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1. INTRODUCTION

Consider a linear regression model (Y, XB, X) with an unknown k-dimensional

parameter f and covariance matrix X. The aim is to estimate a function y =

= tr(DBp’) + tr (CZ), where D and C are symmetric k X k and n x n known
matrices, respectively. Let us suppose that Y is normally distributed, ¥ ~ N, (X8, Z),

and that there are m independent replications of an experiment, i.e.
i=1,...,m, E() =0, E(gg)) =25,

Y5=X.B+8i»

S O, i =‘: j s
T =
, Y.), follow a model

which, written as Y = (Y,
Y=1®X)B+¢, E(e)=0, El&)=I1®Z,

where 1 = (1,...,1).
This model offers the well known estimators
> (Yi-Y)(Yi-Y)

- 1
S

v=L3 ¥,
mi=1 m—1i=1
for X and Z.
The paper gives method for locally and uniformly best estimators of y based
on Vand £.

2. SOLUTION

Let & be the space of mn x mn symmetric matrices. The class of estimators for
y=tr(DBP’) + tr (CX) will be o ={Y'AY:Ae¥}. Let £ ={M,®S, +
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+ P, ® S, : S, S, symmetric n X n matrices}, where P, is the projection matrix
onto the space generated by the vector T = {1,...,1) and M,, is the projection
matrix onto its orthogonal complement. In view of Lemma 1 in Kleffe and Volaufova
[2] the class of estimators

Z={YM,®S, +P,®S,)Y:S,, S, symmetricn x nmatrices}

constitutes a complete class of estimators for y in the following sense. The estimator
Y'AY, A € &, has the same mean value and variance greater than or equal to those
of the estimator Y'A,Y, where A, is the projection of the matrix 4 on to the closed
subspace & of the space &.

Lemma 1. The estimator Y'(M,, ® S; + P,, ® S,) Y is unbiased for

y=tr(DP) + tr (CZ) iff mX'S;X =D and (m—1)S, +S,=C.

The proof immediately follows from the expression for the mean value of the
estimator.

Remark 1. The matrix equation mX’'S,X = D is consistent iff there exists a sym-
metric matrix U such that D = X'UX.

Theorem 1. a) The locally minimum variance unbiased estimator (LMVUE) for
Py = tr (Dﬂﬁ’) at X, and uniformly best with respect to f is

A 1 N — n— ;o vl n— n— '
1= - tr {(X)mizoy PLEX Ymizor]’ £} + Y'(X )izoy DX Jmizar]' ¥

where
- 1 m - -, - 1 & N
2= 2=V -Y)y, Y==13 Y and (X).q,
m — 1]=1 m j=1

is the minimum Xy-seminorm g-inverse of the matrix X' (see [4]).
b) LMVUE for y, = tr (CX) at f,, Z, is

\

9, = tr (CZ) — %tr [(C — P7,CPr) £] + (Y — XBo) (C — P1,CPr,) (Y — XPBo),
where
Ty =2, + XX' and pr, = X(X'ToX)” X'Ty .
Proof. a) Let us consider the class
B=M, QT +P,®@T,:(im=1)T, + T, =0, XT,X=0,T, T,

symmetric matrices}.

The class # of estimators of the fOrrn Y'BY, Be A, is the class of all unbiased
estimators in Z of the function y(8, Z) & 0. According to the fundamental lemma
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(Rao [3], p. 257) it is sufficient to verify that the covariance of §; and Y'BY, Be 4,
at Z,, is equal to zero.

b) Let
= (Y~ (1 ©X) By B(Y— (1@ X) fo): Be B}

M constitutes the class of unbiased estimators of the function y(8, Z) = 0.

Similarly as in a) the evaluation of the covariance of §, and an arbitrary estimator
from . at f,, Z, proves b).

Remark 2. According to the fundamental lemma the LMVUE fory = tr (DBf') +
+ tr (CZ) is the sum of the LMVUE for the term tr (DBf’) and the LMVUE for
the term tr (CZ).

Remark 3. The estimator tr (C£) is LMVUE for y, = tr CX at ), and uniformly
best with respect to fiff C = Py, CPr,, which is equivalent to the existence of a sym-
metric matrix Q such that C = Ty XQX'T,,. ’

Remark. 4. The LMVUE for X at 8, X, is given by

sos- Lo P SP7) + (Y = XBo) (Y — XBo) —
m

— Pr (Y — XBo) (Y — XB,) Pr, -

To avoid the dependence of the estimator $, from Theorem 1 on the unknown
parameter f, the class of unbiased invariant estimators is considered.

Lemma 2. The estimator Y'(M,,® S, + P,, ® S,) Y, S;, S, symmetric matrices
is unbiased and invariant for y = tr CZ iff (m — 1) S; + S, = C, $,X = 0.

Proofis obvious.

Theorem 2. The locally minimum variance invariant unbiased estimator
(LMVIUE) for y = tr CX at X, is

5 =1 ((C— lM’TOCMTO) 5+ YMyCM,, Y, where My, =1~ Pr,.
m

For the proof check the covariance of $ and the quadratic invariant unbiased
estimator of zero Y'BY, B € %,,

By ={M,®T, + P, ®Ty:(m — 1) T, + T, = 0, T,X = 0}.

Remark 5. It can be shown that the LMVIUE from Theorem 2 for y = tr CX
coincides with the MINQUE at X,.

388



Remark 6. The LMVIUE for X at %, is

3 1 ’ L7224 ’
F =% =M M5, + My, YY' M, .
m

Theorem 3. A necessary and sufficient condition for tr CE to be LMVIUE at 5,
fory =trCZis

MZ,CI,M =0, where M =1—-XX".

Proof immediately follows from the expression for the covariance of tr (CZ)
with Y'BY, B € %,, from the proof of Theorem 2.

Remark 7. A sufficient condition for tr (C£) to be LMVIUE at %, for y = tr (CZX)
is M7,CMy, = 0(cf. Theorem 2). The condition M7 ,CMy, = 0 implies MZ,CZ M =
= 0 as follows. The relation M7,CM, = 0 implies the existence of some symmetric
matrices R, and R, such that C = Py R, + R;Py, + Pr,R,Pr,. Because of Pr,ToM
matrices R, and R, such that C = P; R, + R,Pp, + Pr,R,Pr, Because
Pr,ToM = X(X'Ty X)™ X'Ty TM = 0 we have 0 = MT,CTyM = MZ,CZ,M.

Theorem 4. The uniformly minimum variance invariant unbiased estimator
(UMVIUE) for y = tr (CZX) exists iff

M(zCr - M5y CMz) M =0
forall Z.

Proof. The LMVIUE for y = tr (CZ) at £, is (cf. Theorem 2)
/ 1 L, 1,
?:Y A’I",@’——“ C—_MTOCMTO +Pm®_MTQCMTo Y.
m—1 m m

Let{ = Y'(M,, ® Ty + P, ® T,) Y = Y 'BY be an invariant unbiased zero estimator,

i.e. B e %,, then

| 2

covs (5, 0) = 2 tr [(c -1 (M’TOCMTO)) zrlz] + 2t (M CMp 2T, ) .

m m

The estimator is UMVIUE iff covy (9, {) = 0 for all £ p.s.d. and for all Be 4,.
Because of T3 X = 0, which implies T; = MUM for a suitable symmetric matrix U,
this means covy($, {) = tr [(MEZCEM — MEM7,CM,XM) U] = 0 for all symmetric
matrices U and for all ¥ which is equivalent to M(2CX — EM7,CM2Z)M =0
for all ~.
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Sthrn

LOKALNE A ROVNOMERNE NAJLEPSIE ODHADY
V OPAKOVANOM REGRESNOM MODELI

JULIA VOLAUFOVA a LuBoMirR KUBACEK

V regresnom modeli (Y, Xf, X) s nezndmym parametrom f§ a s nezndmou ko-
varian¢nou maticou X sa md ur¢it odhad funkcie y = tr (DBB’) + tr (CZ),kde Da C
su zndme matice. K dispozicii st stochasticky nezdvislé opakované realizdcie Yy, ...
..., Y, ndhodného vektora Y. Nevychylenymi odhadmi vektora Xf a matice X st

m . 1 m . _
Y Y, al=——3% (Y, -Y)(Y,-Y).
mi=1 m—1i=1
V préci st uvedené lokdlne a rovnomerne najlepSie nevychylené odhady funkcie y,

ktoré su zaloZené na odhade Ya £.
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