Aplikace matematiky

Jindřich Spa

Fundamentals of a mathematical theory of fuzzy sets

Aplikace matematiky, Vol. 27 (1982), No. 5, 326-340
Persistent URL: http://dml.cz/dmlcz/103980

Terms of use:

© Institute of Mathematics AS CR, 1982
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

FUNDAMENTALS OF A MATHEMATICAL THEORY OF FUZZY SETS

Jindřich Spal
(Received February 20, 1980)

A system of definitions and theorems, including informational entropy, is introduced in order to obtain a more adequate insight into the problems and nature of the fuzzy sets.

Key words: Fuzzy sets, Fuzzy relations, Informational entropy, Random variable.

1. INTRODUCTION

The fuzzy sets, introduced by Zadeh [1] in 1965, are penetrating into various fields of application [2]. Several versions of their mathematical theory have been given by Zadeh, as well as by other authors $[3,4,5]$. The formation of an integrated theory of fuzzy sets meets considerable difficulties, which have their reason mainly in the following facts:

1. The mutual relation between the random variable and the fuzzy set is not clearcut in many cases. For example, Goguen [6] defines the fuzzy set as a mapping from a system of subsets of a fundamental (basic) set Z to a defined interval Q of real numbers, thus indicating the "degree of membership" of an element $z \in Z$ in regard to the fuzzy set F :

$$
\begin{equation*}
F: Z \rightarrow Q . \tag{1}
\end{equation*}
$$

This does not comport exactly with the real meaning of the fuzzy set and is often the cause of various misunderstandings. The situation was mentioned by the author in a former paper [7]. There exists a formal similatity between these two mathematical objects, both starting from a function defined over all elements of the fundamental (basic) set Z. In the case of the random variable it is the probabilistic distribution or the probabilistic density. For the fuzzy set it is Zadeh's membership function. But at the same time there is a capital difference. The random variable assigns a real value of probability (or of another quantity expressing the probabilistic measure)
from the space of the probabilistic measure M_{P} to any subset of a set system (field of events) defined on the basic set Z, thus producing the mapping:

$$
\begin{equation*}
P: Z \rightarrow M_{P} . \tag{2}
\end{equation*}
$$

On the contrary, the fuzzy set F attributes to any value m from the criterial interval Q a subset S of the basic set Z, thus representing a mapping from the interval Q to a set system $\mathscr{S}_{S}, S \subseteq Z$:

$$
\begin{equation*}
F: Q \rightarrow \mathscr{S}_{S} . \tag{3}
\end{equation*}
$$

Thus the fuzzy set is in a certain sense (not quite exactly) an inverse notion in regard to the random variable. It is interesting to note that inverse mappings do not generally exist in either case.
2. The values of the membership function are usually reduced to the interval $\langle 0 ; 1\rangle$ of real numbers, without taking full account of all consequences of such a reduction. This often leads to misunderstandings and misinterpretations in the application of fuzzy sets. Moreover, such a reduction need not be always meaningful or purposeful from the practical point of view. That is why the further expose assumes for the generating function over the basic set Z admissible values from any arbitrary predefined interval of real numbers. This real function $f(z)(z \in Z)$ with an arbitrary interval of values is called the criterial function, in contradistinction to the membership function of Zadeh, the values of which are strictly limited to the interval $\langle 0 ; 1\rangle$. In addition to this purely formal side, there is a conceptual difference between the criterial function and the membership function, too. The values of the criterial function are supposed to express numerically the degree of the property, forming the basis of the process of classification connected with the "verbal" definition of the fuzzy set. The values of the membership function indicate the consequences of the process of classification, as realized by the system of subsets on the basic set. Thus the criterial function formulates the presumptions, the membership function indicates the consequences of the process of classification, underlying the definition of the fuzzy set.
3. The importance of the level value of the criterial function or of the membership function is often underestimated.

The system of definitions and theorems, as formulated further, is aimed at putting right the mentioned inconsequences. It is concentrated on conceptual and methodological aspects of the problem, not claiming to form an exhaustive integrated mathematical theory.

2. BASIC DEFINITIONS

The non-empty closed basic set Z of real numbers $z \in Z$ may be supposed to be obtained by a bijectional isomorphic mapping from a fundamental set B of objects of arbitrary nature.

Definition 1. The criterial function $f(z)$ is a real function of bounded variation defined for all elements $z \in Z$ with values from a given interval of real numbers

$$
\begin{equation*}
Q=\left\langle q_{\min } ; q_{\max }\right\rangle \tag{4}
\end{equation*}
$$

For any level value $m \in Q$ there exists a set of real numbers

$$
\begin{equation*}
M(m)=\{q: q \geqq m\} \tag{5}
\end{equation*}
$$

and another set of real numbers

$$
\begin{gather*}
\bar{M}(m)=\{q: q<m\}, \tag{6}\\
M(m) \cup \bar{M}(m)=Q ; \quad M(m) \cap \bar{M}(m)=\emptyset . \tag{7}
\end{gather*}
$$

Definition 2. A realization $R(m)$ at the level m is the set

$$
\begin{equation*}
R(m)=\{z \in Z ; f(z) \geqq m\} . \tag{8}
\end{equation*}
$$

Definition 3. A complementary realization $\bar{R}(m)$ at the level m is the set:

$$
\begin{equation*}
\bar{R}(m)=\{z \in Z ; f(z)<m\} . \tag{9}
\end{equation*}
$$

Evidently:

$$
\begin{equation*}
\forall m \in Q \quad R(m) \cup \bar{R}(m)=Z . \tag{10}
\end{equation*}
$$

The conditions (5), (6) define on Q two systems of subsets:

$$
\begin{align*}
\mathscr{S}_{M} & =\{M(m) ; \forall m \in Q\}, \tag{11}\\
\mathscr{S}_{\bar{M}} & =\{\bar{M}(m) ; \forall m \in Q\} . \tag{12}
\end{align*}
$$

Similarly, the conditions (8), (9) define on Z two systems of non-empty or empty subsets:

$$
\begin{align*}
& \mathscr{S}_{\boldsymbol{R}}=\{R(m) ; \forall m \in Q\}, \tag{13}\\
& \mathscr{S}_{\bar{R}}=\{\bar{R}(m) ; \forall m \in Q\} . \tag{14}
\end{align*}
$$

Thus there exists a mapping between the systems \mathscr{S}_{M} and \mathscr{S}_{R}, as well as between the systems $\mathscr{S}_{\bar{M}}$ and $\mathscr{S}_{\bar{R}}$, mediated through the values of the level parameter $m \in Q$.

Definition 4. A fuzzy set F is the mapping from the system \mathscr{S}_{M} to the system \mathscr{S}_{R}, induced by the criterial function $f(z)$:

$$
\begin{equation*}
F: \mathscr{S}_{M} \rightarrow \mathscr{S}_{R} . \tag{15}
\end{equation*}
$$

Definition 5. A complementary fuzzy set \bar{F} is the mapping from the system $\mathscr{S}_{\bar{M}}$ to the system $\mathscr{S}_{\bar{R}}$ induced by the critical function $f(z)$:

$$
\begin{equation*}
\bar{F}: \mathscr{S}_{\bar{M}} \rightarrow \mathscr{S}_{\bar{R}} . \tag{16}
\end{equation*}
$$

Remark. Accordingly, a fuzzy set is not a set in the sense of the classical set theory. It is a quintuple (Z, Q, M, R, f), where Z is the basic set, Q is an interval of real values, M is an element of the system of subsets $M \subseteq Q, R$ is an element of the system of subsets $R \subseteq Z, f$ is a function defined for all elements of Z, mapping any $m \in M$ onto some $R(m) \subseteq Z$.
The procedure, which was taken advantage of in Definition 4, consisted in transferring to the whole system of subsets $\mathscr{S}_{\text {R(m) }}$ a property valid for all realizations $R(m)$ at any value $m \in Q$. This principle can be generalized by the following definition:

Definition 6. Any property, which is valid for all realizations $R(m)$ (or for all complementary realizations $\bar{R}(m)$, respectively) for all $m \in Q$, is considered to be the respective property of the fuzzy set F (of the complementary fuzzy set \bar{F}, respectively) itself.

Let us define special cases of fuzzy sets:
Definition 7. The fuzzy set, the realizations $R(m)$ of which are empty sets for all $m \in Q$, is called the empty fuzzy set E.

Definition 8. The complementary fuzzy set, the complementary realizations $\bar{R}(m)$ of which are empty sets for all $m \in Q$, is called the empty complementary fuzzy set \bar{E}_{c}.

Theorem 1. The fuzzy set, defined by the criterial function of the empty complementary fuzzy set \bar{E}_{c}, consists of realizations, equal to the basic set Z for all $m \in Q$ (universal fuzzy set U). The complementary fuzzy set, defined by the criterial function of the empty fuzzy set E, consists of complementary realizations, equal to the basic set Z for all $m \in Q$ (universal complementary fuzzy set \bar{U}_{c}).

The proof results directly from the preceding definitions.

Definition 9. A fuzzy set is called definite on the level m_{0}, if for all $m \geqq m_{0}$ all realizations $R(m)$, and consequently all complementary realizations $\bar{R}(m)$, too, are equal:

$$
\begin{align*}
\forall m \geqq m_{0}: & R(m)=R\left(m_{0}\right)=R_{0} \tag{17}\\
& \bar{R}(m)=\bar{R}\left(m_{0}\right)=\bar{R}_{0} .
\end{align*}
$$

Definition 10. A complementary fuzzy set is called definite on the level m_{0}, if for all $m<m_{0}$ all complementary realizations $\bar{R}(m)$, and consequently all realizations $R(m)$, too, are equal:

$$
\begin{align*}
\forall m<m_{0}: & \bar{R}(m)=\bar{R}\left(m_{0}\right)=\bar{R}_{0}, \tag{18}\\
& R(m)=R\left(m_{0}\right)=R_{0} .
\end{align*}
$$

Definition 11. A fuzzy set (complementary fuzzy set) is called completely definite, if for all $m \in Q$ all realizations, and consequently all complementary realizations, too, are equal:

$$
\begin{array}{ll}
\forall m_{1} \in Q & \tag{19}\\
\forall m_{2} \in Q: & R\left(m_{1}\right)=R\left(m_{2}\right)=R_{0}, \\
& \bar{R}\left(m_{1}\right)=\bar{R}\left(m_{2}\right)=\bar{R}_{0} .
\end{array}
$$

3. OPERATIONS ON FUZZY SETS AND FUZZY RELATIONS

3.1. The set algebra of fuzzy sets defined on the same basic set

Two fuzzy sets are supposed to be defined on the same basic set Z, namely a fuzzy set F with the criterial function $f(z)$ and a fuzzy set G with the criterial function $g(z)$.

Theorem 2. The criterial function $u(z)$ of the union of fuzzy sets

$$
\begin{equation*}
U=F \cup G \tag{20}
\end{equation*}
$$

is

$$
\begin{equation*}
u(z)=\operatorname{Max}(f(z), g(z)) \tag{21}
\end{equation*}
$$

Theorem 3. The criterial function $v(z)$ of the intersection of fuzzy sets

$$
\begin{equation*}
V=F \cap G \tag{22}
\end{equation*}
$$

is

$$
\begin{equation*}
v(z)=\operatorname{Min}(f(z), g(z)) . \tag{23}
\end{equation*}
$$

Theorem 4. The criterial function $\bar{u}(z)$ of the union of complementary fuzzy sets

$$
\begin{equation*}
\bar{U}=\bar{F} \cup \bar{G} \tag{24}
\end{equation*}
$$

is

$$
\begin{equation*}
\bar{u}(z)=\operatorname{Min}(f(z), g(z)) . \tag{25}
\end{equation*}
$$

Theorem 5. The criterial function $\bar{v}(z)$ of the intersection of complementary fuzzy sets

$$
\begin{equation*}
\bar{V}=\bar{F} \cap \bar{G} \tag{26}
\end{equation*}
$$

is

$$
\begin{equation*}
\bar{v}(z)=\operatorname{Max}(f(z), g(z)) . \tag{27}
\end{equation*}
$$

Proof of Theorems 2 to 5:
a) The meaning of the unions and intersections results from Definition 6.
b) The following, mutually disjoint, non-empty or empty subsets are defined on Z by means of the functions $f(z), g(z)$ for all $m \in Q$:

$$
\begin{array}{ll}
R_{1}(m)=\left\{r_{1}: f\left(r_{1}\right) \geqq m, g\left(r_{1}\right)<m\right\}, & r_{1} \in Z \\
R_{2}(m)=\left\{r_{2}: f\left(r_{2}\right)<m, g\left(r_{2}\right) \geqq m\right\}, & r_{2} \in Z \\
R_{3}(m)=\left\{r_{3}: f\left(r_{3}\right) \geqq m, g\left(r_{3}\right) \geqq m\right\}, & r_{3} \in Z \\
R_{4}(m)=\left\{r_{4}: f\left(r_{4}\right)<m, g\left(r_{4}\right)<m\right\}, & r_{4} \in Z \tag{31}
\end{array}
$$

These subsets form a complete system:

$$
\begin{equation*}
R_{1}(m) \cup R_{4}(m) \cup R_{3}(m) \cup R_{4}(m)=Z \tag{32}
\end{equation*}
$$

and evidently

$$
\begin{equation*}
f\left(r_{1}\right)>g\left(r_{1}\right), \quad f\left(r_{2}\right)<g\left(r_{2}\right) \tag{33}
\end{equation*}
$$

Further,

$$
\begin{align*}
& R_{F}(m)=R_{1}(m) \cup R_{3}(m) \tag{34}\\
& R_{G}(m)=R_{2}(m) \cup R_{3}(m) \tag{35}\\
& R_{F}(m)=R_{2}(m) \cup R_{4}(m) \tag{36}\\
& R_{\bar{G}}(m)=R_{1}(m) \cup R_{4}(m) \tag{37}
\end{align*}
$$

and thus

$$
\begin{align*}
& U(m)=R_{1}(m) \cup R_{2}(m) \cup R_{3}(m) \tag{38}\\
& \bar{U}(m)=R_{1}(m) \cup R_{2}(m) \cup R_{4}(m) \tag{39}\\
& V(m)=R_{3}(m) \tag{40}\\
& \bar{V}(m)=R_{4}(m) \tag{41}
\end{align*}
$$

The relations (21), (23), (25), (27) result from (38), (39), (40), (41) as sufficient and necessary.

> (End of the proof).

In the preceding considerations, the set operations on fuzzy sets and complementary fuzzy sets have been expressed in terms of set relations on realizations and complementary realizations, which are sets in the sense of the classical set theory. Thus, the axiomatic theory of the classical set theory remains valid for the fuzzy sets and complementary fuzzy sets, as defined by the above system of definitions.

3.2. Operations in the space of values of criterial functions

Various operations may be defined in the space of real values of the criterial functions. A new criterial function $h(z)$ is derived in this way from the original criterial functions (operands) $f_{1}(z), f_{2}(z), \ldots$:

$$
\begin{equation*}
h(z)=\operatorname{Op}\left(f_{1}(z), f_{2}(z), \ldots\right) . \tag{42}
\end{equation*}
$$

Such operations are generally accompanied with changes of the variational span of the criterial functions and may lead to exceeding the limits of the predefined interval of the values $Q=\left\langle q_{\text {min }}, q_{\text {max }}\right\rangle$. It depends on the concrete problem which the fuzzy set is to serve for, if and how the limits of the interval are to be adapted when applying such operations.

Definition 12. Operations in the space of real values of the criterial functions, mapping the operands $f_{1}(z), f_{2}(z), \ldots$ with a common interval of values $Q=$ $=\left\langle q_{\text {min }}, q_{\max }\right\rangle$ onto the same interval, are called invariant operations.
3.2.1. Examples of unary operations. The general formula of such operations is

$$
\begin{equation*}
h(z)=\mathrm{Op}(f(z)) \tag{43}
\end{equation*}
$$

Let us introduce two examles:
a) Linear transformation

$$
\begin{equation*}
h(z)=A \cdot f(z)+B, \tag{44}
\end{equation*}
$$

A, B being real values. A special case is the reduction of the critical function to the unit interval $\langle 0 ; 1\rangle$, applicable in transforming a general criterial function into the respective Zadeh's membership function:

$$
\begin{equation*}
h(z)=\frac{f(z)-q_{\min }}{q_{\max }-q_{\min }} \tag{45}
\end{equation*}
$$

b) Non-linear invariant operation

Let us formulate the following problem:
For $q_{\text {min }}>0, q_{\text {max }}>0$ the coefficients A, B are to be determined in such a way as to make the operation

$$
\begin{equation*}
h(z)=(A \cdot f(z)+B)^{2} \tag{46}
\end{equation*}
$$

invariant. The conditions of invariance

$$
\begin{align*}
& \left(A \cdot q_{\max }+B\right)^{2}=q_{\max } \tag{47}\\
& \left(A \cdot q_{\min }+B\right)^{2}=q_{\min }
\end{align*}
$$

lead to the equation:

$$
\begin{equation*}
q^{2}+\left(2 \cdot \frac{B}{A}-A^{-2}\right) \cdot q+\frac{B^{2}}{A^{2}}=0 \tag{48}
\end{equation*}
$$

which should have the roots $q_{\text {min }}, q_{\text {max }}$. This yields

$$
\begin{align*}
& A=\left(q_{\min }+q_{\max }+2 \cdot\left(q_{\min } \cdot q_{\max }\right)^{+1 / 2}\right)^{-1 / 2}, \tag{49}\\
& B=\left(q_{\min } \cdot q_{\max }\right)^{1 / 2} \cdot A .
\end{align*}
$$

3.2.2. Examples of binary operations. The binary operations used in defining the unions and intersections of fuzzy sets and complementary fuzzy sets

$$
\begin{align*}
& h(z)=\operatorname{Max}\left(f_{1}(z), f_{2}(z)\right), \tag{50}\\
& h(z)=\operatorname{Min}\left(f_{1}(z), f_{2}(z)\right) \tag{51}
\end{align*}
$$

may serve as an example.
Examples of binary invariant operations:
Generalized multiplication:

$$
\begin{gather*}
h_{m}(z)=f_{1}(z) \odot f_{2}(z)= \tag{52}\\
=\left(q_{\max }-q_{\min }\right)^{-2} \cdot\left(f_{1}(z)-q_{\min }\right) \cdot\left(f_{2}(z)-q_{\min }\right)+q_{\text {min }} .
\end{gather*}
$$

Generalized addition:

$$
\begin{gather*}
h_{a}(z)=f_{1}(z) \oplus f_{2}(z)= \tag{53}\\
=\left(q_{\max }-q_{\min }\right) \cdot\left(f_{1}(z)+f_{2}(z)-2 \cdot q_{\min }\right)-f_{1}(z) \odot f_{2}(z) .
\end{gather*}
$$

In these operations the value $q_{\min }$ is the null element and the value

$$
\begin{equation*}
e=\left(q_{\max }-q_{\min }\right)^{2}+q_{\min } \tag{54}
\end{equation*}
$$

represents the unit.

3.3. Fuzzy relations

3.3.1. Remarks on relations. The starting point in defining a relation is the Cartesian product of sets.

Definition 13. A Cartesian product of the sets $Z_{1}, Z_{2}, \ldots, Z_{n}$,

$$
\begin{equation*}
K=Z_{1} \times Z_{2} \times \ldots \times Z_{n} \tag{55}
\end{equation*}
$$

is an ordered progression of these sets (components).
A Cartesian product, all the sets $Z_{1}, Z_{2}, \ldots, Z_{n}$ of which are mutually different, determines a vector space. Several components on the same common basic set, i.e. $Z_{i} \equiv Z_{J} \equiv Z_{k} \equiv \ldots$, establish a multicriterial evaluation of this basic set.

Definition 14. A subset of a Cartesian product, containing non-empty or empty subsets of the basic sets of all components in the given order, is called a relation ϱ on this Cartesian product:

$$
\begin{gather*}
\varrho=S_{1} \times S_{2} \times \ldots \times S_{n} \tag{56}\\
S_{1} \subseteq Z_{1}, S_{2} \subseteq Z_{2}, \ldots, S_{n} \subseteq Z_{n}
\end{gather*}
$$

The most remarkable type of relations are functions. Here the components are divided into two groups:

1. The independent variables, for which the respective subsets are arbitrarily defined.
2. The dependent variables, the subsets of which are unambiguously established by the choice of the independent variables.

In rea! systems, functions serve as a means of description of events. The independent variables determine the conditions of the implementation of the event, while the dependent variables describe the resulting effect.

Often further auxiliary variables are introduced, serving the aims of evaluation (classification) of the events.

Some or all components can be measurable. An additive measure is attributed to the elements of these components. Its value for a union of disjoint subsets (parts) is equal to the sum of the measures of these parts.

Sometimes a subset is completely represented by the value of its measure. In this case the individuality of the elements gets lost and subsets of the same value of the measure are freely interchangeable. The respective variable can be substituted by intervals of real numbers, the subsets being represented by segments of the interval, which corresponds to the whole basic set.

A random variable can be given as an example of such a measurable functional relation. Here the space (field of events) is represented by an ensemble of measurable independent components. The additive probabilistic measure is established in such a way as to give the unit value of probability to the whole space, which corresponds to the Cartesian product of the basic sets of the independent variables.
3.3.2. Vector fuzzy sets and multicriterial fuzzy sets. A vector fuzzy set consists of n components, each of them being defined by an individual criterial function. In the case of a monocriterial evaluation any of these criterial functions has its own basic set. In a multicriterial evaluation of a basic set some or even all criterial functions are applied to this common basic set.

Moreover, a vector fuzzy set has an interval of real numbers Q, common for all components, on which the values of the critical functions are represented.

For any value $m \in Q$ the basic set Z_{k} is divided by the criterial function $f_{k}\left(z_{k}\right)$ into the realization $R_{k}(m)$ and the complementary realization $\bar{R}_{k}(m)$ in the same manner as in the case of one-dimensional fuzzy sets (Chap. 2).

Thus the space, in which a vector fuzzy set is established, is represented by the Cartesian product

$$
\begin{equation*}
K=Q \times Z_{1} \times Z_{2} \times \ldots \times Z_{n} \tag{57}
\end{equation*}
$$

where some, or even all of the basic sets $Z_{1}, Z_{2}, \ldots, Z_{n}$ can be identical (if multicriterial components occur).

A relation is formed on this Cartesian product by the ensemble of realizations

$$
\begin{equation*}
\varrho(m)=M(m) \times R_{1}(m) \times R_{2}(m) \times \ldots \times R_{n}(m) \tag{58}
\end{equation*}
$$

and another by the ensemble of complementary realizations

$$
\begin{equation*}
\bar{\varrho}(m)=\bar{M}(m) \times \bar{R}_{1}(m) \times \bar{R}_{2}(m) \times \ldots \times \bar{R}_{n}(m) . \tag{59}
\end{equation*}
$$

By the procedure of generalization for all $m \in Q$, in the same way as in (11), (12), (13), (14), we get set systems:

$$
\begin{align*}
& \mathscr{S}_{M}, \mathscr{S}_{R 1}, \mathscr{S}_{R 2}, \ldots, \mathscr{S}_{R n}, \tag{60}\\
& \mathscr{S}_{\bar{M}}, \mathscr{S}_{\bar{R} 1}, \mathscr{S}_{\bar{R} 2}, \ldots, \mathscr{S}_{\bar{R} n}, \tag{61}
\end{align*}
$$

defining vector fuzzy sets as ensembles of ordinary (one-dimensional) fuzzy sets:

$$
\begin{equation*}
\phi=\left(\mathscr{S}_{M} \rightarrow \mathscr{S}_{M}\right) \times\left(\mathscr{S}_{M} \rightarrow \mathscr{S}_{R 1}\right) \times\left(\mathscr{S}_{M} \rightarrow \mathscr{S}_{R 2}\right) \times \ldots \times\left(\mathscr{S}_{M} \rightarrow \mathscr{S}_{R_{n}}\right) \tag{62}
\end{equation*}
$$

and vector complementary fuzzy sets as ensembles of ordinary (one-dimensional) complementary fuzzy sets:

$$
\begin{equation*}
\bar{\phi}=\left(\mathscr{S}_{\bar{M}} \rightarrow \mathscr{S}_{\bar{M}}\right) \times\left(\mathscr{S}_{\bar{M}} \rightarrow \mathscr{S}_{\bar{R} 1}\right) \times\left(\mathscr{S}_{\bar{M}} \rightarrow \mathscr{S}_{\bar{R} 2}\right) \times \ldots \times\left(\mathscr{S}_{\bar{M}} \rightarrow \mathscr{S}_{R_{n} n}\right) \tag{63}
\end{equation*}
$$

where the identities $\left(\mathscr{S}_{M} \rightarrow \mathscr{S}_{M}\right),\left(\mathscr{S}_{M} \rightarrow \mathscr{S}_{M}\right)$ are introduced only in order to obtain formal completeness as to the number of the components.

The fuzzy sets (complementary fuzzy sets) of the components are in either case interconnected through the common real interval Q. The formulae (62), (63) may be considered as a kind of "generalized relations", in which the respective components of the vector fuzzy sets (of the vector complementary fuzzy sets, resp.) are represented by the "partial" fuzzy sets (complementary fuzzy sets) of the components.

Remark. The following important fact is worth mentioning. While the definition of the random variable is based on the existence of a measure on the basic set (on the field of events), the definition of the fuzzy set does not make any use of the notion of measurability. The existence of a measure is not necessary on the sets participating in the specification of a fuzzy set (realizations, basic sets).
3.3.3. Binary relations. Let us pay some attention to binary relations, which are the simplest case of relations. Moreover, relations of higher orders can be decomposed into an ensemble of binary relations.

A binary relation is defined by the indication of two criterial functions $f_{1}\left(z_{1}\right)$, $f_{2}\left(z_{2}\right)$ with a common interval of values Q. Their basic sets Z_{1}, Z_{2} can be different (vector fuzzy sets) or identical (bicriterial fuzzy sets).

Two functions can be defined by means of these binary relations:
a) The relation ϱ_{12}, for which the component derived from $f_{1}\left(z_{1}\right)$ is the independent variable and that derived from $f_{2}\left(z_{2}\right)$ is the dependent variable.
b) The relation ϱ_{21} with interchanged components, where $f_{2}\left(z_{2}\right)$ represents the independent variable, $f_{1}\left(z_{1}\right)$ is the dependent variable.

The spans (intervals of values) of the criterial functions have an important role in the valuation of the functional mappings:

$$
\begin{align*}
\Delta M_{i}=m_{i \max }-m_{i \min } & =\operatorname{Max} f_{i}(z)_{i}-\operatorname{Min} f_{i}\left(z_{i}\right), \tag{64}\\
z_{i} & \in Z_{i} .
\end{align*}
$$

The non-empty realization of the independent variable

$$
\begin{equation*}
R_{1}(m)=\left\{z_{1}: z_{1} \in Z_{1}, f_{1}\left(z_{1}\right) \geqq m\right\} \tag{65}
\end{equation*}
$$

is mapped onto a non-empty realization $R_{2}(m)$, if

$$
\begin{equation*}
m \in\left(\Delta M_{1} \cap \Delta M_{2}\right) . \tag{66}
\end{equation*}
$$

For

$$
\begin{equation*}
m \in\left(\Delta M_{1} \cap \overline{\Delta M_{2}}\right) \tag{67}
\end{equation*}
$$

the image $R_{2}(m)$ is an empty set.
The interval of

$$
\begin{equation*}
\left.m \in \overline{\left(\Delta M_{1}\right.} \cap \Delta M_{2}\right) \tag{68}
\end{equation*}
$$

is not affected by the mapping ϱ_{12}.
The situation is quite similar for complementary realizations.
Remark. The symbol indicates the "outside" of the respective interval.

Definition 15. The mappings $\varrho_{i j}, \varrho_{J i}$ are inverse to each other, if

$$
\begin{align*}
\forall m \in Q: & \varrho_{j i}\left(\varrho_{i j}\left(R_{\imath}(m)\right)\right)=R_{i}(m), \tag{69}\\
& \varrho_{i j}\left(\varrho_{j i}\left(R_{j}(m)\right)\right)=R_{j}(m) .
\end{align*}
$$

Theorem 6. Two mappings $\varrho_{i j}, \varrho_{j i}$, established by the criterial functions $f_{i}\left(z_{i}\right)$, $f_{j}\left(z_{j}\right)$, are inverse to each other, if and only if

$$
\begin{equation*}
\Delta M_{i}=\Delta M_{j} \tag{70}
\end{equation*}
$$

Proof. 1. For any $m \in \Delta M_{i}, m \in \Delta M_{j}$ there exist non-empty realizations $R_{i}(m)$, $R_{j}(m)$, making both the mappings $\varrho_{i j}, \varrho_{j i}$ possible.
2. For any $m \in \Delta M_{i}, m \notin \Delta M_{j}$ the realization $R_{i}(m)$ is non-empty, the realization $R_{J}(m)$ is empty. Thus there exists a mapping ϱ_{i}, but the inverse mapping $\varrho_{j i}$ does not exist, the definitory set of this mapping being empty.
3. Similarly, for any $m \notin \Delta M_{i}, m \in \Delta M_{j}$ there exists a mapping $\varrho_{j i}$, but the inverse mapping $\varrho_{i j}$ does not exist.
4. For $m \notin \Delta M_{i}, m \notin \Delta M_{j}$ neither of the mappings $\varrho_{i j}, \varrho_{j i}$ exists.
(End of the proof).
Let us define three fuzzy sets:
F_{i} with a criterial function $f_{i}\left(z_{i}\right)$ and with a span ΔM_{i},
F_{J} with a criterial function $f_{j}\left(z_{j}\right)$ and with a span ΔM_{J},
F_{k} with a criterial function $f_{k}\left(z_{k}\right)$ and with a span ΔM_{k}.
There exist non-empty realizations:

$$
\begin{array}{lll}
R_{i}(m) & \text { for any } m \in \Delta M_{i}, \\
R_{j}(m) & \text { for any } m \in \Delta M_{j}, \\
R_{k}(m) \text { for any } m \in \Delta M_{k} .
\end{array}
$$

Definition 16. The mapping

$$
\begin{equation*}
\varrho_{\mathrm{ik}}^{*}=\varrho_{i}, \varrho_{j k} \tag{71}
\end{equation*}
$$

is called the composition of $\varrho_{i j}, \varrho_{j k}$, if

$$
\begin{equation*}
\forall m \in \Delta M_{i}: \varrho_{\mathrm{ik}}^{*}(m): R_{i}(m) \rightarrow R_{k}(m) . \tag{72}
\end{equation*}
$$

Theorem 7. A composition (71) exists, if and only if

$$
\begin{equation*}
\Delta M_{i} \subseteq \Delta M_{j} \tag{73}
\end{equation*}
$$

Proof. According to (73) there exist non-empty realizations $R_{i}(m), R_{j}(m)$ for any $m \in \Delta M_{i}$. But if there exists $m \in \Delta M_{\imath}, m \notin \Delta M_{J}$, and consequently, if (73) is not fulfilled, the realization $R_{j}(m)$ is empty for this m and therefore the subsequent mapping

$$
\begin{equation*}
\varrho_{j k}: R_{j}(m) \rightarrow R_{k}(m) \tag{74}
\end{equation*}
$$

is not defined in this case.
(End of the proof').

4. INFORMATIVENESS OF FUZZY SETS

The main field of application of the fuzzy sets are processes of classification, namely in connection with decision-making. The informational entropy is a suitable means of evaluation of their informative effect.

Definition 17. The informational entropy of a complete system of disjoint subsets $S_{k}(k=1, \ldots, n)$ on a basic set Z is

$$
\begin{equation*}
E=\sum_{k=1}^{n} p_{k} \lg p_{k}, \tag{75}
\end{equation*}
$$

where p_{k} are measures of the respective subsets S_{k}, such that

$$
\begin{align*}
& \sum_{k=1}^{n} p_{k}=1 \tag{76}\\
& \bigcup_{k=1}^{n} S_{k}=Z . \tag{77}
\end{align*}
$$

As a rule binary logarithms are used in expressing the informational entropy.
In the classical information theory (Shannon) the measure p is interpreted in terms of probability of the respective event, described by the subset S_{k}.
This kind of interpretation is not applicable to fuzzy sets, because no such probability (except the "subjective probability", which consists in a quite arbitrary selection of the respective parameters) can be derived from a single step of the process of classification.

But it is possible to proceed in the following manner:
a) If a measure μ exists "a priori" on the basic set Z, it can be used in defining the parameters p_{k} :

$$
\begin{equation*}
p_{k}=\frac{\mu_{k}}{\mu_{\mathrm{Z}}}, \tag{78}
\end{equation*}
$$

where μ, is the measure of the basic set Z,
μ_{k} is the measure of the event k.
b) If no measure is defined on the basic set Z, an auxiliary measure can be introduced for any event k :

$$
\begin{equation*}
\mu_{k}=w_{k} \cdot h_{k}, \tag{79}
\end{equation*}
$$

where w_{k} is an arbitrarily chosen weight coefficient, h_{k} is the power of the subset S_{k}. Then

$$
\begin{equation*}
p_{k}=\frac{w_{k} \cdot h_{k}}{\sum_{k=1}^{n} w_{k} \cdot h_{k}} \tag{80}
\end{equation*}
$$

In monocriterial classification the basic set Z is divided at the level m into a realization $R(m)$ and a complementary realization $\bar{R}(m)$, so that the informational entropy of this partitioning at the level m is

$$
\begin{equation*}
e(m)=p_{R}(m) \lg p_{R}(m)+p_{R}(m) \lg p_{R}(m) . \tag{81}
\end{equation*}
$$

In multicriterial classification with m criteria the number of subsets, which are formed on the basic set, is

$$
\begin{equation*}
N=2^{m} \tag{82}
\end{equation*}
$$

and

$$
\begin{equation*}
e(m)=\sum_{k=1}^{N} p_{k}(m) \lg p_{k}(m) . \tag{83}
\end{equation*}
$$

Of course some of the subsets may be empty, thus giving a zero contribution to the entropy. Nevertheless the informational effect may be considerably raised in multicriterial classification.

Definition 18. The informational entropy of realizations and complementary realizations at the level m is given by the formula (83), where p_{k} are measures or auxiliary measures of the segments induced on the basic set Z by the criterial function (in monocriterial case) or by the ensemble of criterial functions (in multicriterial case).

Definition 19. The informational entropy of the fuzzy set is the weighted average of the informational entropies of the realizations at all levels m of the interval Q. The weight $v(m)$ is supposed to be selected in such a way as to give

$$
\begin{equation*}
\int_{q_{\min }}^{q_{\max }} v(m) \mathrm{d} m=1 . \tag{84}
\end{equation*}
$$

The formula of the informational entropy of the fuzzy set is then:

$$
\begin{equation*}
E=\int_{q_{\min }}^{q_{\max }} v(m) e(m) \mathrm{d} m \tag{85}
\end{equation*}
$$

References

[1] L. A. Zadeh: Fuzzy sets. Information and Control 8, 1965, pp. 338-353.
[2] Fuzzy množiny a možnosti jejich uplatnění při řešení systémových úloh (Fuzzy sets and the possibilities of their aplication in solving problems about systems) (Proceedings of a conference). Dům techniky ČsVTS, Praha, 1980.
[3] A. Kaufmann: Introduction à la théorie des sous-ensembles flous. Masson, Paris, 1973.
[4] B. Kummer, B. Straube: Eine Einführung in die Theorie unscharfer Mengen. Wiss. Zeitschr. der Techn. Universität, Dresden, 26, 1977, No. 2, pp. 363-369.
[5] M. Peschel: Modellbildung für Signale und Systeme. VEB Verlag Technik., Berlin 1978.
[6] J. A. Goguen: L - fuzzy sets. J. Math. Anal. Appl., 18, 1967, pp. 145-174.
[7] J. Spal: Informácia a riadenie (Information and control) Transactions of the $10^{\text {th }}$ Symposium of the Slovak Cybernetic Society, Slovak Academy of Sciences, Bratislava, 1980.
[8] J. Spal: Neostrá klasifikácia (Fuzzy classification). Informačné systémy, 9, 1980, No. 5, pp. 413-429.

Souhrn

ZÁKLADY MATEMATICKÉ TEORIE NEOSTRÝCH MNOŽIN

Jindřich Spal

Podstatou neostrých množin je zobrazení z intervalu hodnot kriteriální funkce na systém podmnožin základní množiny. Uvádí se systém definic a vět, přiměřeně vyjadřující tato hlediska. Použitá kriteriální funkce s libovolným intervalem hodnot při tom číselně vyjadřuje skutečnou objektivní vlastnost, která je podkladem při definování neostré množiny.

Věnuje se pozornost vztahu mezi neostrou množinou a náhodnou proměnnou.
Zavádí se pojem informační entropie neostré množiny, který slouží na vyjádření její informační účinnosti.

Author's address: Prof. Ing. Jindřich Spal, CSc., VŠT, katedra techn. kybernetiky, Švermova 9, 04120 Košice.

