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SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

REGIONS OF STABILITY FOR ILL-POSED CONVEX 
PROGRAMS*) 

SANJO ZLOBEC 

(Received April 29, 1980) 

1. INTRODUCTION 

A mathematical problem is well-posed (in the sense of Hadamard) if it has a unique 
solution and if the solution continuously depends on the data. If one of these two 
requirements is not met, the problem is ill-posed. 

In this paper we will study ill-posed convex programs 

(P,6) Mm f°(x,0) 
(x) 

S.t. 

f(x, 0) g 0 , ke&> =A{i,...,m} 

where f : Rn x Rp —> R are continuous functions and /'(•, 0) : Rn -> R are convex 
for every 6 e Rp, i e {0} u ^ . The program will be studied locally around an arbitrary 
but fixed 0 = 0*. It is assumed that the feasible set 

F(6*) - A {x e Rn :fk(x, 0*) <,O,ke0>) 

is nonempty and bounded. (If F(6*) = 0, then one may optimize f°(x, 0*) over 
the set of say. Chebyshev solutions of (P, 0*), as has been suggested in e.g. [2], [17]. 
In the case of linear equality constraints this approach is closely related to the theory 
of best approximate solutions, see e.g. [4], [18].) 

Of the two aspects of ill-posedness, stability, i.e. dependence of the optimal solu
tions and values on the data, is the more serious one. The stability has been well 
studied for the right hand side (RHS) perturbations (see e.g. [23]), linear programs 

*) Research partly supported by Natural Sciences and Engineering Research Council of Canada. 
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(e.g. [5], [19], [20], [21], [25]), quadratic programs (e.g. [12]), and under the 
assumption that Slater's condition (e.g. [15]) is satisfied, i.e. that 

3x e R" such that fk(x, 0*) < 0 Vk e 9 

(e.g. [7]). Other results on stability are mostly of general nature and they characterize 
stability in terms of point-to-set-mappings [6], [8], [9], [11], [14] or dual programs 
[22]. Recently in [28], [31], a different approach to stability has been suggested. 
Rather than characterizing stability we have looked for "chunks" of space containing 
9* in which both the optimal solutions and optimal values continuously depend 
on the data. Such chunks are termed "regions of stability". The objective of this paper 
is to survey these regions, study their properties, and demonstrate their importance 
and usefulness. 

The paper is organized as follows. The regions of stability from [27], [28], and [31] 
are recalled in Section 2. The main result of this section states that the problem 
of solving an arbitrary convex program using restricted Lagrangians (e.g. [28], [29]) 
is a continuous process for perturbations in a region of stability. The second aspect 
of ill-posedness, i.e. the non-uniqueness of an optimal solution is studied in Section 3. 
Using "Tihonov's regularization" (e.g. [7], [24]) a prescribed optimal solution x*, 
say the one of the smallest norm, can be obtained after adding an appropriate "penal
ty" to the objective function, in which case x* is obtained as the limit of a sequence 
x = x(a, 9) as a -> 0, 9 —> 9*. However, in order to guarantee the convergence x -> 
~> x*, 9 must approach 9* through a region of stability, thus preserving continuity 
of the process. In Sections 4 and 5 we utilize a new region of stability and define the 
marginal value of (P, 9). Then explicit formulas for the marginal value are furnished 
in terms of the derivatives of restricted Lagrangians. In Section 4 we assume that 
an optimal solution of (P, 9*) is unique; this assumption is dropped in Section 5, 
where essentially different results of the minimax type are derived. Section 6 relates 
our results to the ones from the literature [7], [23], [27]. Finally, in Section 7, we 
outline how the regions of stability can be used in convex multicriteria decision 
making to check whether a given point is Pareto optimal (e.g. [3]), and also in cal
culating the minimal index set of binding constraints for convex programs (e.g. [1]). 
The two nonlinear problems reduce to the problem of constructing a region of stability 
for simple linear programs. 

2. REGIONS OF STABILITY 

For a perturbed convex program (P, 9), at every 9 e Rp, we denote by 

F(9) =A {x e Rn :fk(x, 9) ^ 0, k e &} 

the feasible set, by F(9) c F(9) the set of all optimal solutions, by x(9) e F(9) an 
optimal solution, and byf(9) the corresponding optimal value. Further 
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0>=(O) = A {k e & : x e F(0)=>fk(x, 0) = 0} 

is the minimal index set of binding constraints (e.g. [ l ] , [2]), 

^<(0) ^ 0>\0> = (O) 

and 

F=(0) =A{xeRn : f k (x , 0) = 0, k e 0>=(O)} . 

Algorithms for calculating 0?= and F= are suggested in [1], [30], see also [2]. 

Definition 2.1. Perturbed convex program (P, 0) is stable in a region S c Rp 

at 0* e S if, for some neighbourhood N* of 0*, both 

(I) OeN* n S=>F(0) * 0, and 
(ii) 0 G N* n S and 0 -> 0* => {x(0)} is bounded and all its limit points are in F(0*). 

It has been shown (see e.g. [28], [31]) that (P, 0) is stable in the followin regions 
at 0*: 

M(0*) = {0 : F(0*) c F(0)} ; 

V(0*) = (0 : F = (0*) c F=(0) and fk(x, 0 ) ^ 0 Vx G F(0*), kG^ = (0*), k£^ = (0)} 

W(0*) = {0 : F=(0*) c F=(0) and 0>=(O*) = ^ = (0)} . 

While W(0*) c V(0*), the two regions M(0*) and V(0*) are not comparable (see [31] 
for examples). In order to derive formulas for the marginal value, one should consider 
subsets of the stability regions. Thus in [27] the subset 

Z,(0*) - {0 : F(0*) c F(0) c F = (0*)} 

of M(0*) is used. In this paper we will derive marginal value formulas for a subset 
of the stability region V(0*), namely. 

Z2(0*) = {0 : F=(0*) = F=(0) and fk(x, 0) ^ 0 Vx e F(0*), k e ^ = (0*), k £ &> = (0)} . 

Note that under Slater's condition, Z2(0*) becomes a neighbourhood of 0*, in which 
case the familiar results on stability and marginal values from e.g. [7], [23] will be 
recovered. This is not the case with the region Zy(0*)\ if Slater's condition holds, 
Zj(0*) is not necessarily a neighbourhood of 0*. (See Section 6.) 

In the study of perturbed convex program, the standard Lagrangian function is 
defined as 

L(x,u;0)=fo(x,0) + Yjukf
k(x,0). 

However, the following restricted Lagrangians (see e.g. [27], [28], [29]) are often 
found more suitable: 

Le(x, u) = f°(x, 0) + £ ukf\xy0) 
ke» -<(0) 
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and 

Lв,(x, u) = f°(x, ) + £ ukҐ(x, ) . 
kє&<( *) 

The restricted Lagrangian L0(x, u) is used in characterizing optimal solutions of 

convex programs. Indeed, a point x E F = (0*) is optimal for (P, 0*) if, and only if, 

there exists a u e Rq_le*\ the nonnegative orthant of Rq(e*\ where q(0*) = card ^ > < (0*), 

such that (x, u) is a saddle point of L0*, i.e. 

(2.1) L0*(x, u) = L0*(N, u) = L0*(x, u) 

for all x E F=(0*) and u G R<f *} (e.g. [29]). For a fixed 0 we denote by t7<(0) the set 

of multipliers uk = wfc(0), ke0)<(O*) which correspond to an optimal solution 

x(0) of (P, 0). Some important properties of this set are summarized in Theorem 2.2 

below. We denote by 5(0*) the union of the five regions of stability: 

5(0*) = M(0*) u V(0*) u W(0*) u Z t(0*) u Z2(0*) 

= M(0*) u V(0*) . 

Theorem 2.2. Let F(0*) + 0 be bounded and let &}<(0*) #= 0. T//e/i there exists 

a neighbourhood N* of 0* such that 

(i) l7<(0) # 0 /Or every OeN* n 5(0*); 

(ii) The .set u{t7<(0) : 0 e N* n 5(0*)} is bounded; 

(in) F(0) x Cf<(0) 4= 0 /or every OeN* n 5(0*); 

(ivj I/' 0 e / V * n 5 ( 0 * ) , (x(0), u(0)) e F(0) x JJ<(0) and 0 -> 0*, t/ieu t/ie 

sequence {(N(0), u(0))} /s bounded and every one of its limit points is in 

F(0*) x U<(0*). 

Proof. This result is proved in [28, Lemma 3 and Theorem 3] for the set V(0*). 

The same proof works for M(0*), and thus for 5(0*). • 

The last statement in Theorem 2.2 shows that the problem of solving (P, 0*) 

is a continuous process for perturbations 0 - ^ 0 * if they pass through a region 

of stability. The restricted Lagrangian L* will be used to derive the formulas for 

marginal values. 

If Slater's condition holds for (P, 0*), then ^ = (0*) - 0,F=(0*) = Rn and, by the 

continuity of fk, k e 0, 5(0*) becomes a neighbourhood of 0*. Theorem 2.2 reduces 

in this case to the results obtained in e.g. [7, Lemma 26.2 and Theorem 26.4]. 

3. TIHONOV'S REGULARIZATION 

If (P, 0*) does not have a unique solution, one may still obtain an arbitrary pre

scribed optimal solution as the limit of an infinite sequence. In Tihonov's regulariza-

tion one considers the auxiliary problem 
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Min/°(x, 0) + e/(x) 
(x) 

(T 0) s.t. 

fk(x, 0) = 0, k e & 

where e > 0 and /(x) is a strictly convex function such that, for an arbitrary but 
fixed r)0, the set {x : /(x) _ S0] is nonempty and bounded. Let x(e; 0) denote the 
(unique) optimal solution of (T, 0) for a given e > 0 and let x denote the (unique) 
optima] solution of 

Min /(x) 
s.t. 

x e F(e*). 

Then the convergence is established by the following result, which is included here 

for the sake of completeness. 

Theorem 3.1. If F(0*) 4= 0 then, for every fixed e > 0. there is a neighbourhood 
N* of 0* such that 

l im x(e; 0) = x(s; 0 * ) . 

Moreover, 

єN*nS( *) 
Й-+Й* 

lim x(e; 0*) = x . 
£-+0 + 

Proof. For a proof of this result and for related results the reader is referred 
to [31]. • 

4. MARGINAL VALUE 

In this section we will derive formulas for the marginal value of perturbations 

in Z2(0*). The marginal value will be expressed in terms of the partial derivaties of 

the restricted Lagrangian L* with respect to the parameter 0. 

First we need the following result-

Lemma 4.1. Consider (P, 0*). Then ^ < (0* ) c &><(()) for every 0 e V(6*). 

Proof. Take a 0 e V(0*). We claim that 

(4.1) ^ = ( 0 ) c ^ = ( 0 * ) . 

If (4.1) were not true, there would exist an index k0 such that koE^=(0) but 
ko^#=(0*). Now 

F=(0*) c F=(0), since 0 e V(0*) 

_ {x :fko(x, 0) = 0} , since k0 e 0>~(8). 
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But this means that fk°(x, 9) = 0 for every x e F=(9*), i.e. k0 e ^ = (0* ) ; a contra
diction. The inclusion (4.1) implies 0>\0><(Q) a 0>\0><(9*) and hence &>*(()*) c 
<= ^ ( 0 ) . 

We will also need two inequalities. 

Lemma 4.2. If F(0*) 4= 0 is bounded, and if &>*(()*) + 0, t/?eD there exists a neigh
bourhood N* of 9* such that for every 9 e N* n V(0*): 

(4.2) f(0) - f(0*) ^ L9(x(9\ u) - Le.(x, u(9*)) Vu e Rf}, V.x £ F=(0*) 

and 

(4.3) /(0) - f(0*) S Ld(x, u(0)) - L,.(x(0*), u) Vu e Rf *>, Vx e F=(0). 

Proof. The existence of a neighbourhood N* of 0* such that F(0) x V<(9) 4= 0 
for every 0 e N* n V(0*) is guaranteed by Theorem 2.2. The inequalities (4.2) and 
(4.3) now follow, after appropriate subtractions, from the saddle point optimality 
condition (2.1), written separately for 0 e N* n V(6*) and 0*. • 

A marginal value formula for perturbations in Z2(0*) follows. The same formula 
is derived in [27] for perturbations in Zx(9*), but different arguments are used there 
in the proof. The formula holds for the convex program (P, 0) with some additional 
assumptions. 

Theorem 4.3. Let F(0*) 4= 0 be bounded. Suppose also that F(0*) x U<(0*) 
consists of a unique point (x(9*), u(9*)). If fk(x, •), k e {0} u 0><(9*) are convex 
and differ enti able in N* n Z2(0*), where N* is a neighbourhood of 9*, and if 
\_fk(x, 9)~]'e is continuous in x and 0 at (x(9*), 9*), then, for every fixed path 
9 e Z 2 (0*) , 9 -> 9*, 

(4.4) lim %&Z^ = ([L*(x(0% 8(0*))];-,., 0 
0ez2(e*) \\9 — 0*\\ 

o->o* ' 
where 

9—9* 
(4.5) Z - lim - — ~— . 
' J eez2ie*) 110 - 0* 

e->e* " " 

Proof. By the assumptions, L*(x, w) is convex and differentiable in 0 e N* n Z2(0*). 
This is in particular true for L*(x(0*), u). Now 

([4(x(0*), C(0)];, 0 - 0*) ^ L*(.x(0*), C(0)) - L* (x(0*), C(0)) , 

by the gradient inequality; 

= Le(x(0*), C(0)) - L*.(.x(0*), u(9)) - V Mft(0)/'(x(0*), 0 ) , 

since L*. = Le. and ^ < (0* ) c .^»<(0), by Lemma 4.1; 

^ Le(x(6*), u(0)) - Le.(x(6*), C(0)); 
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since uk ^ 0, ke^<(0), and hence ufc(0)ffc(x(0*), 0) _g 0 , k e 0^(0) \ ^ , <(0*); 
(The latter is true because x(0*) e F(0*) and hence fk(x(0*), 0) _g 0 for every k e 
e ^ < ( 0 ) \ ^ < ( 0 * ) = ^ = ( 0 * ) \ ^ = ( 0 ) , by the definition of Z2(0*).) 

= /(0) ~ /(0*), by (4.3) after specifying u = u(0*) and 
x = x(0*). 
(Note that 

(4.6) x(0*) G- F(0*) c F = (0*) = F=(0) ; 

the inclusion follows by the definition of F= and the equality by the definition 
of Z2(0*).) 

^ Lg(x(0), u) - Le,(x, u(0*)), by (4.2) for everyu e Rf> 
and every x e F = ( 0 ) ; in 
particular for u = (uk), where 

_ \[u(0*)]k if ke0><(6*) 
"* ~"[o if ke0><(O)\0><(O*), 

and x = x(0). (Note that x(0) e F(0) c E=(0)-) With these specifications: 

= L*(x(0), 0(6*)) - L*(x(0), ii(0*)) 

^ ([L*(x(0), u(0*))]'e=g*, 0 - 0*), 

by the gradient inequality. 
Thus we have proved that for all 0 e N* n Z2(0*): 

(4.7) ([L*(x(0*), il(Q)]'e, 0-0*)^ f(0) - f(0*) ^ 

^[(L*(x(e),u(e*))]e^,e-o*). 
Now we divide (4.7) by |J0 — 0*|| and set 0 -» 0* over the stability region Z2(0*). 
Since (x(0*), u(0*)) is a unique point in F(0*) x l7<(0*), (X(0), u(0)) -+ (x(0*), x(0*)), 
by Theorem 2.2 (iv). Furthermore, by the continuity of the derivative in both x and 0 
at x = x(0*) and 0 = 0*, it follows that 

(4.8) lim [L*(x(0), u(9*))]'e = [L*e(x(0*), u(6*))]^ . 
0eZ2(6*) 

0^6* 

Also, by convexity and differentiability (and hence continuous differentiability, see 
e.g. [7, Exercise 4, p. 125]) assumption onffe(x, •), 

(4.9) lim [L*(x(0*), 0(0))]'e = [L*(x(0*), G(0*))]'e = e,. 
0eZ2(O*) 

0->0 

This completes the proof. 

Example 4.4 Consider the program 

Minf0 = - x 
s.t. 
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J2 

h, 

(E,0) f1 = ( x - 0 1 ) ( x - 0 1 - 1 ) | 0 
/ - = (0. - 02f x ^ 0 

perturbed at 0* = (0, 0)T. 

Since 

(4-10) F(0, = {[0!, 1 + 0,] if 0 t = 
* W \ [ 0 „ 1 + 0 . ] n ( - o o , O ] if 0, * 

the path 0 -> 0* along 

0e,(0*)-{(y:02-.+o} 
gives 

_ / M fO if 02 + 0 - f 0 if 02 * 0 
X ^ = { i if 0 2 = o a n d ^ = 1 - 1 if 0 2 = O. 

The marginal value blows to infinity along this path: 

/(0)-/(0*) = 1 _> ^ 
Ifl - 0*|| 0 2 

i.e. the program is unstable. 

In order to find a region of stability, in which the marginal value is finite and the 

formulas (4.4)-(4.5) apply, let us first attempt Z^O*). It is obvious from (4.10) 

that F(0*) = [0, 1] c F(0) only if 0X = 0 = 02, implying that Zt(0*) consists only 

of the single point Zx(0*) = 0* = 0. Thus Zx(0*) does not provide, in this particular 

extreme case, any information on how to perturb the program to perserve continuity 

or how to calculate the corresponding marginal value. 

However, Z2(0*) is here more useful. Since <^=(0) = 0>=(6*) = {2}, whenever 

6X = 02 e R, and for such 0's we have F=(0) = F=(0*) = K, it follows that 

zjf) = {(»;) :.,.*• 

The conditions of Theorem 4.3 are satisfied and the marginal value formula (4.4) is 

applicable. Since (E, 0*) has the unique saddle point x(0*) = 1, u(0*) = 1 of the 

restricted Lagrangian 

we calculate 

and find that 

L 9 . ( x , « ) = / o ( x , 0 * ) + M l /
1 ( x , 0 * ) , 

L*(x(6*), u(0*)) = - 1 + 0\ - 0j 

[L*(x(0*),й(0*))]Uв.-'/2 l ^ ~{ ^ 
0 / в = e . V 0 
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Also, since 0* = 0, 

aez2(0) 0 2 VI 
0 - + + O " " 

and the marginal value for perturbations 0 e Z2(0*), 0 -> + 0 (0 approaching zero 

through the positive orthant) is 

к а д n "(«*))];-. o = ^ (-1. o) (j ^ = _ i / 2 

The above result is confirmed by the direct calculation: For every 0 e Z2(0*)t 

x(0) = 1 + 0! and/(0) = - 1 - 0V Therefore, for such 0's, 

f(o)-im __ Zh ^ _ M 
I|0-0*I v(2)M 2 

as 0 ~> + 0. (For perturbations 0 e Z2(0*), 0 —> 0* through the negative orthant, 

the marginal value formula gives + J(2)j2.) 

5. MARGINAL VALUE: UNIQUENESS NOT REQUIRED 

The marginal value formula in Theorem 4.3 is derived under the assumption 
that the saddle point of the restricted Lagrangian L*e is unique. In this section we will 
drop this assumption. 

Following Eremin and Astafiev [7, Section 28] we assume that/ f c(x, •), k e {0} u & 
are differentiate in 0 at 0 = 0* for every x in some metric £-extention of F(0*\ i.e. 

Vx e FF(0*) - A {x e Rn : inf ||x - y[| ^ s} 
yeF(d*) 

for some s > 0. As before, [fk(x, 6)Je=e* denotes the gradient of/fc(x, •) with respect 
to 0 at 0*. Thus by differentiability of/fc(x, •), 

(5.1) /fc(x, 0) - fk(x, 0*) - ([/fc(x, 0) ] ;_^ , 0 - 0*) + rk(x, 0) 

where 

(5.2) Jim / (*' °', = 0 Vx e F£(0*), fe G {0} u _? . 
v ' e-+o* ||0 - 0*|| V y l j 

A stronger condition than (5.2) is 

(5.3) lim 7 7 " ^ ^ - = 0 uniformly in x e FE(0*), k e {0} u » 
o-*o* 0 — 0* 

I.Є. 
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3* 

As noted in [7], the assumption (5.3) implies continuity of [ffc(x, 0)y$==e* in the vari
able x on F£(0*), Clearly, (5.3) trivially holds if fk(x, •) are linear functions. 

Theorem 5.1. Let F(0*) + 0 be bounded. Suppose also that the functions fk(x, 0), 
k e {0} u ^ are differentiable in 0 at 0 = 0* for every x e Fe(G*) and such that 
the uniformity condition (5.3) holds. Then, for every fixed path 0 e Z2(0*), 0 -> 0* 

( 5-4) lim ̂ "ffi- min max [(*-)];-.•. o 
0eZ2(0*) |O — IT" iceF(0*) «e(7<(0*) 

0-0* l j " 

where 
0-0* 

l i m 
0eZ2(0*) 0 ^ 0*|| 

0-0* " " 

Proof. Denote 

(5.5) R(0, w(0*)) = A r°(x(0), 0) + E ufc(0*) rfc(x(0), 0) . 
ke&><(0*) 

Let x(0*) be an arbitrary fixed limit point in F(0*) of the sequence 0 e Z2(0*), 0 -• 0*. 
Now, after reexamining the proof of Theorem 4.3. we conclude that 

f(0) -f(0*) Z I*(x(0), u(0*)) - C(x(0) , u(0*)) for every u(0*) e U<(0*) 

= ([L*(x(0), u(0*))yo^ 0-0*) + R(0, u(0*)), 

using (5+) and (5.5). 

Hence, 
(5-6) lim Kl~fV* iim (mm.*(°*mo=o,^=^), 

0eZ2(0*) || 0 — 0*| | 0eZ2(0*)\ ||0 — 0 * | | / 0-0* 

by (5.5) and (5.2). 
The limit on the left hand side in (5.6) does not depend on how 0 approaches 0* 

(see e.g. [31, Theorem 3.5]). In particular, we can choose a subsequence {01} cr. (0} 
such that x(0') --> x(0*). Hence 

(5.7) lim Jf~{{°P £ ([4(x(0*), u(0*))Je^ /) 
0eZ2(O*) I 0 — 0 * 

0-0* ,! " 

for all u(0*)e Cf<(0*). 
Also, using (4.3), (5.1) and (5.3) we find that 

0eZ2(0*) 10 — 0*[ 0eZ2(0*)\ 0 ~ 0* 
0-0* " " 0-0* X ' 

(5-8) = ([L*(x(6*),u(6*))}^e.,l) 

for an arbitrary fixed i?(0*) e U<(0*) and all x(0*)e F(0*). 
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The inequalities (5.7) and (5.8) thus give 

([L*(X, fi(0*))];=,., /) z QL*(x(e*), u)];.,„ /) 
for every x e F(0*) and every u e U<(0*), i.e. (x(0*), w(0*)) is a saddle point of 

<P(x9u)=A([L*(x,u)ye=e*,l) 

on the set F(0*) x l7<(0*). Therefore 

max min <P(x9 u) = min max <P(x9 u) = lim - ~ ——- . Q 
ue0<(6*) xeF(6*) xeF(9*) ueO<(0*) 0 e Z2(6*) 0 — 0 * 

e->e* 

6. SETS Zt AND Z2 ARE DIFFERENT 

If Slater's condition holds for (P, 0*), then Z2(0*) is a neighbourhood of 0* and 
hence Zt(0*) c Z2(0*). The example below shows that Zx(0*) may be properly 
contained in Z2(0*). 

E x a m p l e 6.1. Consider a program (P, 0) with the constraints 

f1 = x2 - 1 S 0 , 

f2 ^ x - 0 g 0 , 

f* = x ^ 0 . 
Here 

[0 if 0 < - 1 
F(0) = I [ - 1 , 0 ] if - 1 g 0 < 0 

1[-1,0] if 0 ^ 0 

and Slater's condition is obviously satisfied at 0* = 0, This implies that Z2(0*) = N*, 
a neighbourhood of 0*. Moreover, ^ = ( 0 ) = 0 and F=(0) = R for every 0 e N*. 
Hence Zx(0*) = N* n [0, oo), clearly a smaller set than Z2(0*). 

In the absence of Slater's condition the opposite is the case: Z2(0*) may be properly 
contained in Zj(0*). Such a situation is described in the following example. 

Example 6.2. Consider the constraints 

f1 = -x^09 

f2 = max {0, - 0 2 sgn 0} . max {0, — x2 sgn x] g 0 , 

f3 = max {0, 02 sgn 0} . max {0, - x 2 sgn x } ^ 0 . 

Here F(0) = [0, oo) and 0>=(O) = {2, 3} for every 0. But 

F=(n\ lR if 6 = 0 
[U) ~ \ [0 , oo) if 0 * 0 . 

Hence, at 0* = 0, Zx(0*) = R while Z2(0*) = {0*}, just the point 0* itself. 
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Combining our results with those from [27], we conclude that the marginal value 
formulas derived in Sections 4 and 5 hold for 0 e Z(0*) =A Zx(6*) u Z2(6*)9 0 -> 0*. 
When Slater's condition holds, Z(0*) is a neighbourhood of 0*; when it does not, 
Z(0*) consists of two "chunks of space" joined together at 0* and surrounded by the 
region of stability S(9*). In the first case the well-known results (e.g. [7], [23]) are 
recovered; in the latter, essentially new results are obtained. For special cases, such as 
the RHS perturbations or linear constraints, and for a connection with directional 
derivatives, the reader is referred to [27]. The results derived there for Zx(0*) extend 
to Z2(6*) and thus to their union Z(0*). 

7. MISCELLANEOUS APPLICATIONS 

We will now outline how two important convex programming problems can be 
studied by utilizing a region of stability for a simple linear program. 

A. Minimal Index Set of Binding Constraints. Consider the convex program 

Minf°(x) 
(C) s.t. 

fk(x) ^ 0 k E 0> . 
Its feasible set is 

F = A{XER" :f\x) S 0} . 

At an x e F, the binding constraints are 

0>(x) =A{kE0> :fk(x) = 0} 

and the minimal index set of binding constraints is 

0>= =A{kE0> :XEF =>fk(x) = 0} - n 0>(x) . 
xeF 

An algorithm for calculating 0>= was suggested in [1], see also [2] and [30]. 
When ^>= is known, the program (C) can be rewritten in the form 

Minf°(x) 
s.t. 

(7.1) fk(x)^0, kE0>\0>=. 

XEF= =A{x :fk(x) = 0, kE0>=} . 

Since Slater's condition holds for (7.1), i.e. 

3je E F= such that ffe(x) < 0 Vk e & \ 0>= , 

we know that (7.1) is stable with respect to the RHS perturbations. Thus an arbitrary 
convex program can be "stabilized" after calculating ^ = . It is important to identify 

187 



the set 0> also m other contexts, such as duality and numerical methods (see e.g. 
[29]). 

For any fk : R" -> R and x e Rn we recall that 

Dk(x) = {d e R" : 3a > 0 such that fk(x + ad) = fk(x) Va e [0, a]} 

is the cone of directions of constancy offk at x, see e.g. [2]. In order to avoid the well-
known technicalities (see e.g. [23], [2]) we assume that all functions in (C) are 
di (Terentiable. 

Take an arbitrary x e F, specify 0 ^ 0 , and consider the (essentially linear, see 
e.g. [2]) program 

Min X Y/*fc(x)Td 
ke&(x) 

S.t. 
(L, 0) Vfk(x)J d + 0\\d- S% £0 

SkeDk(x) 

\\S% S l,ke& 

\\d\\x < 1 . 

Here the vector variables are d, 3k,ke^ and for u = («,-), ||t/j|x = A £ \ui\- Note 

that the optimal value f(0) of (L, 0) is nonpositive. If it is equal to zero for all suffi
ciently small 0 > 0, then one can prove that ^ = 0>(x). If/(0) < 0 at 0 = 0* = 0, 
then one may invoke a region of stability to check whether ^ = =j= ^(x) (in which 
case ^*= is properly contained in ^(x)). 

Theorem 7.1. Suppose that for an arbitrary fixed x e F the optimal value of 
(L, 0) is negative. If there is a region of stability for (L, 0) at 0* = 0, emanating 
in the positive direction, their g?= =1= £P(x). 

Proof. If such a region of stability existed, one would have 

f(0) < 0 . for all small 0 = 0 . 

Hence ^ ^ 0>(x) by [30, Theorem 2]. • 

If 7(0) < 0 and such a region of stability cannot be found, then one should use 
analytic arguments to determine whether f(6) = 0 for all small 0 > 0. A method 
for calculating ^ = , which uses the properties of (L, 0), has been recently suggested 
in [30]. 

B. Multicriteria Decision Making. For a finite number of "objectives" fk : R" -> 
-> K, k e &> a point x* is a Pareto minimum if there is no point x such that 

f/*(x) S /*(**) , ^ ^ 
[with at least one strict inequality. 



An alternative way of characterizing Pareto minimality is via mathematical pro
gramming (e.g. [2], [3]). Indeed, x* is Pareto minimal if and only if x* is an optimal 
solution of the program 

Min £/-(*) 

(7.2) s.t. 

f\x) ^ f(x*) , k E & . 

From now on we assume thatfk, k e 0* are convex functions. Then it is easy to show 
that 

(7.3) x* is Pareto minimal if and only if 0> = &"* in (7.2) . 

In order to check whether x* is Pareto minimal one may study the program (L, 0) 
which, when written for (7.2), becomes 

Min £ Vfk(x*)T d 

S.t. 

(M, 8) Vfk(x*)T d + 0||d - 5% ^ 0 

Sk e Dk(x*) 

\\d% ^ 1 , ke0> 

IMIli = 1 -
In view of (7.3) and the observations preceding Theorem 7.1, it is clear that a point 
x* is Pareto minimal if the optimal value j(0) of (M, 0) is equal to zero for all suffi
ciently small 0 > 0. In fact, this condition is also necessary (see [30, Theorem 3]). 
If f(0) < then, as in (A), one may invoke a region of stability to check whether 

J(6) < 0 for some 0 > 0. 

Theorem 7.2. Let x* be an arbitrary point and suppose that the optimal value 
of (M, 0) is negative. If there is a region of stability for (M, 6) at 0* = 0, emanating 
in the positive direction, then x* is not Pareto minimal. 

Prof. If such a region of stability existed, we would conclude (see the proof 
of Theorem 7.1) that ^ = 4= 0*(x*) = &>, i.e. x* is not Pareto minimal, by (7.3). • 
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S o u h r n 

OBLASTI STABILITY 
PRO NEKOREKTNĚ ZFORMULOVANÉ PROBLÉMY 

KONVEXNÍHO PROGRAMOVÁNÍ 

SANJO ZLOBEC 

Oblasti stability jsou části prostoru parametrů, v nichž optimální řešení a optimální 
hodnota spojitě závisejí na datech. V takových oblastech lze chápat řešení libovolné 
úlohy konvexního programování jako spojitý proces a je možné provést Tichonov-
skou regularizaci. 

V práci se zavádí nová oblast stability, která zachovává vlastnosti spojitosti. 
Pro tuto oblast udáváme dále formule pro marginální hodnotu. Význam oblastí 
stability demonstrujeme na multikriteriálních rozhodovacích problémech a na vý
počtu minimální množiny indexů vázaných podmínek v konvexním programování. 
Tyto dvě nelineární úlohy mohou být převedeny na problém výpočtu oblasti stability 
jednoduchého problému lineárního programování. V případě, že jsou splněny Slate-
rovy podmínky stejně jako i v případě poruchy pravých stran, výsledky vedou ke zná
mým vztahům. 

Authoťs address: Prof. Sanjo Zlobec, Department of Mathematics, McGill University, 
805 Sherbrooke Street West, Burnside Halí, Montreal, Quebec, Canada H3A 2K6. 
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