0 On K n K' = a^i+1 

fOr any interelement side atai+1 e Q. 
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Let us define 

(2.62) II(0) = {TE [W1>2(Q)Y\T12 = T21, dTuldxj = 0, i = 1, 2} , 

(2.63) ^ft(O) = {T|T|X G ̂ V(K) VK e ^ , T satisfies (K)} . 

We say that a family {&~h}9 h e (0, 1> of triangulations of £2 is regular, if there 
exists a constant a0 > 0, independent of h and such that ail interior angles of the 
triangles of 3Th e {$~h} are not less than a0. 

For T e U(Q) we define a mapping rh by the relation 

(2.64) rhT\K = nKT MKe$~h, 

where UK denotes the mapping defined in Theorem 2.2. 

Theorem 2.5. Let {$~h}9 h e (0, 1>, be a regular family of triangulations of Q. 
Then rh maps U(Q) into .sVh(Q), being linear and continuous, and it holds 

(2.65) ||T - vHo.1, g C h2\\r\\ic2m< VT G U(Q) n [C2(Q)f , 

(2.66) ||T - rhT\\0tQ g C A 2 | | T | | 2 | 0 VT G U(Q) n W2(Q) , 

where C is independent of h and T. 

Proof. Since 

T G [1(0) => T|* G U(K) VK G ^ , 

from Theorem 2.2 it follows that 

rkT\K = nKT\KeJT(K). 

Since the traces of TU from both sides of the interelement boundary coincide, it holds 

t(r\K) + t(r\K.) = 0 . 

Consequently, the right-hand sides of (2.34) change the sign only, when K is replaced 
by K'. With regard to (2.18), the same is true for t(TIKT) and t(TIK, T) and the con­
dition (R) follows. Hence rh : U(Q) -» ^Vh(Q). The linearity and boundedness of rh is 
a consequence of the analogous properties of the "local" mappings IJK. 

To verify (2.65), by virtue of (2.44) we may write 

h - v i s * - I f f - - tfKio.K = 
KeSTh 

= £ (mes K) C2h4||t||2W = C2h4(mes Q) | |T | |2
2(I2) , 

where Cx = 2(1 + c0 s in"2 3 a). The estimate (2.66) is a consequence of Theorem 2.4. 
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R e m a r k 2.1. Any field T G Jr

h(Q) satisfies the equation div T = 0 in the sense of 

distributions. In fact, let T G .Vh(Q), cp e [C0(Q)]2. Then 

<divт, ф> = - \ тkj-^dx = - т^e^dx = - £ 
Jí_ ^ j J ß KєГh 

дęt тkj~-dx 
к дxj 

3 

= 1 1 
Ke.iTh i = l J к, * ð*ŕ 

dx T^řl^fc d5 
eK. 

Using the conditions (2A7) and (R), the sum of all integrals over dKt vanishes. 
Since dTkjjdxj = 0 in every Ki9 we obtain <div T, cp} = 0. 

3. APPLICATION OF THE SUBSPACE JVh(Q) TO THE DUAL 
VARIATIONAL SOLUTION 

Let {^h}, h e (0, 1> be a regular family of triangulations of Q, satisfying moreover 
the following requirement: the "endpoints" of Ta coincide with some vertices of 3Th. 
Defining 

Sh = JTh(Q) n A0f0 , 

it is easy to show that 

Sh = {Te^h(Q)\t(T) = 0 on F,}. 

Recalling the definitions ( l . l) and (1.2), we can establish the following 

Theorem 3.1. Let T° e W2(Q). Then for any regular family of triangulations it 
holds 

||T° - T°II < r h2\\r°\\ 
| | T ~h\\0,G = ^ n | | T | |2,fl > 

where C is independent of h and T°. 

Proof. 1° We can show that r̂ T° G Sh. In fact, 

T° e [C2(Q)Y n A0i0 o f T ^ / V ) dx = 0 W G F O 
J.Q 

toydxj = 0 in Q , 
•i c i Л 

Consequently, T° G U(,Q), Theorem 2.4 implies that rftT° G ./Vft(-^) and it remains to 

verify that t(rfcT°) = 0 on F,. 

Let aiai+1era be a side of a boundary triangle Ke&~h. Since t(T°) = 0 on 

aiai+1, from (2.34) we obtain Tk

H = T f c

M + 1 = 0, k = 1, 2, which results in t(tfxT°) = 

= 0 on aial+1. Consequently, t(rfcT°) = 0 on Fa. 
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2° Using Theorems 1.2 and 2.5, we obtain 

C , | T ° - T°||0,n ^ ||T° - T ° | H <; ||T° - r , t 0 | H g 

g C2||r° - r,T0|o,0 ^ C3 h2||T°|2,n . Q.E.D. 

Corollary 3.1. Let the assumptions of Theorem 3A hOld. Then for a(u) = a + x°, 
ah = a + T° we have the estimate 

K«)-^| |o.« = o(h2). 

Let us recall the transformation of the problem £f(a) = min over the set AF T 

into the equivalent problem (1.1). We supposed that a stress-field a e AF T was 
available. In praxis, however, this requirement may be difficult to satisfy. Therefore, 
suppose that we can find a <r e AF^ where ST is close to Tin some sense. For example, 
let us have a a1 e H such that 

dffljjdxj + Ft^O, i = l , 2 

(note that a\j can be found by integrations of F, only). Let us set T = T — tfa1) 
and suppose that t(ax) e [L2(F«-)]2. 

m 

Let F«- = U ajQj+i- Assume that we can find a a2 e JV^Q) such that 
1=1 

(tk(a
2)- Tk)X{ds = 0, j = í,...,m; fc,n--l,2, 

(i.e., tk(a
2) are orthogonal projections n Tk of Tk into P1(ajaj+l)). 

Let us define a = a1 + a2, ST = ^o-1 + a2). Then <? e AF>5-, 

lfk - Tk\\ = H ^ 1 ) + HTk - ntk(a*) - TiH ^ 

^ l l^a 1 ) - ntk(a
l)\\ + \\hTk - Tk\\ . 

Consequently, ZT is an approximation of T. 
Define the problem to find x\\ e A00 such that 

$A?r)£M*) VTeA0f0 

and the approximate problem to find xhg- e ^V/,(.Q) such that 

M £ ) - ^ M * ) vtGS,, 
where 

M т ) = i(т, т)„ Ttj[etAuo) ~ hijkČki\ d* , 
Í2 

(j^ = <7 -f- TJ- , a1^ = a + xh^ 

Then we have the following 
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Theorem 3.2. Let T% e W2(Q) and T, t ^ 1 ) e [JV2 '2(Fm)]2 for any side Fm Of the 
polygonal Ta. Then for any regular family of triangulations it holds 

K " ) - <||o,fl = C/z2, 

where C is independent of h. 
Proof is based on the inequality 

IKu) - <^||H g |Ku) - (TS-HH + yr - ah4H. 

The last term can be estimated using Corollary 3.L The term a(u) — GQ
T can be 

treated like an analogous term in Section 3 of [1], 

4. CONVERGENCE OF THE EQUILIBRIUM FINITE ELEMENT MODEL 
IN A GENERAL CASE 

In Theorems 3.1, 3.2 strong regularity assumptions were imposed upon the solution 
of the dual variational problem. A question arises about the convergence of the 
method in a general case, when the regularity of T° cannot be justified. The main 
point of the following convergence analysis will be a proper density theorem. We shall 
distinguish the cases: (i) F = FM, (ii) F = Ta (iii) F = Fu u Ta. In what follows, 
we use the notations: 

Ml-.o = (Z Nli,fl)1/2> 
k=i 

2 

Hi/2,r = (Z NlíW/^cT,)17 

k=l 

2 
1/2 

I-'KU \Vi/*,<L(DJ 
k=l 

(i) Let F = Tu. We have V= [W^2(Q)]2
9 

A0fi(Q) = j - e {L2(Q)f | t v = t,„ f xljetJy) dx = 0 Vv e [W^2(Q)f\ . 

Theorem 4.1. The set 

A0t0(Q) n [C™(Q)f 

is dense in A0t0(Q) (with the topology of [L2(fl)]4). 

Proof. Let Q* <= R2 be a bounded domain with a Lipschitz boundary such that 
Q* => Q. In case that Q is a domain of connectivity m, we choose Q* of the same 

m 

connectivity. Then Q* — Q = \J Gj, where Gj are doubly-connected domains. 
J = i 

Let TeA0f0(Q) be given. We construct an extension ET e A0f0(Q*), ET\Q = T as 

follows. 
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In every G,- let us consider the following auxiliary problem: to find 

V(Gj) = {v e [IV1 '"(G;)] 2 | v = 0 on dGj -- 5(2} W Є 

such that 

(4.1) f eik(w) eik(v) dx = - f xikeik(Pv) dx W 6 V(G,), 
J Gj J D 

where Pv is any extension of v e V(Gy) such that 

Pv e Vj(Q) = {v e [W1 , 2(rQ)]2 | v = 0 on dQ -=- dGj} , 

Pv = v on dQ n dG,.. 

The right-hand side of (4.1) is independent of the kind of extension from V(Gj) 

into Vj(Q). In fact, since Pv - Pv = 0 on dQ n dGj, Pv - Pv e[V/0

U2(Q)Y and 

Í, rikeik(Pv - Pv) dx = 0 

follows from the definition of T e A0)0(O). 

There exists a linear mapping of [W1/2,2(dQ n SGj)Y m t o Vj(Q) such that (cf. 
[7] - chpt. 2, § 5) 

•||Pv|| l ifl = C | | v | | 1 / 2 ) ^ n a G j = C C j v l ^ . 

Consequently, 

T i ^ i f c ( ^ ) 
JiQ 

dx š C | | T | | 0 > 1 . | | í V | | 1 , n g C 2 | | T | 0 t O H | 1 ( C j 

and the right-hand side of (4A) is a linear bounded functional on [^ 1 , 2 (G;)] 2 . 
Using the Korn's inequality for v e V(Gj) and Lax-Milgram's theorem, we arrive 
at the existence and uniqueness of the solution w of (4.1). 

Setting FT = e(w) in Gj V,-, ET\Q = T, we show that FT e A0>0(;Q*), In fact, let 

ve[W0
U2(Q*)Y- Then 

(Ex)ik eik(v) dx = Tik eik(v) dx + £ eik(w) eik(v) dx . 
J Q J Q J = - J Gj 

Since 

[W0''2(Í2*)]2 = {v e [ry1>2(Q*)]2 I v = 0 on 5G, ^ 5fí V/} , 

m 

v e [WU2(Q)Y => v = £ Wj , w, e V/jQ) , 
i = i 
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we may wnte 

J (ET)ik eik(v) dx = £ Tik eik(w) dx + f e^(v*r) eik(v) dx = 0 , 
JQ* 1=i LJ« JG7 J 

because Wj = Pv, w, = v on d.Q n dGj Vj. 
Let us regularize (ET)ik by means of a kernel cox(x - y), where 

< X 

A = const > 0, x < dist (£&*, dQ). We obtain T*y = K*(FT), e C°°(£), 

(4.3) T*(X) = f cox(x - y) (FT),(y) dy , t, j = 1, 2 , 
J« 

(4.4) dTy/Sx/x) = - f / - o)x(y - x) (FT), (y) dy Vx e Q , i = 1, 2 

By virtue of the fact that <DX e C ^ * ) cz Rtf^A*) and 

(4.5) f ( F T ) , ^ - d y = f ( F T ) , ^ d y = f ( E T ) , e , ( ^ ) d y 
Jfl* ^yy )n* dyj J f l , 

where 

o \ = (cDx, 0) for i = 1 , 

cox ss (0, cox) for i = 2 

has been defined, and using the definition of A0>0, we are led to the equations 

(4.6) дxl 
ôx 

ы = 0 in ß , i = 1,2 => т x є Л0>o • 

Moreover, we have for x -> 0 

(4.7) | | t* - T | | 0 , O S | |T" - £ t | | 0 i O . -» 0 . Q.Е.D. 

(ii) Let F = ra. Assume that Q is a starlike domain, i.e., a point A e Q exists 
such that each ray from A intersects the boundary F in one and only one point. 

Theorem 4.2. If the domain Q is star like, then the set 

Aofi{Q) n [C"(Q)¥ 

is dense in A00(Q). 
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Proof . We have V= [WU2(Q)f, 

A0t0(Q) = I T e [L2(Q)f \ rtJ = Tji9 | Ty e,7(v) dx = 0 W e [W1 >2(Q)]2\ . 

I J O J 
Let T e A00(Q) be given. We extend it onto R2 — Q by zero function. The extended 
function will be denoted by FT. Let us put the origin into the point A and define 

TJ /X) = FTt7((l + e) x ) , e > 0 . 

Lemma 4.1. For any o e C^(Q) it holds 

\\°e ~ HIo,o ~* ° for e-* 0 . 

Proof. Using the mean value theorem we may write 

j (oE - O)2 dx = J [o((l + e) x) - o(x)]2 dx = 
Jo J Q 

= f [ X ^ (**) ^ml 'dx ^ e2 [ |grad «r(Sx)|2 |x|2 dx g e2 C(<2) ||cr||21(J5), 
Jo Lm=1 ^Xm J Jo 

where the constant C(Q) depends on the domain only. 

Lemma 4.2. If T = 0 outside Q, T e L2(Q), there exists a sequence T" e CQ(Q), 
such that 

he - (Olo,« - o 

for n —• oo uniformly with respect to e. 

Proof. Denoting 1 + e = /c, we have for the sequence T" -> T in L2(Q): 

f [T(/CX) - T"(kx)]2 dx = 1 f [ <y ) - T"(y)]2 dy =g 
J Q k J kQ 

-S I b(y) - T'tx)]2 dy -> o if n 
J o 

00 , 

because both T and T" vanishes outside Q. 

Lemma 4.3. 1f T = 0 outside Q, T e L2(.Q), then 

| | T £ - T||0.O -* 0 for e - 0 . 

Proof. Using Lemma 4.2 and 4A (for o == T"), we have for e -> 0 

||TE - T||0 g ||TE - (VTIIo + ||(T")« - T"||0 + ||T" - T||0 -> 0 . 
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Lemma 4.4. The function T£ belongs to A0f0(Q) and supp T£ C Q. 

Proof. Let us consider an arbitrary ve [W1,2(.Q)]2. Then v(y) = v(yjk) belongs 
to [W1,2(kiQ)]2 and we may write 

<j eij(v) dx = F Tl7(kx) e0<v(x)) dx -
a J _Q 

= A f £ *«(y) eiMy)) dy = A f ^(y) ^(*(y)) <*y = o, 
K J kQ & J iQ 

which yields that T£ e A00(.Q). 
Since the domain .Q is starlike, the function T£ vanishes in the "boundary layer" 

Q •*- k~lQ = _Q£. Q.E.D. 
Now we are able to finish the proof of Theorem 4.2. Let us regularize the func­

tion T£, defining (cf. (4.2), (4.3)) 

#* Tu(x) = °>x{x ~ y) Ty(y) d y > UJ = 1,2. 

J D 

By an argument similar to (4.4), (4.5), we deduce, using Lemma 4.4, that 

(4.8) dRx T'tjjdxj = 0 in Q , i = 1, 2 . 

Moreover from Lemma 4.4 it follows that 

(4.9) R„ T£
7(X) = 0 Vx e F , Vx < dist (dfl, supp T£) . 

From (4.8), (4.9) we obtain that RXTE e A00(Q), using integration by parts. 
Finally, by virtue of Lemma 4.3 

||T ~ RXT%,Q ^ ||T - T£||0,f i + ||T£ - RXT%>Q - 0 

for e -> 0, x -> 0. Q.E.D. 

(iii) Let T = Tu\jTay 

Theorem 4.3. Assume that there exists a point Ae R2 such that if A coincides 
with the origin, then for k = 1 + e and £ > 0 sufficiently small, either 

(I) kTa cz R2 --. Q or 

(II) kFa c Q , 

where kM denotes the image of a set M by means of the "dilatation" mapping 
y = kx. 

Then the set 
A0t0(Q) n [C*(Q)f 

is dense in A0f0(Q)! 
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Proof. Let T G A0t0(Q) be given. First we extend it as follows. 

1° Let Q* z> £>, £2* be a bounded domain with Lipschitz boundary. Let 0 < 2d < 

< dist (dQ, dQ*) and denote (see Fig. 2) 

G* = {x £ Q | dist (x, f a) < d} - USy , *) 

Fig. 2. 

Qt = :C2 u G* , 

Qe = G* - Qx . 

Consider the following auxiliary problem: to find w e Ve, 

Ve = [v E [WU2(Qe)f | v = 0 on dQ* 

such that 

(4-10) eiÁw) eij(v) áx 

J ӣe 

ľ * y ^JІPV) 
J Q 

dx Vv є Ve, 

where Pv is (a restriction of) an arbitrary extension of v e Ve into [WJ ,2(.(2*)]2. 
The right-hand side of (4A0) is independent of the kind of extension P. In fact, 

Pv — Pv = 0 on d£>i for any two extensions P and P. 
Since FM cz cQu it holds 

Pv - Pv = 0 on ru => (Pv - Pv)\Q E V, 

I Tu eij(Pv ~ P^) dx = 0 . 
Jr? 

! ) Sy are sectors of sufficiently small angles with vertices at the points /-,- ^ F« = By. 

453 



A linear extension P : Ve —> [Wo1,2(^*)]2 exists such that 

|| pv | | < r*||vll 
| | rv | |i,r3* = H r ..-»«• • 

(For the proof of this assertion see e.g. [7] — dipt. 2, Th. 3.9). Consequently, the 
problem (4.10) has a unique solution w. 

Let us define the extension ET as follows: 

(0 in G* , 
(4.11) ET = \e(w) in Qe, 

IT in Q . 

By virtue of (4.10) we have for any v e [jV0
1,2(^*)]2 

(4.12) f (ET),, eu(v) dx = f TU eu(v) dx + f eu(w) eu(v) dx = 0 . 
JiQ* JQ J Qe 

2° Let us transform ET, using the dilatation mapping 

T£(X) = E T(kx) in case (I) , 

T£(X) = E T(k_1x) in case (II) . 

It is easy to see that Lemma 4.1 remains valid in case (II), too. 

Lemma 4.5. Let T e L2(Q), ET e L2(Q*), 0 < e < e0 < oo. Then there exists 
a sequence Tn e C0

G(Q) such that TH -> T in L2(Q) and 

he - (T")1|0,D = C(||T" - T||0,O + 11-STIIO.M^) 

for the case (I). In case (II) the last norm is to be replaced by \\ET\\0fk-iD^D. 

Proof. For the sequence, satisfying T" -> T in L2(Q), we obtain in case (I): 

j [E T(kx) - T"(kx)]2 dx - k"2 J [F T(y) - T"(y)]2 dy ^ 
J Q J kQ 

S I (T - T")2 dy + [ET]2 dy . 
JiQ JkQ^Q 

In case (II) it suffices to replace k by k"1 to obtain the same estimate. 

Lemma 4.6. Let T E L2(Q), ET e L2(Q*), 0 < e < e0. Then 

||T£ — T||0.G -+ 0 for e -> 0 . 

Proof. Using Lemma 4.5 and 4.1 (for a = T"), we may write 

||T8 - T|| ^ ||T£ - (TM)£|| + ||(T")£ - T"|| + ||T" - T|| ~> 0 . 
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Lemma 4.7. There exists e0 > 0 such that for 0 < e < _0 

T£ = 0 in a neighbourhood \hr* \ of Ta in case V/J,\ 

Proof. From the geometrical assumptions it follows that a positive 80 exists such 
that for 0 < 8 < e0 

f. c k_1G* in case (I) , (fff c kG* in case (II)) . 

Then for x e k_1G* (x e kG*) we have T£(X) = 0 by virtue of (4.11). 

Lemma 4.8. Let Qd = {x | dist (x, __) < J} . Then there exists e0 > 0 such that 
for 0 < 8 < e0 one has 

L xueu(v)dx = 0 Vve[Wol'2(Qd)Y • 
Ida 

Proof. Let v e [W0
U2(Qd)Y- Define in case (I) v(y) = v(yjk). Since fc_d c Q* for 

sufficiently small a and v e [W0
1,2(kQd)Y, we can extend v by zero to obtain Pv e 

e[W0
1>2(„*)]2 . Then 

f Ty .y(v) dx = fc~2 f £ Ty(y) .(,(v(y)) dy = fc-2 f __ y el7(Pv) dy = 0 
J r_d J _c_>d J _Q* 

by virtue of (4.12). In case (II) the proof is parallel. 
To finish the proof of Theorem 4.3, let us regularize T£. By an argument similar 

to (4.4), (4.5), we obtain for x < d that 

__iL___) _ _ f T . . e . (d>x) d x _ 0 VX £ _ . 
5*y Jo, 

Using Lemmas 4.7 and 4.8 one deduce easily that for sufficiently small x 

Rxx]j = 0 on ra. 

Integrating by parts, we obtain that Rxx
c e A0 0(._). The Lemma 4.6 and the well-

known property of regularization yield that 

ll*,** - T||0>O _S |RXTE - T£ | |0 I„ + ||T« - T||0._ -> 0 for % - * 0 , e - + 0 . 

Theorem 4.4. Let us consider the cases: 

(0 r = rui 
(ii) F = Ta and the domain Q is starlike (see Theorem 4.2), 

(iii) F = FM u Ta and the assumptions of Theorem 4.3 hold. 
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Then for any regular family of triangulations and for o e AFT, 

(j(u) = 6= + T° "I ff* - G + T° , 

one has 

(4.13) ||(T* - a(u)l0tQ -> 0 for h -> 0 . 

Proof. On the basis of Theorem 1.2, we have 

(4.14) C-K - a(u)\\0tQ = C I | |T° - T°||0ifi ^ ||T° - TJIH g 

^ inf ||T° - T | | H . 

Let an £, > 0 be given. From the density Theorems 4A , 4.2 and 4.3, there exists 
a RT° e [ C 0 0 ^ ) ] 4 n A0§0(Q) such that 

||T° - RT°||0,O < ±Cl . 

Applying Theorem 2.4, we obtain 

||KT° - r,(.RT°)||0iO S Ch2||KT°||[c2(J5)]4 . 

Then rh(RT°) e Sh, (see the proof of Theorem 3.1) and 

(4.15) ||T° - r,(RT°)||H S C2(||t° - i?T°||0,fi + |RT° - rA(RT°)||0,n) < e 

follows for h sufficiently small. Finally, from (4.14), (4.15) we obtain (4.13). 
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S o u h r n 

KONVERGENCE JEDNOHO ROVNOVÁŽNÉHO MODELU METODY 
KONEČNÝCH PRVKŮ V ROVINNÉ PRUŽNOSTI 

IVAN HLAVÁČEK 

Rovnovážný blokový trojúhelníkový prvek, navržený Watwoodem a Hartzem [3] 
je podroben analýze a dokázána jistá jeho aproximační vlastnost. Odtud plyne za 
předpokladu regularity řešení kvazi-optimální odhad chyby přibližného řešení 
kombinované úlohy pružnosti duální metodou (tj. na základě Castiglianova variač­
ního principu). 

Je podán důkaz konvergence i v obecném případě, kdy řešení není regulární. 
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