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INTRODUCTION

A nonlinear system of equations gencralizing von Kiarmdan equations is studied.
The system considered is derived in [1] under the assumption of a nonlinear relation
between the intensity of stresses and deformations in the constitutive law o;/e; =
= E(1 — w) and stands as a model for large deformations of thin plates or shells.
In the case w = 0 this system reduces to the system von of Kdrmdn equations.
The function w = w(e) can also characterize the plasticity properties of the given
material but the derived system is a model for large deformations of elastic-plastic
plates for simple exterior stresses only (i.c. all exterior stresses arise from zero stresses
in a monotonic way). From the numerical point of view the generalized system has
been analysed also in [2]. The case w = w(x, y) has been considered in [8]. Our goal
is to prove the existence of a soluticn and its properties for @ — 0. We use the techni-
que developed in [3—6] and some results from [7].

I. NOTATION AND FORMULATION OF THE PROELEM

Let 2 = R? be a simply connected bounded domain describing the shape of a plate.
We assume that the boundary 0Q is piecewise three times continuously differentiable
(see [5]). Denote w, = dw[ox, w, = dw[dy, w., = (w,), etc.; A*w = w . +
+ Wy F Wyt [WoS] = Weefyy + Wypfax — 2Wefays W, stands for the outward
normal derivative with respect to Q. By means of (from the constitutive law) we
define the functions a; (i = 1,2, 3) in the following way:

L h2 W2
Q‘=~J wdz, szi zwdz, Q3=£j‘ zw dz

2 3
h) _w> h*) 42 17 J —n2

a; = (1 - %Q])_l s 4y =a,0,, az= %(2Q3 + alQ;),

where i is the thickness of the plate. Let w be the deflection and F Airy’s stress

function of the plate. Then a; are the functions of w, .. w,, w,., F,.. F.,and F.
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We assume a; to be in the form a; = ai(x, Vs Wy Wy Wy Wooy Wy Wyt FL F G F L F,
F,, F,) = a(Dw; DF). A corresponding system for unknown functions F, w,
derived in [1] under the nonlinear constitutive law, is of the form

(El) 4w — ((Fxx + %Fyy) aS(DW; DF))XX - ((F.vy + %FH) a3(Dv; DF))yy -
— (wo,as(Dw; DF)),, + 227 {((Fyy ax(Dw; D))y + (s a(Dw; DF)),, —
1
. 9
— 2(F,, ay(Dw; m))”} =[]+ %,
(El) ((Fxx - %Fyy) al(DW; DF))xx + ((Fyy - ’%Fx-r) al(DW; DF))yy +

+ 3(F,, a,(Dw; DF)),, — %’1 {(w“ ay(Dw; DF)),, + (w,, a;(Dw; DF)),, —

— 2wy, ax(Dw; DF))”} - f[w, w]

for (x, y) € Q, where E is the modulus of elasticity, P = SEh® and q is the density

of the perpendicular load.
Together with (E,), (E,) we consider the following boundary conditions

(B) w=w,=0 on Q2 and F=F,, F,=F,, on 0Q,

where F, € C*(Q) is a given function.
Let { : @ — <0, 1> be an arbitrary function with the property

(P) {eC¥Q) and (=1, {,=0 on 0Q.

We denote f, = {F, and we consider F in the form F = f + f,, where f = f, = 0

on 0Q.

For the sake of simplicity we denote (4, 0)y = [o(Ursbux + gy, + uy0,) .
.dxdy, (u.v) = [quvdxdy and B(u;v,w) = [o(ugvw, + ugo,w, — u,ow, —
= u.,o,w,)dxdy for u,v,we WZZ(Q) (Sobolev space).

xXxTyy

Definition. A couple {w, F} is said to be a variational solution of (E,, (E,), (B),
iff w, F — fo € W7(Q) and the identitics

(1) (Ly(w, F), 9)) = (w, @)y — (wxx + Iwyy) as(Dw; DF), ¢) —
- ((Wyr + %WXX) a3(Dw; DF)’ ‘p.vy) - (ny a3(DW; DF)» Q’xy) +

9
+ a {(Fyy aZ(DW; DF)’ (Pxx) + (Fxx aZ(DW§ DF), Q’yy) -

) 9 ) q
= Ay ax(D; FE) 9o} = s B F0) = (7.0

438



(2) (Ly(w, F), ¥)) = (Fxx — 1F,y) ay(Dw; DF), yr,,) +
((Fy, = ¥F) ay(Dw; DF), y,,) + 3(F,, a,(Dw; DF), ) —
— YEh{(Wyx as(Dw; DF), Ys,,) + (w,, ay(Dw; DF), {,.) —
— 2(Wyy ay(Dw; DF), Y,,) + 3E B(w; w, /) = 0

hold for all ¢,y € W3(Q).

Using Green’s theorem in (1) and (2) we can easily find that a variational solution
of (E,), (E,). (B) is also a classical solution under the regularity assumptions on w, F
and a; (i = 1,2,3).

The expression B(u; v, w) in (1) and (2) is well defined for u, v, e W7 () since
the inequality

3) |B(us 0, w)| < Jullw,z [olwas W]
holds. Moreover, for u, ve W;(Q) and we Wf(Q) we have
4) B(w; u, v) = B(v; u, w) = B(v; w, u)

(see, e.g., [3])

2. EXISTENCE OF A SOLUTION

We prove the existence of a variational solution of the problem (E, ), (E,), (B) using
the abstract existence results for the corresponding operator equation Au = G.
We deduce this equation in the following way: Let us denote H = WZZ(Q) X WZZ(Q)
with the usual norm |- |,. Let u = {w, f}, v = {o, ¥} € H. We define the operator
A H > H¥H* = W; * x W; ?) by means of the form (Au, vy = (Ly(w,f + fo),
®)) + ((Lo(w, f + fo), ¥)) since fo = {F, and { is a function with the property (P).
In what follows we omit the index { in A,. G € H* is of the form {g/P, 0}. Clearly,
the solvability of Au = G in H is equivalent to the existence of a variational solution
of (E,), (E,), (B).

Under certain assumptions on a; (i = 1, 2, 3) we prove that 4 : H - H* is a con-
tinuous, bounded operator with the property S (i.e., u, — u (weak convergence) and
{Au, — Au,u, — u) - 0 implies |lu, — ujj; — 0). Using the result from [5] (see
[3], [6]), under a suitable choice of the function { we prove coercivity of the operator
A(A = A;). Then from well known results (see, e.g., [7]) we obtain A(H) = H*,
which implies the existence of a variational solution of (E,), (E,), (B).

We assume that a,(x, » & r) (i =1,2, 3) are continuous functions in all variables
defined on Q x R® x R®, where the real vectors & te RS stand instead of w, f
and their derivatives up to the second order. We shall assume that there exist positive
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constants M, and M, (i = 1, 2, 3) such that

(5) ay(x, p, &, 1) = My,
(6) lai(x’ Y, év T)’ é Mi ) i = 19 2, 3 >

for all (x, y)e Q and ¢, e R®.

Morcover, we shall assume that the partial derivatives da;/0¢; and da,/ot; are
continuous on @ x R® x R® foralli = 1,2,3 and |j < 2 where j is the multiindex
(G = (1, J2) j1-j2 Z 0 and [j| = j; + j,). To prove the property S of the operator
A we shall assume that there exist C; 2 0 (l]l < 2)and s > 1 such that the estimates

da(x, y, & 1)
ot;

J

< G

- 11| |Z~2( %

hold for all i = 1,2, 3, |j| £2,(x, y)e Qand ¢, te R®.

da(x, v, & 7)
3

J

() +

5

Ta

Lemma 1. Let (6) be satisfied. Then the operator A is continuous and bounded
from H into H*.

Proof. Suppose u, — u in H. It suffices to prove

(8) sup |(Au, — Au,v)| >0 for n - oo

llollnst

and sup |(Au,v)| £ Cp < oo for u from a bounded set D in H. Denote u, =

flollm=1
= {Wy fu}, u = {w,/} and v = {@, ¥}. We have w, » w, f, > f in W= W;(Q). Let
us estimate the members of the type

];1) = SUp |B(wn;fn + an (P) - B(W,] +f0" q))l é
llellw st
sup |B(w, — wi fu + Jo, 0)| + sup [B(wif, — /. 0)|.
lellw=1 lellw=1

Owing to (3) we obtain I{" — 0 for n - o0. Now we estimate the members of the type

17 = sup |(w,)es as(Dw3 D(f, + fo)) = Wex a3(Dws D(f + fo)), @) -

llellw=t

From the relations
(Wa)ex a3(Dw,; D(f, + [o)) = o, as(Dw; D(f + fo)) =
(wn = W)ex a3(Dw,; D(fu + fo)) + welas(Dwas D(f, + fo) =
as(Dw; D(f + f,)),

u, » u in H and (6) we easily deduce that I — 0 for n — oo. From these facts
we easily conclude (8). Boundedness of the operator can be proved analogously.
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The coercivity of the operator A (4 = A;) is proved by means of the result in [5]
(see [3]. [6]). which is based on the idea of Knightly [6], for a special choice of the
function (.

Lemma 2. Suppose (5), (6). If the inequality
) IM, + 8IMg'M3 < 1

is satisfied then there exists a { € C*(Q) with the property (P) and constants C,, C,
(Cy = Cy(0) > 0, C;, = Cy(0) > 0) such that the estimate

(10) CAu,uy = Cy|ullfi = €
holds for all ue H.

Proof. Let us put u = {w, f} into (1), (2). Using (4) and eliminating B(w; w, f)
from (1), (2) we successively obtain the estimate

(1= 3y, Ml 9My?
(11) CAu,uy = ||wly (1 - M, — " ain )T
Mo _9EWM; E*WM@®\ 9
P L e B (G SUREC R VAT

where L> 0 is an arbitrary number C(¢) —» oo for ¢ = 0, f, = (F, (see (B)) and
ol = lowli, + lonli, + 2]veli, - In (11) Young’s inequality (ab < 27 '¢?a® +
+ 27'¢72b?) has been used. Let us take I2 = (Mo — y)™* 9ERM, where (0 < y <
M,/2) is sufficiently small. Then owing to (9) we have

Co=1- 3 My —-—3>>0 and Mo _9ERM _
2 2Eh 2 212

Using the result from [5] (see also [3], [6]) we can choose such a & with the property
(P) that the estimate

(12) |B(w: ¢Fo, w)| < % [wli#

holds. From (11), (12) and for sufficiently small ¢ we obtain the estimate (10) and
Lemma 2 is proved.

Henceforth let { € C*(Q) be a fixed function for which Lemma 2 holds true. In
order to prove the property S for A we use the following lemma.

Lemma 3. Let a = (a;), b = (b;), A =(A;), B=(B;) be real vectors in E". If
s > 1 then there exists a constant K > 0 (independent of a, b, A, B) such that the

441



estimates

1.=Jl Jad + [b dt <K
ool latAd=a) +|b+(B-b)

hold for all i = 1,2,..., n.
Proof. Denote x = a;, y = 4, We assume x, y = 0.

For 0 = x < y we have

1 y . .
Lsr=| — X g X [ X oy
01+[x+t(y—-x)|“ y—x), 1 +2 + x°

If x < 1then £ 1. Thus we assume x = 1. For 0 £ y < x we consider the cases 1)
0 <y <ixabd2)x =y = ix. In the case 1) we have

o« -1
r<2| 9% ok = (6nT) .
ol +2° s s

In the case 2) we have

X X

A
IIA
)

Ly S

Analogously, for y < 0, x = 0 we obtain I < 2K,. Hence Lemma 3 is proved with
K = 4 max (K, 1).

Denote

1 .
(13) c=k(14+ 2 1 3En), 5 =maxicy,
Eh lij=2
where K is from Lemma 3 and C; are from (7). Our main iemma is

Lemma 4. Let (5)—(7) be satisfied. If the inequalities
2 3 M, 3 2
(14) 1\/13<3': 1_7M3+—‘2“_ 1""2’M3—*—~- -+
2\ 1/2
+ 4M; 2, Eh > 2C5
8Eh 8

hold then the operator A possesses the property S.

Proof. Let u, = {w,, f,},u = {w,f} e H and u, - u, P, = {Au, — Au, u, — u)
- 0 for n— oo. For simplicity we denote F, = f, + fo, F = f + f,. an) =
= aDw,; DF,) and a(0) = a,(Dw; DF) (i = 1,2, 3). Using Young’s inequality we
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successively estimate
(15) P,z “W" - w“ﬁ’ - %M3”Wn - w”‘ZV - ((a3(n) - a3(0)) (Wxx + %W)',v)’

(W = W)ee) = ((as(n) = a5(0)) (wyy + Jwie). (wa = w)y,) =

= ((@s(n) = a5(0) Wi (0 = who) = L2 o, =y = L2
+ 2 {(Flax(0) = a0, (4 = W) + (Fulasl) = ax(0). (s, = w),) =

4Eh

= 2Fofasfm) = a0). (5, = W) )} + 20 sy = 7l -

- ((al(n) - 01(0)) (Fxx"%Fyy)’ (f" _f)xx) - ((al(n) - al(o)) (Fyy—JfFX-r)’ (fr- _j.)y.v) -

= 3P ) = (O (fy = F)o) = 002 1

_ EhM,
812

= a3(0)), (fu = f)e) + 2(wi(aa(n) = ax(0)), (fu = M)} = Zs

where Ly, L, > 0 are arbitrary numbers and

w, — wli —

= fI3 - %” {(werlas(n) = ax(0)), (s — £),,) — (w,(ax(n) —

Z {B(Wys frs Wy — w) — B(w; f, w, — w) + B(w,; fo, Wy — W) —

n

R
— B(w;fo, w, — w)} + g {B(w,,; W fo = f) — B(w; w, f, — )} .

From the compactness of the imbedding W5 (Q) — W, (Q) (n = 2) and from (3) we
obtainlim Z, = 0. All the members containing the expression ay(n) — a,(0) are

n—oo

estimated in the same way. Let us consider, e.g., the integral

J = (wxx(aS(n) - 03(0_)). (Wn - w)xx) .
We have

(16) J = <Wx,¢ J‘ d% ay(D(w + t(w, — w)); D(F + «(F, — F))) dt, (w, — w)_“> =

0

1 A
= < Y Di(w, — W)J. %2 W, dt, (w, — w)xx) +

lil=2 E4Y

n ( S D(f, - 1) j g— e dt, (10, — w>,x),

lil=2 i
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where i = (iy, i,) is a multiindex and D'v = 8'"v/(6x" dy™). Owing to Lemma 3
we conclude from (7) that
1A
%43 w,, dt
0 0T

' 1
L[ da
i 3
—= w, dt
o0 0&;

and M < 2. For H = 2 we estimate

< KC; forae. (x,y)eQ

1

(D'(w, — w)j % Wy dt, (W, — W) )] <

0 a%i

< SK([DI(w, — W) + 10w, — w)ee]|?)

and

kbh—f{[%;wudr( — W)

0 0

< SKG[D'(fa = NP + 4000 = w)e]?) -

For M < 2 we estimate

< CK[D'(w, = W) [(wn = W

30200 = (9= ) [ S8t o, = )

0 Uei

and

5,0.1) knmfnj.?wﬁmou—wg

0 0¢;

< CK|D(f, = N (90 = W)l -

Hence and from (16) we obtain
’J] § (SK(H“'n - WHIZ‘V + “fn - fH; + 3“(W“ - “7)""”2) + G"(J) ’

where G,(J) = Y (J.(1,§) + J,(2, 1)) and lim G,(J) = 0.

li|<2 n— o

Analogously we estimate, e.g., the integral
I = |(Fyy(ay(n) = a,(0)), (fu = f)yy)| < OK([wa = wllis +
+ “f" _f}le + 3”(fn —f)y.vHZ) + G"(I) ’

where lim G,(I) = 0. Let G, = 5 G,(J), where the sum is taken over all integrals J
J

m—= o

corresponding to (15). Summarizing the previous estimates from (14) we conclude
that

17) P+ Z,+ G, 2 |lw, — wljy (1 = 3M;
(1) b =l (1= 201, = 20— E

M, 9M, EhM,
=73 ,O_V,._,,,AZ.__C()’
= 1l < > SER 83

9 M, ERM,I% c 5)
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where C and ¢ are from (13) and lim G, = 0. Let us choose

L =15 =4(a + (a® + 4M3b*)"?)[b where a =1 — 3M; — iM,,
b = 9/(8Eh) + LEh.
If (14) is satisfied then
_9LYM,  EhM, L

M —C5>0
2 REN 8

and
Mo _ 9M, _ ERM,

- B —— = Co> 0.
2 SERE 8D3

Hence and from (17) we conclude that u, —» u in H because lim G, = 0. Thus,
Lemma 3 is proved. no

Applying known results (see, e.g., [7]) as a consequence of Lemmas 1 —4 we have
A(H) = H*, i.e., we can formulate the following theorem.

Theorem 1. Suppose (5)—(7). If (9) and (14) are fulfilled then there exists a va-
riational solution of (E,), (E,), (B) for all g€ Wy * and F, e C*(Q).

3. ASYMPTOTICAL BEHAVIOUR OF THE SOLUTION FOR w—0

The system (E,), (E,) for a; = 1, a; = 0, i = 1,2 (this is the case we obtain for
® = 0 in the constitutive law) can be identified with the system of von Karmdn
equations. In this section we shall be concerned with the behaviour of the solutions
u,, of the operator equations A, u = G for w — 0, where A, = A is the operator
corresponding to the system (E,), (E,). Denote by A, = Aw|m:0 the operator corres-
ponding to the system of von Kdrmdn (i.e. a; = 1, a, = a; = 0). Evidently, the
operator A, : H - H* is a bounded, continuous and coercive operator with the
property S. The functions a; (i = 1, 2, 3)in (E,), (E,) need not necessarily be derived
from a function w. Convergence w, — 0 is to be understood in the following sense:
ay,21,a,,Z0(i=12)onQx R xR

Theerem 2. We assume that the sequences of the functions {a;(x, y, & 1)}2,
(i = 1,2,3) satisfy (5)—(7) uniformly with respect 1o n (i.e., the constants M,
(i=0,1,2,3) and C, (]]l < 2) are independent of n). Suppose (9), (14) and

(18) ay, =<1, a,=%0, a3,=20 for n—

uniformly on the set @ x R® x R®. Then from each sequence {u,} -, (u, = u,, is
a solution of A, u = G) it is possible to choose a subsequence {u, }i- such that
u, — uin H, whereu is a solution of Agu = G.
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Proof. Existence of the solutions u,, n = 1,2, ... is guaranteed by Theorem 1.
Owing to the assumptions for {a;,} (i = 1,2, 3) we easily find out that there exists
a { € C*(Q) with the property (P) and C,, C, (all independent of n) such that the
estimate

(Ayu, uy = Clﬂuui, -C, (C;>0)

holds for all u € H (see the proof of Lemma 2). Hence and from A, u, = G we obtain
[u]ln < C. Thus there exists a subsequence v, = u,, and u e H such that y, —~ u
in H. First we prove v, — u in H and then Aqu = G.

For D, = (A, v — u) we have lim D, = 0 since 4,0, = G (4, = Aw..k)' By the

k= o
same method as in Lemma 4 we obtain
(19) Dy = A, — A, v, — u) + (A, v, — u) = Cllo, — ulf -
- |<Ak“ — Aogu, v, — u>l - |<A0u, Vg — “)I >

where C > 0 is independent of k and lim |<A0u, v — u)l = 0. Now we estimate
k-

(20) [<Awu — Agu, v, — ud| £ Cy||Au — Agul|ye < Cy(Jufn +
- . 3 3Eh 9
+ | Follw) - % sup lal,k(x, y,¢éT) — 1[ + (5 + e + E;l) Supl ay (%, », &, T)I +

+ 3 sup |a3_k(X, »é& T)| = C,T([u]),

where the supremum is taken over the set @ x R® x R®and Ty(|u|) > 0 for k - o
because of (18). The last inequality follows easily from (1), (2) and from the definition
[ A — Agu|ge = Sup [<Awu — Agu, v},
vllpsl
where v = {¢, Y} € H. The estimates (20) and (19) imply v, - u in H. Analogously
as in (20) we obtain A, — Agvyl|lue < Ti(|vi])) with Ti([|ue]]) = 0 for k — oo since

|vila £ C. Hence and from the continuity of A, we conclude

G = lim Ay, = lim Agu, = Agu
k= k=

since v, — u and Theorem 2 is proved.

Consequence of Theorem 2. If there exists a unique solution u of the system
of von Kdrmdn Aou = G, then u,, — u in H where u,, is a solution of 4, u = G.

Now, we prove that the topological degree of A for small o (i.e., |a, — 1[, a2|, |a3|
are sufficiently small) equals that of 4,. The topological degree for the operators
with the property S was introduced in [7] and is a generalization of the topological
degree for continuous mappings in E, with analogous properties (see [7]).

We denote Gg(v) = {we H; |w — vy £ R, Sg(v) = {we H; |v — w||x = R},
A = Au — gand Ay u = Aqu — g (forallu e H), where g € H*and A = A,
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Theorem 3. Let (5)—(7), (9) and (14) be satisfied. Suppose g € H*, sup |a, .

Q2 X Réx R®
NE NS 7) — 1’ <L, M, <L, My < L.If Lis sufficiently small then the topo-
logical degree of A, equals that of A, , with respect to Rg(0) for sufficiently large
R, (R = R(g, L)).

Proof. From the properties of the operators A and A4, (see Lemmas 1—4) we
deduce that the operator

A(t,u) = tAg u + (1 — 1) A

defined on (1, u) e (0, 1> x H is continuous (in all the variables) and differs from
zero on the set <0, 1> x Si for sufficiently large R = R(g). From the S-property
of 4 and A, (see Lemma 4) we easily find out that 1, > 1€ <0, 1>, u, = uin H and
lim (A(t,, ©,), u, —u) <0 implies u, »u in H. Thus, the operators Ao,

n=* o0

and A, are homotopic (see [7]). To prove Theorem 3 it suffices (see [7]) to prove
the estimate

(21) Au — Ag 4u

e < HAo.g“ !H‘
for all u € Sg(0). We have

(22) [Au — Ag u

ue = sup |CAu — Aqu, v)| £ 3Mo|wly +
llvllast

9 Eh
+ AEh M| Fly +m5R‘jFX’RJl — ay| 3|[F|lw + ’ 3M, |wllw

where u = {w, f>, F = f + f,. On the other hand, the coercivity of 4, yields

[ 40w = gllue = [ulln’ (CiJulli = C2)-

Hence and from (22) we obtain (21) and Theorem 3 is proved.

Remark. If u, is an isolated solution of A,u = 0 then the topological degree of
A, with respect to G, (r) (which is independent of r for sufficiently small r) is called
the index of u,. Theorem 3 implies the following assertion: If there exist only isolated
solutions of the equations

i) Au —g =0, i) Agu—g=0

in Gg(0), then the sum of indices of the solutions of i) is equal to the sum of indices
of the solutions of ii).
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O RIESEN[ ISTEHO ZOVSEOBECNENEHO SYSTEMU
VON KARMANOVYCH ROVNIC

Jozer KACUR

V prdci sa dokazuje existencia rieSenia istého nelinedrneho systému rovnic, ktory
je zovieobecnenim zndmeho systému von Kdrmdnovych rovnic. Dalej sa zkiima vzfah
rieSeni tohoto systému k rieSeniam von Kdrmdnovych rovnic. Zkumany systém je
modelom pre velké deformdcie tenkych dosdk a krupin a bol odvodeny v [1]
za predpokladu nelinedrneho vztahu medzi napitiami a deformdciami v konstitutiv-
nych rovniciach.
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