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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

ERROR ANALYSIS OF THE NONLINEAR MULTI-GRID METHOD 

OF THE SECOND KIND 

WOLFGANG HACKBUSCH 

(Received November 17, 1978) 

l. INTRODUCTION 

The name "multi-grid algorithm" is connected with the method of Fedorenko 
[4], Bachvalov [2], Astrachancev [ l ] , Brandt [3] (further references in [5]) for the 
fast numerical solution of elliptic problems. We shall call this method "multi-grid 
iteration of the first kind" in contradistinction to the "multi-grid iteration of the 
second kind" that is described by the author in [6] for the fast solving of Fred-
holm's integral equation of the second kind. The first algorithm has a rate of con
vergence bounded by a small constant independently of the step size, whereas the 
second iteration has a convergence rate tending to zero when the step size approaches 
zero. 

In Section 2 we describe the problem, its discretization and the assumptions we 
need. The multi-grid algorithm of the second kind is explained in Section 3. Section 4 
contains the qualitative analysis of the rate of convergence. 

2. THE PROBLEM AND ITS DISCRETIZATION 

2.1. Equation 

We consider the system 

(2.1) u = X(u) 

of nonlinear equations. The function u is an element of a Banach space B0. Let U C Bo 
be a neighbourhood of a (not necessarily unique) solution of (2.1). If we require that 

(2.2) U be sufficiently small, 

we may assume that J f (v) is defined for all v e U. Furthermore, J f is assumed to be 



Frechet differentiable: 

(2.3) K(v) : = Jf'(v) (Frechet derivative at v eU), 

where the operator K(v) : B0 -> B0 is Lipschitz continuous: 

(2.4) \\K(v) - K(w)\\Bo^Bo ^ C\\v - w\\Bo (v, weU). 

Here and in the sequel C denotes a generic constant. Requirements weaker than 
(2.3) and (2.4) are discussed in [6]. 

We introduce the notation 

K : = K(u) (u e U a solution of (2.1)). 

The multi-grid iteration can be applied to (2.1) only if the range of K belongs to 
a Banach space Bt C B0 with a finer topology. The essential property of X* is 

(2-5) 1*1*,-*. ^ C • 
Here K may be replaced by its power Km (m > 1 fixed; cf. [6]). The estimate 

(2.6) \\(I-K)-%0^Bo^C (/: identity) 

ensures that the problem (2A) is properly posed. 

Example 2.1. Consider a nonlinear integral equation 

f1 

u(x) = k(x, y, u(y)) dy (x e [0, 1]) , 
Jo 

where k(x, y, u) is Lipschitz continuously differentiable. Then K(v) is defined by 

(K(v)w)(x)= [ku(x,y,v(y))w(y)dy. 
Jo 

Obviously, the requirements (2.4) and (2.5) are satisfied for the choice of B0 = 
= C°([0, 1]) and B, = Cm([0, 1]) (m ̂  1) provided that (djdxf ku(x, y, u) is 
continuous. 

Example 2.2. Consider the elliptic problem —Au = u2 in Q a Rn, u = 0 
on the boundary F of Q, \ ^ n ^ 3. Let «vT(v) be the solution of — Au = v2

? 

u | r = 0, or in short notation: Jf(v) := — A~1v2. Then K(v) defined by K(v)w = 
= —2A~1(vw) fulfills (2.4) and (2.5) if T is sufficiently smooth and if the Holder 
spaces B0 = Cff(Q), Bx = C2+(T(Q) (0 < o < 1) or the Sobolev spaces B0 = L2(Q), 
Bx = HQ(Q) (0 < x < 2 - n\2) are chosen. 

Proof in the case of B0 = L2(Q), Bx = H*0(Q). The embedding H2~X(Q) c L^Q) 
yields Lt(Q) c L^(Q) c (H2-*(£))' for the dual spaces. Therefore, w e B0 = L2(G)-> 
-> vw e L^G) cz (H 2 "*^) ) ' -> A^vw) e Ho(Q) = B! shows (2.5). The continuity 
of A"1 : Lt(Q) -> Bi proves (2.4), too. • 

Further examples are given in [6, 7, 8, 9]. 
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2.2. Discretization 

The method is named ,,multi-grid" iteration since we use a sequence of decreasing 
step sizes: 

(2.7) h0 > hi > ... > hv_! > hv > ... > 0 , a = hv/hv-i = a > 0 . 

Usually, 

hv = 2~vh0 (v6 1V0:= (0 ,1 ,2 , ...}) 

is chosen. For every v e _V0, the equation (2.1) discretized is 

(2.8) u_ = X v (u v ) . 

In the case of Example 2.1 we may discretize by a quadrature formula. The problem 
of Example 2.2 can be discretized by replacing A by a difference scheme. uv belongs 
to a discrete analogue of B0 denoted by B0. The Banach space B0 may consist of grid 
functions. In the case of Galerkin's procedure B0 is a finite dimensional subspace 
of B0. Bl c_ BJ is the respective analogue of Bv 

As in Section 2.1 we define the Frechet derivative 

Kv(vv) : = X'v(vv), Kv : = Kv(wv) (uv a solution of (2.8)), 

which is assumed to be defined for vv e Uv c_ B0, where 

Uv = {VVEBV:PVVVEU} 

is defined by means of the prolongation Pv : B0 -> B0 explained in Section 2.3. 
The definition of Kv requires uv e Uv. Since Pvwv -> u is expected, uv e Uv holds 
if we assume that 

(2.9) h0 be sufficiently small. 

Kv(vv) has to satisfy the analogues of (2.4), (2.5), (2.6): 

(2.10) ||Kv(vv) - Kv(wv)|| BO^BQV S C\\VV - wy\\ BQV (vv, wv G Uv; v e _V0), 

(2.11) | |Kv | |Bov^ lV = C (ve/V 0 ) , 

(2.12) ||(/. - X O ' I I B O ^ B O V = C (ve/V0; Iv: identity on Bv
0). 

All constants are independent of v. 

2 3 . Restrictions and Prolongations 

The Banach spaces Bt and B] (i = 0, 1; v e _V0) are connected by the restrictions 

- > B r i 0 - o , i ) 

^ C , Kv_! - r v _ i y R v (i = 0,1) 

R. : _ , - _ ; , r v _ 1 ; V : ß : 
with 

(2.13a) | |^v] |B i -^B . v = C > | | r v _ l t V | | в . v _ > в . v 
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and by the prolongations 

P V : B . - > B 0 , pViV_x : Bl~l -> P0
V 

with 

(2.13b) \\Pv\\Bo^Bo^ C, | |p, , ._1 j | j B o_-1_B o . ^ C , P .p . , . - . = P V _ . . 

Furthermore, we assume the existence of Pv : PJ" -» P! with 

(2.13c) RVPV = Iv = identity , ||Pv|Blv__,Bl g C . 

The finer topology of Px is needed for the approximation property 

(2.13d) |IV - Pv.v-i^-i^llB^Bov S Ch%t (a > 0; v ^ 1) 

and the condition of consistency 

(2.14) ||KVRV - Kv^lk-.Bov ___ Chp
v (p > 0 ; v e _V0). 

The assumptions (2.5), (2.6), (2A3c) can be omitted if (2A4) is replaced by the 
relative consistency condition (cf. [10]): 

| | K v - l r v - l , v ~" r v - l , v ^ v | U i v - > B o v - 1 = Chv„x . 

3. MULTI-GRID ALGORITHM OF THE SECOND KIND 

3.1. Preliminaries 

The multi-grid algorithm depends on the choice of the step sizes (2.7), on the dis
cretizations (2.8), on rv_ljV and Pv.v_i and on the method used for solving (3.1) 
on the level v = 0. The mappings Kv, Pv, Pv and the derivatives Kv are used only for 
the theoretical discussion. 

In Section 3.2 we study the one-stage iteration which uses only one auxiliary grid. 
In general it is of no practical use. Nevertheless, its rate of convergence is nearly 
the same as that of the final algorithm. By a recursive application of the one-stage 
method the iteration ot Section 3.3 is obtained. The recursive method needs the solu
tions of (2.8) for coarser grid widths. The algorithm of Section 3.4 provides for these 
values. 

3.2. One-stage Method 

Let Fv be the range of Iv — JTV: 

Fv = {/v eB£:fv = vv - Jf v(vv) and vv e Uv} . 

Thanks to (2.12), Fv is a neighbourhood of zero. Consider the generalized equation 

(3-1) ^v = 4 v ) + / v ( / v ^ v ) 
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and denote its solution by 

v̂ = * v ( / v ) • 

The one-stage iteration vv
At) —> vv

i + 1) is defined by 

(3.2a) rv"+1/2> = j r v ( 4 " > ) + L , 

(3.2b) t/<v"> = v<"+1/2> - Jfv(.(
v"+1/2>) - / , = Xv(t/v">) - jf-v(. ¥ " + 1 / 2 ) ) , 

(3.2c) ,v" + 1> = ,<v"
+1/2> - pv,v_1[<5v_1(rv_1,vd<">) - « ,_.] , 

where i.v_i = <f\_i(0) is the solution of (2.8). In the following we justify some modi
fications of the iteration (3.2). 

Consider Example 2.2. Jfv(vv) has the representation A~lv2, where Av is the differ
ence analogue of A. Therefore, Jfv(vv) can be computed exactly only if a direct 
method is applicable. Otherwise, the inversion of Av is approximated by an iterative 
process as a secondary iteration. We assume 

Jfv(vv) = (Iv - Av)~
 l @v(vv) , ||_4;||Bov_..Bov _-_ Cvev, sv < 1 , 

i.e., the iteration 

w(
v*

+1) = Avw
(/} + &v(vv) 

converges to Jf v(vv). By JTv(vv, w[°\ o) we denote the result of O iteration steps 
starting with wv

0): 
o-i 

(3.3) Jf v(vv, wv, Q) = A>v + £ A* Mv(vv) = Jf v(vv) + A%\_wv - Jf v(vv)] . 
z=o 

(Q = 0) 

Example 3.1. Consider the nonlinear boundary value problem of Example 2.2 
and solve the linear problems — A~ v\ by means of the multi-grid iteration of the 
first kind. In [5] we proved ||Av

,||Bov_,Bov :g eQ < I for B0 being the discrete analogue 
of B0 = L2(Q). Thus, neither Cv = 1 nor ev = & depend on v. 

Eq. (3.2c) involves uv_i- Since this solution is not known exactly, it is replaced 
by an approximation wv_i. Let 

O\-i = uv_i - JTv_i(uv_i, i7v_i, £v_i) (£v_! ^ 0) 

bean approximation of the defect of i7v_i :u v _ i « <Pv_l(3v_l). In the case of Qv_t = 
= 0, (3.3) yields O\,_i = 0. 

Finally, we note that the argument of <PV_1 must belong to Fv_i. This is ensured 
if <iv

M) is replaced by Av/,dv
M), where lVfl + 0 is chosen suitably. The modified one-stage 

method takes the form 

(3.4a) .v" + 1/2> = _*><?>, .<"> - / , , e , ) + / , , 

(3.4b) „<"> = .<v"
+1/2> - J f v(t/v"

+1/2>, t;<"+1/2> - / „ _v) - / , , 

(3.4c) i;<v"
 + 1> = t;(;+1/2) - 0 v , v - i [ ^ v - 1 ( r v - 1 , v V l ( v ' ' ) + l-i) ~ « , - i ] • 
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3.3. Recursive Method 

Eq. (3.4c) requires the exact evaluation of tf>v_!, i.e. the solving of an equation 
of the form (3.1). Starting with uv_1? we approximate # v - i ( / v - i ) by two iterations 
of the one-stage method for the levels v — 1, v — 2 and treat <Pv-2(fv-2) similarly, 
etc. On the level v = 0, Eq. (3.1) is to be solved by any other method. We assume 
that <£0(/o) ls approximated by <P0(fo) satisfying 

(3.5) ||^o(/o) - ^O(/O)||BO° = Co (/o e ^o ; Co sufficiently small). 

The recursive method is defined by the following procedure similar to ALGOL. 

procedure rm(i, v, v, / ) ; value v; integer /, v; array v,/; 

comment i: number of iterations. 

v: input v = vV
l). output: v = v(/ + 0 . 

/ : / = / , of Eq. (3.1); 

if v = 0 then v : = $0(f) else 

begin integer j ; array w, d; real k; 

for j : = 1 step 1 until i do 

begin w : = Jf V(v, v — / , DV); v : = w + / ; d := w — Jf\,(v, w, DV); 

A := Av(d); comment choice of A = kVfl depending on d; 

d := S[v - 1] + k * rv_1>v * d; w := i7[v - 1]; 

rm(2, v — 1, w, d); v := v — /?V,V_! * (w — i7[v — l])/A 

end end / iterations on the level v; 

The variables u[v — 1] and O"[v — 1] denote uv_x and Sv_t. The function kv(d) 

is to be chosen accordingly to the discussion of Section 4. 

3.4. The complete Algorithm 

The following procedure calls rm for //. = 0, V ..., v and determines w0, wl5 ..., ilv. 
The prescribed number of iterations per level \x is i . 

procedure multigrid (v, w); integer v; array u; 

comment input: v = maximal level. 

output: w[0 : v]. uf/i] approximates the solution u^ of (2.8); 

begin integer ft; array B[0 : v — 1]; 

for /i : = 0 step 1 until v do 
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begin if fi = 0 then w[0] := <z50(0) else 

begin u[/L] := p^.^ * u[fi - 1]; rn^i^, /L, w[/i], 0) 

end computation of u[/i]; 

if /L < v then <S[H] := u[H] - XM(fi[ju], u[u], ^ ) ; 

comment This statement can be omitted if £M = 0; 

end end multi-grid iteration of the second kind; 

In Section 4 we analyse this procedure. To obtain a practical algorithm, we have to 
add checks. For example, if one states divergence (or convergence to another solution 
of the problem), the condition (2.9) is violated and one has to refine the coarsest 
step size h0. Another check should terminate the calculation as soon as the discretiza
tion error of w[/i] is small enough. 

A practical choice of the first step size h0 is to define h0 as large as possible. For 
uncritical problems this value suffices. We illustrate this comment by some examples. 
In [5] we solved the linear Fredholm integral equation 

(3.6) u(x) = X\ cos (nxs) u(s) ds + f(x) (0 ^ x ^ 1). 

It turned out that h0 = 1 suffices for X = 1. In the case of X = 10 the step size h0 

of the quadrature formula must be ^1/4. From [9] we cite the nonlinear boundary 
value problem 

(3.7) - A u(x, y) = eu(x>y) in Q = (0, 1) x (0, 1) , u = 0 on F = dQ, 

(cf. Example 2.2). Also in this case the coarsest grid width h0 = 1/2 is sufficient. 
Example 2.2 with Q = (0, 1) x (0, 1) has the trivial solution u = 0 and another 
solution u > 0. The computation of the latter solution requires h0 ^ 1/4. 

For considerations about the amount of computational work we refer to [6, 7, 8, 9]. 

4. ANALYSIS OF RATE OF CONVERGENCE 

4.1. One-stage Iteration (3.4) 

In the sequel the norm ||*||B0V is abbreviated by ||«||. We represent the starting 
vector v(/} by 

^00 = Vv + j<") 9 where vv = <Pv(fv) is a solution of (3.1) . 

Then 

(4A) i/r1/2) = vv + 4 " + l / 2 ) , 

Jv«+1/2) = Kv(vv) 4"> + AV\1V - X,(»,)] A? + 0(K>||2) 

24 



and 

(4.2) d["> = [/, - „«•] [/, - „,(„,)] Av"
+^ + 0(||/Jv"

 + ] / 2 ) | | 2 ) 

hold. The symbol 0(«) denotes the estimation of the remainder with respect to 

Define C\_i := MV-I ~ «^v-i("v-i) > i-e- "v-i = ^v-i(^v-i)- T h e n 

C - ^ I V i l = l«v-i ~ «v-i| | = C||^v_i|| (uv_i := ^v_i(0)) 

is valid. By definition of Sv_1, 

(dVi II/S — % ! l / 4 ^ v _ V S II < c P£>V-{\\A II 
V*"3/ | | °V-1 ^V — 1 [I "~ || v - i ^V — 1 || = L V - i e

v _ ! II^V-lll 
follows. 

The Frechet derivative of _>M is _>^(/„) = [Î  - K^^fJ)]-1. Using 

^(g j = *„fo) + [I, - KMY1 (gH - <y + o(||a, - O-J2), 
we obtain 

(4.4) *v- i (Vv-iy*?° + 5v_i) - ^ - i ^ - J = 

[Iv_i - Kv_i(uv_1)]~
1 [ V v - i / } + K-i - « , - J + 

o(iK¥,,l)\ + ll^-i -^v-i||]2). 

From (2.10) one concludes 

(4.5) !„,(»,) - Xv||BoV_BoV g C||/,| , ||„,_,(.7,...) - ^ ^ l ^ ^ v g Cl-5,^11 . 

If Jf\, is affine and if uv_i = uv-1? <Sv_i = O\,_i and ev = 0 are assumed, then 

Av*
+1>:=vv«

+1)- vv = MvA
(:i) 

holds with 

Mv = [Iv - Pv,v-lvIv-i - ^ v - i ) " 1 rv-i,v(Iv - KVJ]KV. 

In [6] we proved 

Lemma 4.1. If (2.5), (2.6), (2.7), (2.11), (2.12), (2.13a-d) and (2.14) are valid, 
then the estimate 

||Mv||Bov-Bov = c h l > w / i m ? v : = min ( a > HO> 
holds. Therefore, convergence follows from (2.9). 

In the general case the estimates (4A) —(4.5) yield 

(4.6) ||_<"+i>| s c{[hi + Cv,c + |5 , - , | + |f,| + i-^ll] IK1 + 
-4- ^ ~ * C cCv-l II S \\\ 
"T /iv/x ^ v - l f c v - l I I ^ V - I H J • 
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Note 4.2. Let all the assumptions of Section 2 be valid. If Cvev
v, |fv|(, ||O*v_1j|, and 

||AV
0)(| are sufficiently small, the argument of <PV-1 in Eq. (3.4c) belongs to Fv_r. 

Therefore, the estimate (4.6) holds. The iteration (3.4) converges to vv with 

\\vv - vv|| = 0(Xmi[Cv-14
v^i\\(%--i\\), where zlmin = min |AV/.| . 

A suitable choice of Dv, QV, ||(5V|| is characterized by 

(4.7a) ||<5V|| ^CK(n^y), X v / g £ lmin > 0 , 

(4.7b) Cvsv
v ^ ChJ, C, _ &1 ^ s • Amin . 

We recall that y > 0 is defined in Lemma 4.L 

Note 4.3. If(4.7a,b) and ||/v|| g Chv h0W, the estimate (4.6') follows: 

(4.6') ||AV« + 1)|| S C[hl\\A(f\\ + ||AV^(|2 + shl] . 

Note 4.4. There exists a number &F such that ||fv|| 51 2% implies fve Fv for all 
v e _V0. A suitable choice of XVfi is 

(4.8) ^ # , « m i n ( C / i J _ 1 , 8 F ) / | | r v _ 1 > , d ^ | . 

Then the arguments of $ v - i always belong to FV_X. Moreover, their magnitude is 
less than Chy

v-1. The assumption ||fv|| ^ ChJ implies XVfJL §: /lmin > 0 as required 
in (4.7a).It is evident that Xv ̂ allows an estimation of the iteration error, if |(rv-1,vdv

M)(| 
is replaced by C(j(iv

/l)||. If ||rv_lv<iv
M)(| is tOO small, Eq. (3.4c) am be omitted. If 

\d(f)\ is small enough, the iteration can be terminated. 

4.2. Recursive Method rm 

The recursive iteration can be obtained from (3.4) by substituting (PV-1 by ^ v _ l 5 

where $v-x is defined as follows. $0 is mentioned in Section 3.3. $^(f^) (ft £__ 1) 
is the result of rm(2, /., v,f^) with the starting vector v := u^ (i.e. two iterations 
of (3.4) with $n-x instead of ^ - i ) . 

By induction we show: 

Lemma 4.5. Under the conditions of Note 4.3 and with Xvfl from Note 4.4, the 
following estimate holds: 

(4.9) I _>v(/v) - _\(/v)| ^ C[hvy||/v|| + fiftfl • 

Proof. (4.9) follows from (3.5) for v = 0. Assume that (4.9) holds for 0, 1, ... 

..., v — 1. Replacing $V_X by $v-l9 we obtain the additional term C{h2y[j|A(/i)|| + 

+ ||<5v-i||] + £K} o n t n e right-hand side of (4.6'). 

Then 

||_i<0>|| g C||jv - <5V| <; c [ | | / , | + ft!] _i c"hv, 

|4">§ s c{hi\\A(ri)\\ + eh; + h2
v

yrj_!v"-i,|| + c_:_i] + £h;_i} 
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yields 

| A (
V

2 ) | | = C jhf||/v|| + [fi + (Chv* + e) ( ^ Y * : | • 

The inequalities Ch2
v
y
 = s (cf. (2.9)) and hv-x\hv = I/O imply (4.9)). H 

Note 4.6. Under the conditions of Section 2 and (3.5), (4.7), (4.8), the estimates 
||/v|| = Cfc* and ||A(

V
0)|| = Ch; imply 

(4.10) IMv"+1)|| = CKIA^ I I + £hv]. 

4,3. Complete Algorithm multigrid 

In the procedure multigrid p^l^-l M ;I_I is used as the starting value for M (0). The 
difference of P^-i Un-i and wM consists of a discretization error and an approxima
tion error of P^-i- Assume that the first error is of order O(hjl), while the second 
is 0(hl). Usually a = a holds (cf. (2.13d)). Therefore, 

(4.11) |K - P^xuVill = C[hd + hi + ll^^l] = Chf«<^ 
( I I , - *.(0)) 

(cf. (4.7a)) is the error estimate of M^0). 
We want to obtain MV with ||wv — wv|| = Ch* for given x and v. The usual choice 

of % is % — d, i.e. iteration error « discretization error. 

Proposition 4.7. Let x = ? anJ assume that all the conditions of Section 2 are 
satisfied. We propose the following choice of parameters: 

a) i = i with i _ 1 swch that i • y + min (J, a, x) > x; 

b) O, and ^ according to (4.7b) with 8 sufficiently small1); 

c) XVfl defined by (4.8). 

Then the procedure multigrid of Section 3.4 produces MM (/i = 0, ..., v) with the 
desired accuracy: 

(4.12) K"aA =Ch* (0_ki__v). 

Proof. (4.12) is equivalent to the first estimate of (4.7a) if we equate n and x 
(note that x = 7). We prove (4A2) by induction. (3.5) results in ||w0 — w0|| = C. 
Since C' is assumed to be sufficiently small, (4.12) follows for fi — 0. If (4.12) holds 
on the level/i - 1, (4.11) yields ||zt£0)|| = C h f n ( d 'a '^ . Note 4.6 shows 

K l ^ c1ftf
+min(^»^ + c2sh; - [c^j + c2s] hi. 

Since % > 0 and since s is sufficiently small, (4A2) is valid for D. • 

*) The proof will show that there exists en 

II0*/*+ill Ŝ Ch* + 1 with the same constant C. 
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We conclude the discussion with the special case of a linear equation, i.e. J f v(vv) = 
= Kvvv + qv. In this case the result vv

/x) is independent of the choice of u^(/i < v). 
Therefore, the linear multi-grid method is obtained from the procedure rm by setting 
formally u;i := 0, since in this case S^ and S^ vanish. Thus, all terms of (4.9), (4A0), 
(4.11) containing & or ||<5j] can be omitted. 

For the linear case it is not necessary to implement the nested iteration of Section 
3.4. On the other hand, the use of the algorithm multigrid has many advantages. 
It might be less expensive to provide for good starting values uv

o) by computations 
on the lower levels. Furthermore, the computation may fail if (2.9) is violated. It is 
advantageous to check this condition by observing the convergence during the per
formance of the procedure multigrid. 

4.4. Examples 

In order to give an idea of the fast convergence of the multi-grid method we cite 
the results of the problems (3.6) and (3.7) from [5, 9]. Consider the integral equation 
(3.6). Discretizing the integral by the trapezoidal formula for hv = 2~vh0 and de
fining Pv by piecewise linear interpolation, we obtain B0 = C°([0, 1]), Bt = CL([0, 1] 
(Lipschitz continuous derivatives), and a = /? = 2, hence y = 2. The observed 
rates of convergence of the linear recursive method rm are listed below for X = 1, 10 
and varying sizes h: 

Һ = 1/32 Һ = 1/64 h = 1/128 h = 1/256 

X = 
X = 

1 
10 

6-2,0 - 4 

8 1 0 - 3 
I б ю - 4 

2 І 0 - 3 

3 6 1 0 - 5 
6 ю - 4 

9-lю - 6 
l-4,o - 4 

Therefore, it suffices to perform the procedure multigrid with i^ = 1. The error 
|u^(x) — u(x)\ is almost equal to the discretization error \ujx) — u(x)\. 

The nonlinear problem (3.7) is reported in [9]. The rates of convergence of the 
recursive procedure rm are approximately: 

step size hx = 1/4 h2 = 1/8 й 3 - 1/16 h4 = 1/32 h5 = 1/64 

rates 0-06 0-008 0-002 0-0009 0-0006 

Choosing Q^ = i^ = 1 in procedure multigrid one obtains the following results 

at x = y = 1/2: 

h0 = 1/2: u0 = 0-066 819 h3 = 1/16: u3 = 0-077 872 65 

hx = 1/4: ui = 0-074 715 05 h4 = 1/32: u4 = 0-078 043 72 

h2 = 1/8: u2 = 0-077 200 48 h5 = 1/64: u5 = 0-078 086 69 
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(bold-face figures indicate correct digits). Quadratic extrapolation of w3, u4 and u5 

results in 0-078 101 022 6. The corresponding computation time (CDC Cyber 70/76, 

Rechenzentrum der Universitat zu Koln) amounts to 0-51 s CPU. 
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S o u h r n 

ANALÝZA CHYB NELINEÁRNÍ MNOHOSÍŤOVÉ 

METODY DRUHÉHO DRUHU 

WOLFGANG HACKBUSCH 

Mnohosíťová metoda druhého druhu je rychlý numerický algoritmus pro řešení 

problémů, které lze formálně vyjádřit ve tvaru Fredholmovy integrální rovnice 

druhého druhu. Příklady takových problémů jsou Fredholmovy integrální rovnice, 

speciální problémy optimální regulace, nelineární eliptické rovnice atd. Metoda 

vyžaduje provedení jen několika iterací pro posloupnost zmenšujících se kroků, 

V článku se diskutuje vliv různých parametrů na rychlost konvergence. 

Authoťs address: Prof. Dr. Wolfgang Hackbusch, Mathematisches Institut, Ruhr-Universitát 
Bochum, Postfach 102148, D-4630 Bochum 1, BRD. 
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