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SVAZEK 28 (1983) APLIKACE MATEMATIKY ČÍSLO 3 

ISONEMALITY AND MONONEMALITY OF WOVEN FABRICS 

BOHDAN ZELINKA 

(Received August 24, 1982) 

In the paper [2] combinational problems concerning woven fabrics are studied. 
The following conjecture is expressed: Every periodic mononemal fabric which is 
warp-isonemal is also weft-isonemal. We shall prove this conjecture for fabrics 
with n x n square fundamental blocks for n odd. 

We shall consider diagrams of woven fabrics as they are used in [2] or in the 
Czech book [1]. Such a diagram is formed by a plane lattice in which some squares 
are white and the others are black. A white square denotes a place where a weft 
strand passes over a warp strand, and a black square denotes a place where a warp 
strand passes over a weft strand. A fabric is called periodic, if it can be obtained 
from a fundamental n x m block of squares by translations in horizontal and vertical 
directions through multiples of n and m units. 

Consider a fundamental block of a given fabric $F. An example (the fabric No. 
164 from [1]) is in Fig. 1. Let the warp strands be numbered by the numbers 1, ..., n 

Fig. 1. 

from the left end to the right end and let the weft strands be numbered by the numbers 
1, ..., m from the upper end to the lower end. For i = 1,..., n and j = 1, ..., m 
put au = 1 if the intersection of the i-th warp strand with the j-th weft strand is 
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a black square, and au = 0 if it is a white square. Now construct a bipartite graph 
G(3F) on the vertex sets U = {uu ..., un} and V = {vu ..., vm} in which the vertices 
uh Vj are adjacent if and only if au = 1. This graph will be called the graph of the 
fabric $F. The graph of the fabric from Fig. 1 is in Fig. 2. 

Fig. 2. 

A fabric $F is called warp-isonemal (or weft-isonemal), if for every two warp 
strands (or weft strands, respectively) there exists a mapping which maps one onto 
the other and is either a symmetry of the whole fabric (taken as infinite in all direc
tions), or such a symmetry superposed with the interchange of the colours black 
and white. 

A fabric SF is called mononemal, if any two strands of 3F (each of them may be 
either a warp strand or a weft one) have the property that the two-way infinite se
quences of white and black squares formed by these strands either are equal, or 
become equal after interchanging the colours black and white. Evidently if a fabric 
is mononemal, then it has a fundamental block which is a square. We shall always 
consider an n x n square and suppose that n is the least possible. 

In the sequel we consider mononemal fabrics. The group of isometric mappings 
of the plane onto itself which map warp strands of a fabric J^ onto warp strands 
and weft strands onto weft strands will be denoted by T0(3F). To each of these 
mappings, a certain mapping of the vertex set of G(SF) onto itself corresponds. 
The group T0(SF) is generated by the elements (p0, ij/0, a0, /?0 described in the sequel. 

The mapping t/J0 is a translation in the horizontal direction which maps every 
warp strand onto its neighbour from the right and leaves all weft strands fixed. 
To the mapping cp0, a mapping q> of the vertex set of G(#") onto itself corresponds; 
this mapping is defined by (p(ut) = ui+1, cp(vt) = vt for i = 1, ..., n. 

The mapping \j/0 is a translation in the vertical direction which maps every weft 
strand onto its neighbour from below and leaves all warp strands fixed. To the 
mapping \j/0, a mapping i/t of the vertex set of G(#") onto itself corresponds; this 
mapping is defined by i//(i.j) = ux, il/(vt) = vi+1 for i = 1, ..., n. (The subscripts are 
always taken modulo n.) 

The mapping a0 is an axial symmetry with respect to the vertical axis going through 
the centre of a fundamental block. The corresponding mapping a of the vertex set 
of G(J^) onto itself is defined by a(ut) = un+1-.{, (x(v() = vt for i = 1, . . . , n. 

The mapping f}0 is an axial symmetry with respect to the horizontal axis going 
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through the centre of a fundamental block. The corresponding mapping /? of the 
vertex set of G(£F) onto itself is defined by P(ui) = uh P(i\) = vn + x^tfoT i = 1, ..., n. 

By T($F) denote the group generated by the elements cp, \j/, a, /?. 

Now let cpx, ai be the restrictions of cp, a, respectively, onto U and let cp2, fi2 

be the restrictions of \jj, /?, respectively, onto V. Let TX(SF) (or T2(J*\)) be the group 
formed by the restrictions of elements of T(3F) onto U (or V, respectively). As every 
mapping ^ e T(3F) maps U onto U and V onto V, there exist mappings ^x e TX($F) 
and ?/2 e T2(#") such that w(x) = "i(x) for x e U and n(x) = ?/2(x) for x e V; we may 
writer = [i/i, iy2]. 

Evidently, Tx(#") is generated by ^ j , ax and T2(#") is generated by /?2, ^ 2 . Let A(i^) 
be the automorphism group of G(3F) and let B(J^) be the group consisting of all 
automorphisms of G($F) and all isomorphisms of G($F) onto its bipartite comple
ment. (The bipartite complement of G(£F) is the bipartite graph on the vertex sets 
U, V such that a vertex of U is adjacent to a vertex of V in it if and only if these 
vertices are not adjacent in G(^).) Let A0(3F) = A(fF) n T ( # ) , Bo(^0 = - B ^ ) n 
n T(fF). The mappings from B0(£F) are exactly those mappings of the vertex set 
of G(#") onto itself which correspond to the symmetries of 3F and to those sym
metries superposed with the interchange of the colours black and white. If G(3F) 
is not isomorphic to its bipartite complement, then evidently B(#") = A(3F) and 
Bo{?) = A0(&). 

Now let Bx(&) (or B2(3F)) be the set of all mappings ^x e Tx(&) (or ^2 e T2(#")) 
to which there exists a mapping ^2 e T2($F) (or r\x e TX(8F), respectively) such that 
n = [>7i> ni\ e M^)- Analogously AX($F), A2(fF) may be defined. 

We shall prove some theorems and a lemma. Here 3F is always a fabric with 
an n x n square fundamental block and n is supposed to be the least possible. 

Theorem 1. Let 3F be a warp-isonemal fabric with an n x n square fundamental 

block for n odd. Then cpx e BX($F). 

Proof. There are two mappings from TX(3F) which map ux onto u2; they are 
cpx and cp\ax. As 2F is warp-isonemal, at least one of them must be in BX(£F). If 
cpx e BX($F), the assertion is true; thus suppose that cp\ax e Bx(gF). Similarly there 
are two mappings from TX($F) which map ux onto u^; they are cp\ and cp\ax. If 
cp\eBx(^), then cpx = ((p\)(n + 1)/2 e BX(3F). If cp\ax e Bx(&), then cpx = (cp\(xx) . 
.(<p\*x)~^Bx(<F). 

Theorem 2. Let $F be a fabric with an n x n square fundamental block, where n 
is odd. Then no mapping which is a superposition of an isometric mapping of the 
plane onto itself and the interchange of colour black and white maps 3F onto itself. 

Proof . All fundamental blocks of £F are obtained from one of them by cyclic 
permutations of warp strands and cyclic permutations of weft strands; therefore all 
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of them have the same number of black squares and the same number of white 
squares. As n is odd, the number of squares of any fundamental block is odd and such 
a block cannot contain the same number of black and white squares. Hence the 
interchange of colours black and white transforms the fabric SF into a fabric non-
isomorphic to 8F. 

Lemma. Let $F be a warp-isonemal and mononemal fabric with an n x n square 
fundamental block for n odd. Let ^2 be the mapping from B2($F) such that r\ = 
= [<Pu ni\ E A0(SF) = B0($F). Then the degree of ^2 in T2($F) is equal to n. 

R e m a r k . The equality B0(fF) = A0(?F) follows from Theorem 2. 

Proof. Evidently, the degree of rj2 is either 2 or a divisor of n. Let it be k 4= n. 
If i\ = [(p 1^2] e B2(^F), then nk = [<p\, n\~\ = [cp\, s 2] e B0(&), where e2 is the 
identity mapping of V The mapping nk is an automosphism of G(#"), therefore 
the neighbourhoods of ut and ui+m are equal for each i, where m is the greatest 
common divisor of n and k. (No mapping from B0($F) maps G(^F) onto its bipartite 
complement, therefore each of them maps it onto itself; this follows from Theorem 2.) 
Hence n is not the least possible period of the two-way infinite sequence of black 
and white squares on a strand; hence m is such a period and there exists an m x m 
square fundamental block of 3F, which is a contradiction with the assumption that 
the fundamental block of J^ is an n x n square. 

Theorem 3. Let 3F be a fabric with an n x n square fundamental block, where n 
is odd. Let £F be mononemal and warp-isonemal. Then 3F is weft-isonemal. 

Proof. According to Theorem 1 we have (p1 e Bx(fF). According to Lemma there 
exists ^2 G B2($F) such that ^ = [<pu ^2\ e B0(3F) = A0($F), and the degree of ^2 

is n. As the degree of \jj\fi is 2 for each k, we have ^2 = \pl

2, where / is relatively 
prime to n. Among the powers of i/>2 there are all powers of \j/2, hence each vt can be 
mapped onto each Vj by a mapping from B2($F) and J^ is weft-isonemal. 

References 

[1] J. Čapek: Baѕiс bindingѕ of fabriсѕ and thеir dеrivatеѕ (Czесh). SNTL Praha 1977, 
[2l B. Grünbaum, G. C. Shepharď. Satinѕ and Twillѕ: An Introduсtion to thе Gеomеtry of Fabriсѕ. 

Math. Magazinе 53 (1980), 139-161. 

197 



S o u h r n 

ISONEMALITA A MONONEMALITA TKANIN 

B O H D A N ZELINKA 

V článku se zkoumají diagramy tkanin složené z bílých a černých čtverečků 
jakožto geometrické útvary a popisují se jejich symetrie. Užívá se pojmů isonemality 
a mononemality, které zavedli B. Grůnbaum a G. C. Shephard. Dokazuje se, že 
periodická mononemální útkově isonemální tkanina, jejíž střída je čtverec o straně 
liché délky, je rovněž osnovně isonemální. 
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