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VON KARMAN EQUATIONS
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1. FORMULATION OF THE PROBLEM

We shall deal with the existence and analysis of solutions of the nonlinear homo-
geneous Volterra integral equation
t t
B(t)=c B(t)f B*(t)K(t — ©)dt + eJ B(t)K(t — 7)dt + (4 — ) B(1),
0 0
where B(t) is an unknown function, K(t — t) = exp [—(1/) (t — 7)] is the kernel,
¢, e, j, I are positive constants and A > 0 is a parameter.
This Volterra integral equation can be derived as the first approximation of the

generalized time dependent von Karman equations for viscoelastic plates of a standard
material [1] .

(E1) K(1 + aD,) A’w = (1 + BD,) {A[w, Fo] + [w, F]},
(E2) (1 + BD,) A’F = —1hE(1 + oD,) [w, w],

defined in a rectangular domain Q = {(x, y) [ 0<x=a, 0= y<b}, where wis
the transverse displacement of the plate, F is the stress function, A? is the biharmonic
operator, D, = 9/dt, F, is the stress function corresponding to the given boundary
loading, E is the modulus of elasticity, / the thickness of the plate, K the stiffness
of the plate, « > 0, f > 0 are viscous parameters such that « > f, A > 0 is the
parameter of proportionality of the given boundary loading with respect to F, and

[f’ g] = fxxgyy + fyygxx - 2fxygxy .
We consider the following boundary conditions

(E3) w=w,=0, F=F,=0 on 0Q,



where w,,, F denote the second derivatives in the direction of an external normal
and the tangent to 09, respzctively and homogeneous initial conditions

W|=o- Fli=g- =0 on Q.
We take F, in the form
Fo(x, y, 1) = —y?[2,
which corresponds to a constant pressure at the edges x = 0 and x = a.

The approximate solution of (El), (E2) with boundary conditions (E3) can be
sought in the form

F(x,y,t)= Y  Ap,(t)sin M7 Gin nf:y ,
a

w(x,y,t)= Y B,(t)sin m—:)—c sin Y
m
n

yane

Restricting ourselves to the first terms, applying the Galerkin method and using the
transformation

J: K(t — 1) f(r)dt = (1 + BD,)"* f(1)

for zero initial conditions we arrive at a system of two nonlinear Volterra integral
equations, which after the elimination of A(t) give

(1) B¥1) = (% - 1) i B(t)ﬁ) B¥(t) K(t — 1) dt +

+ P i (; - 1) J; B()K(t — 7)de + <le£ - P1> B(1),

where
P, = 9Kn*(a® + b?)*|512hEa*b*,
P, = 9n%(a® + b2)*/512hEa®

are nonnegative constants.

D:finition. Function B(t) is called a solution of (1) if:

a) B(t) is absolutely continuous on {0, ©);

b) B(t) e C*((0, «0));

c) B(1) fulfils (1) on <0, o).

Definition. A point A = A, is a critical point of (1) if:

a) for A < A, the integral equation (1) has only the trivial solution;

b) for A = A, in addition to the trivial solution there exist at least two sym-
metric nontrivial solutions of (1) which are bifurcating from the zero value (Fig. 1);
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c) for & > A, in addition to the trivial solution there exist exactly two symmetric
solutions of (1) starting with a jump B;(0%) at t = 0% (Fig. 2). They are functions
of time (Fig. 3). B

To understand the situation see Fig. 4.

The main goal of this paper is to prove the existence of a critical point for the prob-
lem (1). :

2. PRELIMINARY ANALYSIS

Lemma 1. Let B(t) € L,((0, ©0)), let B(t) fulfils (1) and let B(t) fulfils one of the
conditions

a) B(t) = g(t) ae;

b) B(t) £ —g(1) ae;

c) B(t) =0 ae; ) :
where g(t) 2 0 for t > 0 and g(t) € C((0, ©0)). Then B(t) can be changed on a set
of zero measure so that then B(t) is a solution of (1).

Proof. In the case c) the lemma is obvious.

Let us consider (1) in the form

2 B(t) = Ly(t) B(1) + Ly(1),

where

L1(t) = (ﬁ - 1) 1‘[’ BZ(T) K(t = '1') dr + le—ﬁ - P,
VRN .

Li(t) = P, (% - 1)&]0 B(o)K(t — 7)de.

Clearly Ly(t), L,(t)e C(<0, o0)) and they are absolutely continuous on <0, o).
Using the Cardan formula for (2) we have

3) B(t) = {3 Ly(f) + [4 LX) — L L3(0)]2)° +
+ {% Lz(t) - [31; Lg(t) — %L?(t)]l/z}lﬂ )

which implies the existence of one B(t) (trivial) or three By(t) (trivial), B,(t), B;(t)
continuous and absolutely continuous solutions of (2) on <0, o).

In case a) B({) also fulfils (2) a.e. on €0, ), so B(t) = B,(t) (B,(t) positive) a.e.
on (0, ) and we can change B(t) on a set of zero measure where B(t) + B,(t) so
that B(t) = B,(t) on <0, o). Analogously we proceed in case b).

If B(t) % 0, then B(t) must be either positive or negative on (0, o). As B(1) is
absolutely continuous on (0, o) we can differentiate (1) obtaining
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B(t) [P,A — P, — B¥(1)]
— BAP, + 3a BY(1) — (% - 1> ft BX(t) K(t — 1) dr
0
for a.e. te <0, ). Since B(t) fulfils (1), for ¢t € (0, o) we obtain

(5) P, — PIP, + a BYt) — (g - 1) J ; BX(¢) K(t — 7) dt =

=dﬂ€-d)j3fB@K0—tNr>m

However, the continuity of B(t), (4) and (5) implies B'(t) € C((0, o0)). Fmally, from
(4) we obtain the rest of the proof.
We denote by S,(B) (f) the operator

S,(B) (1) = (—; - 1) i B() j ; B(2) I‘((t — 1) de +

@ B@=

+ P, (%-1)1f B(x) K(t — 1) dt +(P2/1§— PI)B(t).

%Jo
Then the equation (1) can be written in the form

(6) B(t) = S,(B) (1)

Let us define

(7) b =20
B P,

Lemma 2. The operator S, ‘is monotone for A = 1., on the subset of nonnegative
elements in L((0, T)) for all T < oo; i.e., if By(t) = B,(t) 2 0 for a.e. te(0, T),
then S;(B,) (1) = S,(B,) (t) 2 0 for a.e. te (0, T).

The proof of Lemma 2 is evident.
Definition. The function B,(t) (B,(t)) from C((0, T)) is an upper (lower) solution
of (6) if the inequality
® 5.8 () < BY0)
©) (5.8 () = BY0)
takes place for all t (0, T) and for all T < oo.
Remark 1. If there exists a solution B(r) of (1) with
lim B(t) = B(co)
| Sndlee}



than the Paley-Wiener theorem

(lim J t B(z) f(t = 1) dt = B() J : f(x) dr) implies

pie) = (5= 1) 2B 2 (% - 1) 2 5(er) + (722~ 1) B(0).

Thus B(w) = 0 or B*(o0) = P,A — P, holds.

3. EXISTENCE AND BIFURCATION OF A SOLUTION

Theorem 1. If 2 < L., (4, is from (7)) then B(t) = 0 is the unique solution of (1).

Proof. We consider A in the form
P
=121y,
P, B

where ¢ > 0. Let us assume that there exists a nontrivial solution B(t) of (1). Then
for t; = inf {t > 0; B(t) % 0} there exists &' > 0 such that B(1) > 0 in (ty, t, + &)
(the case B(t) < 0 can be handled analogously). It is clear that for each r > 0 we can
choose 0 < ¢’ < r with the above property. Moreover, there exists & 6 =z6> 0)
such that

max B(7) = B(t; + 9).

(t1,t1+8)

Then for t = t; + § we obtain
3 o 1 ty+6 5 1
B (tl + 6) — E_ 1 ;B(tl +5) B (T)exp[— E(tl + 65— T)]dr'+
ty

] t1+0 {
+ PeB(t; + 6) — P, (% - 1> ;j B('r)exp[—- é(tl +6 - r)]dr =0.

ty

Thus

(10) Bvs(,l + ) — (g - 1) 53301 +0) [1 - exp(- %5)] +

+ PyeB(t; + 6) — P, (% - 1)53(!1 + 5)[1 — exp (— 25)} <0.

Since 1 > 1 — pfe > 0 and 1 2 1 — exp (—(1/B) 6) we have

BY(t, + 0) > (; - 1>£B3(t1 + 5)[1 — exp (- %o)]



Then we obtain from (10)
o B 1
P.eB(t, + 6) — P, B—l = B(t; + 6)| 1 — exp —Eé <0;
o

from this inequality we deduce

(11) 0<«:xp(-—lé><1-ﬁ~—=v<l.
B o—p
The last inequality takes place for
(12) e<1— b .
o

Thus for ¢ > 1 — fa there exists no nontrivial solution of (1). In the case (12) we

obtain from (11)
0> —flmv=y>0,

which leads to a contradiction, since 6 can be chosen arbitrarily small.
Consider

(13) $3.(B) (1) = B(): 1€ <0, o)
where 4., is from (7).
In the next two lemmas we construct a lower and an upper solution of (13).

Lemma 3. The function

Bo(t) = [Pl (% - 1)]”2 [1 — exp (— 2—106 z)] ; 1e40, o0)

is a lower solution of (13).

Proof. Substituting By(f) in (13) successively we obtain

$,.(Bo) (1) — B1) = [Pl (- 1)] (24 - )1

ser(- 1)l B (1)

Differentiating

L(f) = 20 [1 - exp(—— 51;’)] - [}[1 - exp(— % t)]
L(t) = exp (~ %‘ t) - exp(— %t)

we obtain



Then L(t) > 0 for t € (0, o) since « > f. Thus we obtain

S(Bo) (1) 2 Bi(1)
because L(0) = L(0) = 0.
By elementary computation we can verify

Lemma 4. The function

is an upper solution of (13).
The main result is

Theorem 2. There exist at least three different monotone solutions of (13) satis-
fying B(0) = 0.

Proof. The operator S,  is monotone on the set of nonnegative functions in
L,((0, ©0)) (see Lemma 2). With respect to Lemmas 3 and 4 we can construct a non-
decreasing sequence {B}(1)}2, where B}, (t) = S, (B)(t) (t€<0, o)) for i =
=0,1,.... Since S,_(B;)(t) = B}(t), we have

(14) 0 < Bo(t) < B(t) < B, ,(1) < B, (1)

for 1€ 0, 0); i = 1,2, ..., where B,(t) is an upper solution. Taking the limit for
i — o0 in (14) we arrive at a nonnegative function B*(r) € L,((0, o)) satisfying (13)
for all t€(0, o0). Owing to Lemma 1, B*(t) is a solution of (1). The monotonicity
of B*(t) can be proved from (4) on the basis of (14).

Since
S,.(=B)(t) = =S,.(B) (1)

we conclude that B**(r) = — B*(t) is a nonpositive solution of (13). Evidently the
zero function is a solution of (13) as well.

From the physical point of view it is convenient to put B(t) = 0 for t < 0 and
B(1) (2,0 for t > 0 in the case A = A.,. We use a similar convention in the case
A > A, as well.

Now we investigate the existence of solutions of (1) for A > 4. In this case we
can write

i=P1%0 1) eso,
P, B

and proceed analogously as in the case A = A,. In order to construct an upper solu-
tion we can apply Remark 1.
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Lemma 5. The function

B(f) = {Pl [% (1+¢) - 1]}”2 ; 1e<0, w)

is an upper solution of (6) and the function
Bo(t) = (Pye)'?; te<0, w)
is a lower solution of (6). :

The assertion of Lemma 5 is evident.
Analogously to Theorem 2 we can prove

Theorem 3. There exist at least three different monotone solutions of (1) for

A > Aoy

In the following theorem we prove the uniqueness of the corresponding branches

for A > 2.

Theorem 4. Let 1 > J.,. Then there exist only three different bounded solutions

of (1).

Proof. First we prove the uniqueness of the positive solution of (1). The uniqueness

of the negative solution can be proved analogously.

Let us prove the theorem by contradiction. Let By(t), B,(t) be two different solu-

tions. Let us denote

H(t) = B,(t) — B,(1).
We have :

H(t) = (% - 1) L {Bz(t) + By(r) By(t) + B3(t) —

- (% - 1>§J.;Bf(1)exp|:— %(t - r)] dr — Pla}‘l

J: H(7) {B,(t) [By(r) + By(x)] + Py} exp[— %(t - r):] dt

which can be rewritten in the form

(15) H(1) = J K(t,7) H(z)dr = 0,
where ’
K(t,7) = (% )a {B (1) + By(t) By(1) + BX(1)

(_ - 1)3 B(x) exp [— L - r)]dr - pls}—l .7
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: f o (B,(1) [Br() + By(c)] + P} exp[—- -; (t - r):| g .

We use the following notation

G(t) = max H(r),
17€(0,t)

t 1/2
L{t) = [J K*(t, 1) dr] ; 120.

o

Since B(t), B,(t) are two solutions of (1), the inequality

Bi(t) — (E - 1) ljt Bi(7) exp[— 1(t - 1:)] dt — P =
B %Jo B
=P, (% - l)igl%jj‘;Bl(T)expl:— %(t - T)]d‘t >0
holds for t = 0. Hence from
By(f) By(t) + B3(1) > 0
we conclude that K(t, 7) is well defined for # > 0 and
G(1) < o0 _
L(t) < oo forall t>0.

Using the Cauchy-Schwarz inequality in (15) we successively get

nos| [ we d] [ xs o] " = o

e[ xoe] [ 4]

n\ 1/2
§GL2t2”2§...§GL"<t—'> for n=0,1,...,
’ n:

and

A

which imply H(t) = 0 for t > 0. Thus we obtain B,(t) = B,(¢).

Corollary. Theorems 1—4 imply that the point 2. given by (7) is the critical
point of (1).

Despite of the fact that we consider only the first approximation of the sought
solution (w, F) of the generalized von Karman equations, our results and the proper-
ties of the solutions provide a qualitative analysis of the bifurcation for visco-
elastic plates.
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Sthrn

TEORIA BIFURKACI{ ZOVSEOBECNENYCH
KARMANOVYCH ROVNIC

IGOR BRILLA

Prdca sa zaoberd skimanim existencie a bifurkdcie rieSenia nelinedrnej homogénne)
Volterrovej integrédlnej rovnice, ktort sme dostali ako prvi aproximdciu pri rieSeni
zovieobecnenych Karmanovych rovnic, ktoré popisuju rovnovazné stavy obdiZni-
kovej tenkej vdzkopruznej dosky, na dva protilahle okraje ktorej pdsobi konstantné
rovnomerné zataZenie zdvislé od parametra Umernosti zataZenia.
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