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SVAZEK 29 (1984) A P L I K A C E M ATE M A T I KY ČÍSLO 2 

SPECTRAL APPROXIMATION OF POSITIVE OPERATORS 
BY ITERATION SUBSPACE METHOD 

ANDRZEJ POKRZYWA 

(Received March 21, 1983) 

Let H denote a real or complex Hilbert space with a norm || • || and scalar product 
< •, • > and suppose that A is a bounded linear positive operator acting in H and X0 

an m-dimensional subspace of H. Then the subspaces Xn = AnX0 are also ra-dimen-
sional. Let Pn denote the orthogonal projection on Xn. We shall describe the behav
iour of the spectra and the eigenspaces of the operators An = PnA\Xn. We shall in
vestigate what happens if instead of X0 its subspace X0 is taken, and a simple way 
of approximating the spectra of the operators An will be given. The case dimK 0 = 1 
was studied in the papers of Kolomy and others (see [2], [3] and references the ire in), 
the iteration subspace method for matrices was studied in [4] and [5]. 

Let {F(^j} denote the spectral family of A. We shall use the notation F[a, fe] = 
= E(b + 0) - E(a - 0), E(a, fe] = E(b + 0) - E(a + 0), etc. Since dim E(X, co)X0 

is an integer-valued nonincreasing function of X, the set of its points of discontinuity 
is finite. Let a1 > a2 > . . . > %k be all such points, we put in addition ock+i = ' 0 . 
Let Xj (j — 1,2, ..., m) be such real numbers that 

(1) dim E(Xj, oo) X0 < j and dim E{Xj — e, oo)X0 ^ j for any e > 0 . 

Then Xx ^ X2 ^> . . . ;> Xm and {a,}* = {Xj}™ cz o(A) (the spectrum of A), since 
E(X) is constant in some neighbourhood of any X $ o(A). 

Lemma 1. Suppose that Y is a finite-dimensional subspace of H, 0 < a < X and 
E(X, oo) y + 0 for all nonzero y e Y. Then there exists a positive number c such 
that <AnE(0, a] y, y> ^ c(ajX)n (Any, y> (\fy e Y). 

Proof. Since the unit ball in Yis compact we can find a positive number cx such 
that \\E(X, oo) y|| ^ cx Kyi (Vy e Y). This implies that for all y e Y, 

(2) 
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<Лny, y) = ( ţ" d<£(^) y, y) ^ А" í d <£(0 y, y} 
J(0,oo) J(Я,oo) 



= Xn\\E(X, oo)y | |2 _ c2A"||y | |2. 

In a similar way one can show that 

(3) <_(0, a] Any, y> _ a"||E(0, a] y||2 _ a"||y\\2 (Vy e Y) . 

Dividing (2) by (3) we obtain the assertion. 

Theorem 1. Let Alf„ _ A2jM _ . . . _ Amj„ be l/?e eigenvalues of An. Then XJn / k} 

with n -> oo (j = 1,2,..., m). 

Proof. The operator An is a selfadjoint operator acting in the m-dimensional 
space X,_, therefore its eigenvalues satisfy the max-min principle (see e.g. [ l ] , p. 60) 

<A" + 1x A"x> 
(4) Ajn = max min <Ax, x> = max min — ~ . 

X<=Xn xeX XaXo xeX | | A " x | | 2 

dimX = j | | J C | | = 1 dimX = j x*0 " " 

Since <A"x, x>2 = <A("~1)/2x, A(" + 1 ) /2x>2 _ \A<n-»\2x\2 \\A{n + 1 ) / 2 x \ \ 2 = 
= <A"_1x, x> <A" + 1x, x> for any xeH, we have, for all nonzero x e H, <A" + 1x, 
A"x>/|[A"x|2 = <A2" + 1x, x>/<A2"x, x> _ <A2"x, x>/<A2"_1x, x> _ 
_ <A2"_1x, x>/<A2"~2x, x> = <A"x, A""1x>/||A"~1x||2. This equality and (4) imply 
that 

(5) XUn _ ljn_1 j = 1, 2 , . . . , m , n = 1, 2 , . . . . 

It follows from (1) that if X is a ./-dimensional subspace of X0 (l _ j _ m) then 
there is a nonzero x e X such that E(Xj, oo) x = 0, and then <A" + 1x, A"x> = 
= [|A1/2E(0,/l..]A"x|[2 _ |[A1 /2E(0,;^]| |2 ||^"x | |2 = AyllA^I2. This inequality and 
(4) imply that 

(6) lUn _ Xj , j = 1, 2 , . . . , m , n = 1,2, . . . . 

It follows from (1) that for each e e (0, XjT) there exists a j-dimensional subspace X 
of X0 such that E(lj — e, oo) x 4= 0 for all nonzero x eX. By Lemma 1 we can find 
a positive number c such that ||A"F(0, Xj - 2e] x|| _ c((Xj - 2e)/(A; - e j / ||A"x|[ 
(Vx eX ) . Thus for any nonzero x e X we have 

<A" + 1x, A"x> = f £2" + 1d<E (£)x,x> _ 
J (O.oo) 

= ( . - 2e) ' 

= (1, - 2e) (||A"x||2 - ||£(0, ^ - 2e] A"x||2) ^ (A, - 2e) ( l - c ( ^ ~ J " ) 

x |A"x | | 2 , 
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<_2" d<£(<_) x, x> = (Д_ - 2e) ||A"£(Дj - 2e, oo) x | | 2 = 
(Åj-2e,oo) 

2и\ 

X 



and using the max-min principle we get 

^^'-^('-^т)! 
This inequality together with (5) and (6) implies that X} _ limA,^ = Ay — 22 for 
any e > 0, and this completes the proof. 

Let VJn be the subspace of Xn spanned by those eigenvectors of An which cor
respond to the eigenvalues of An lying in the interval (aJ + 1, ay]. In the case dim K0 = 
= 1 we obviously have V1>M = A"K0. In general we cannot find a subspace Zy such 
that Vjt„ = ^-"Zy, nevertheless, we shall show that there are subspaces ZJ which satisfy 
this identity approximately. 

For any two subspace M, N of H we set (cf. [ l ] , § IV.2) 

S(M, N) = sup inf ||x - y\\ 9 S(M, N) = max {5(M, N), S(N, M)} . 
xeM ye A! 

11*11 = 1 

S(M, N) is called the gap between the subspaces M, N and if P, 0 are orthogonal 
projections on M, N, respectively, then $(M,N) = \\P - Q\\,S(M,N) = | |(l - Q)P|[. 
Thus 5 is a distance function. It is known that 

(7) if S(M,N)<1 then d i m M ^ d i m N 

(see [1], Corollary IV. 2.6.) and (cf. [ l ] , Th. 1.6.34) 

(8) if dim M = dim N then d(M, N) = 5(N, M) = S(M, N). 

We put 

(9) Yy = X0 n ker E(ap oo) = X0 n ran E[0, ay] (j = 1, 2, ..., k + 1). 

Then {0} = Yk+1 £ Yk g . . . 5 Yt = K0, and let Zy be a subspace complementary 
to YJ + 1 in Yj, i.e. Zj n Yy+1 = {0} and Z, + Yy+1 = Yy. We also set ZJtn = AnZ}', 
then we have Zl5„ + Z2,n + ... + Zkn = Xn. 

Lemma 2. For any e > 0 t/7^re exists O positive number c such that 

(10) S(ZJ>n, E\*j - £, a,] ZJtH) S c(l - £ /a , f . 

Furt/zermOre, 

(11) || (.4 - ay) I Z y J ~> 0 with « - > o o . 

Proof. Lemma 1 applied to Y = Zy, a = ay - 2, /I = ay implies the existence of 
a positive number c such that ||A"E(0, ay - 2] z|| g c(l - e/a,)" ||Awz|| (VzeZj), 
which gives ||z - F(ay - 2, a7] z|| = ||F(0, ay - e] z\\ S c(l - e/oCj-f for all z e ZiJn. 
Consequently, for large n, 5(ZJin, F(ay - e, ay] ZJn) S c(l - ejo:-)1 < 1, hence, by 
{!), dim ZJn ^ dim E(ay - s, ay] Zy>1| <; dim ZJn and applying (8) we obtain (10). 
In virtue of the inequalities 
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\\(A - ccj) | ranE(a._e,a j ] | | g 6 and ||(A - <xy) | Z . J g 

-S IK-4 ~ a,.) |£ ( a ,_E ,a . ] Z ,J | + ||A - a,|| §(ZJtn9 E(*j - e, a,-] ZJtH) g 

S e + c(l - e/ay)" 

we have ||(A — aj) |Zj. J = 2s for sufficiently large n, which proves (11). 

Theorem 2. 

for j = 1,2,..., k. 

Proof. We put n = min (a,- — aJ + 1) and /Ln = max (ly — Ajt„), where Xjn are 

the eigenvalues of An (cf. Th. 1). Assume that z e Zjn, ||z|| = 1 and vt are orthogonal 
eigenvectors of An such that AKvf = Aitnvi9 z = vx + v2 + ... + vm. Then 

m m m 

I K - * ; H 2 = UK - «y)2>l2 = II Z(^n - «,-HI2 = Z(A,„ - «,)2 h!!2. 
i = 1 i = 1 i = 1 

Thus, if n is so large that jnn < nj2, then 

I K -«;) k J 2 = I K -«,) -II2 = (V/4) Z IN 2 = OrW Ik - I * . l2 • 
v4Vjtn VieVj,„ 

111 this way we have shown that 

<5K,„ F,,„) £ 2|(A„ - a,) | z ,J /„ ^ 2||(A - «,) |ZJ[/--

for sufficiently large /L Lemma 2 implies that <5(ZJVJ, VjVl) < 1 for n large enough, 
Then, by (7), dim Zjn ^ dim Vjttt and since 

/c fc 

Z dim Z / fB = X dim Vy>fI 
1=i J=i 

we have in fact dim Zjn = dim Vjt„ and in virtue of (8), 

(12) $(ZJt„, V,,„) = <5(Z,,„, V,,„) ^ 2||(A - a,) | z , J / „ • 

This together with Lemma 2 shows that S(Zjn, Vjn) -> 0. To complete the proof it 
suffices to note that 

||(A - «j)\yj ^ ||(A - *j)\zj + \\A - «,|[ ${zJt„, V,,„) 10. 

We shall study now what happens if instead of the initial subspace X0 some larger 
or smaller space is taken. Suppose that X0 is an m-dimensional subspace of X0 

and let Pn, An, k, 6Lj9 Xj9 XJn mean the same for X0 as the non-waved symbols mean 
with respect to X0. 
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Theorem 3. Under the above assumptions the following statements hold: 

i) {&j}'Jml c {*j}kjml, 
U) the sequence {lj}™ is a subsequence of {A/}T» 

iii) Xj ^ 1 / ^ XJ+m.m, j = 1, 2, ..., m, 
iv) A/,,L^ ^,„ _̂  ^ / + m - m , „ , j = V 2, ..., m, 7i = 1, 2, ..., 
v) /f V/w is a subspace spanned by those eigenvectors of A„ which correspond 

to the eigenvalues lying in the interval (ccJ+1, (Xjj (non-wavedl) then 

s(Vhtt,vLn)to. 

Proof. Note that if a' $ {a,}* then X0 n ker E(a, oo) does not depend on a in some 
neighbourhood of a', hence X0 n ker E(a, oo) does not change in this neighbourhood 
as well — this shows i). 

Let Yj = Yj n X0 (j = 1, 2, ..., k + 1) (cf. (9)), then {0} = Yfc+1 s % c= . . . 
. . . c Yx = X0. Setting Zy = Y/+1 n Yy we see that Z, n YJ + 1 = Y/+1 n Y, n 
n YJ + 1 = Y/+1 n YJ+1 = {0}. Since Z, n Yy+1 = {0} and Z/ + Y;+1 c. Y, there 
exists a subspace Z7 complementary to YJ+1 in Yj and containing Zj, i.e. Zj c: Zj9 

Zj + YJ + 1 = Yj and Z^ n Y/+1 = {0}. It follows from Theorem 2 that 
S(VJn, AnZj) -+ 0 and S(VJt11, A

nZJ) -+ 0. This convergence and the inequality 
S(VM, VJ>n) £d(Vjtn,A

nZj) + 3(AnZjn
9A

nZj) + S(AnZJ9 VJ>n) imply v) since 
S(AnZJ, AnZj) = 0. 

The inequalities S(VJtTJ, A
nZj) < 1, S(VJtn, A

nZj) < 1, which hold for sufficiently 
large n, imply together with (7) that dim VJn = dim Z3 ^ dim Z} = dim VJyn. Thus 
if we put 

(13) m1 = mx = 0 , m7- = £ dim Z t , ^ = ^ dim Z(, 
i=i i - i 

then it is a consequence of the definition of VJt„, VJn and Theorem 1 that Xmj+i ?„ /* 
/" Am + i = a7- and IWj.+ l> /" lmj+i = «/, i = 1, 2, ..., dim Zy. These relations imply 

ii). iv) is an asertion of Th. II.6.46 [1] aplied to the operators An and A„ = P„^„|j?n 

and iii) may be obtained from iv) by going to infinity with 77. 

With the notation (13) it follows from the above theorem that forj = 1 one has 
lm+i,n .= ^mj+i,n = aj 0 = 1, 2, ..., dim Zy); these inequalities do not hold for 
j > 1 in general. Nevertheless, one might expect that the convergence Xmj + i$n -+ (Xj-
is not worse than lmj+itH -* ccj, i.e. that 

(14) lim sup (a, - Amj+i,n)l(<*j - Xmj+ M) < °° > i = 1, 2, ..., dim Z, . 
7J->00 

The next theorem shows that (14) holds if dimX0 = 2, however, no general solution 
has been found. 

Theorem 4. In addition to the assumptions of Theorem 3 assume that dim X0 = 1, 
dimX0 = 2 and 11 = X2 < Xv Then 
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lim SUp (A2 - A.2,n)l(l>2 ~ h,n) = ^l/C^l ~ **2) . 
n-> oo 

Proof. Let vn, wn be the orthonormal eigenvectors of An, xn — the unit vector in Xn 

and yneXn a unit vector orthogonal to xn. Then it follows from (4) that X2tH = 

= <Av„, v„> _ XUn = <Axn, x„> _ XUn = <Aw„, wM>, and we put \xn = <A>'„, y'„>, 

7„ = <-4xIIJ >'„>. Xln, X2tU are the eigenvalues of the matrix 

/ - V1.» Ӯ»~\ 
П~l% ЏnУ 

thus solving the quadratic equation det (stfn — X) = 0 we have 

(15) l2,„ = ( i 1 > B + n„ - ((XUn - nn)2 + 4|y„| 2) 1 / 2)/2. 

We shall estimate |y„|. Since Xln -> Xx it follows from Theorem 1 that E(XX, oo) xn = 

= 0 for all n, which implies | |(A — X1j2) xn\\ ^ Xlj2 and consequently, 

| | (A - i ^ x , ! 2 = | ( A - X1l2)xn - l.xpf = ||(A - 1,12)xn\\2 - 2<(A - i j 2 ) x „ , 

ijX„/2> + | | iix„/2| | 2 ^ ( i j 2 ) 2 - 2(i 1 > n - X./2) i,/2 + i 2/4 = 1,(1, - *._„). This 

inequality and the eigenvalue expansion of A„ further gives X1(X1 — i l n ) 3: 

2? | | K - i i ) * „ | | 2 = \\(A„ - A2)«x„,v„y v„ + <x„,w„> w„)||2 = ||<x„,vny(A2>„ - ' x 2 ) . 

• vn + <x„, w„> (A l n - X2) w„ | 2 ^ |<x„, w„>|2 (XUn - X2f. This inequality implies 

(16) \(x„,wny\2 ^ x2(X, - xlin)j(xiin - x 2 y . 

The identities wn = <w„, >!„> j;,, + <w„, x„> x„ and |<w„, yn}\2 + |<w„, x„>|2 = 

= 1 imply 

(17) |y„|2 = |<Ax„,y„>|2 = 
<AX„, w„ - <w„, x„> x„> 

<W„ У„> 

_ <*„, ̂ O - <*„> ™n> <Axn, Xn)[2 , , s2 (x„, Wn}\2 

_ . _ ^ _ A l j - L — -

1 ~ !<*>„, xK>|2 1 - |<w„, x„>|2 

Note also that 

(18) iin - trace s4n - XUn = XUn + A2t„ - XUn-^ Xx. 

Now the identity 

^2 - Kn = [((ii,n - fa)2 + 4|y„| 2) 1 / 2 - (i x,„ + ft, - 2X2)]j2 = 

= ( i i . n - ^ ) 2 - C*i.- + fa ~ 2A2)
2 + 4|y„|2

 = 

2(((ii,„ - ft,/ + 4|y„| 2) 1 ' 2 + XUn + ft, - 2A2j 

= a JJ v 2(ft, - X2) + 2(y„)2/(l2 - i 1 > n) 
1 2 1 * ' ((ft, - XUn)

2 + 4 | y „ | 2 ) 1 ' 2 + i 1 > n + ft - 2A2 
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implies in virtue of (16), (17) and (18) that 

^2 - *>2,n ^ o / - __ . __ K™ _0_1 _! _ ~ _ ^ >")2 ?__ 

n-*oo 

lim sup -:*- -*-* < 2 ( A. - A2 + lim • 
A2 - Ax,„ V " 1 - |<*-> wn>\2 (AM - A2)

2 

x [ ( & - ^ Y + 0)1 /2 +X2 + X,- 2A 2 ] - J = A j ^ - A2), 

which completes the proof. 

It is shown in the above proof that fin ---> Xx and ||wB — yn\ *-* 0, thus instead of 
looking for the exact solution of the eigenvalue problem for the operator An one may 
be satisfied by taking 11 n, //,„, xn, yn as the approximate solution. This procedure may 
be generalized in the following way. 

Suppose that {0} = M0 c M , c . c Mm = X0 are subspace with dim Mj = j . 
Let xjy„ e AnMj be a vector orthogonal to AnMJ_1 with unit norm and put fiJn = 
= (AxJtn, xj>n) (j = 1, 2 , . . . , m). Note that the vectors xlt„, x2>n,..., xm?„ may be 
obtained from the vectors Axln_1, Ax2fn__1,..., Axmn__1 by the Schmidt orthogonali-
zation process (see e.g. [1] p. 50). 

Theorem 5. The sequences {fijtn}n
xLo (I = 1, 2, ..., m) are convergent and 

[lim ,W/,„}7=i = {ai> a2> •••* a/J- If ^/,w denotes the subspace spanned by the vectors 
n 

xjt„ with indices j such that lim /xjtS = az then S(Wln, Vln) -> 0. 
s 

Proof. Let Pn(j) denote the orthogonal projection on AnMj and Fln(j) — the 
orthogonal projection on the subspace Vln(j) spanned by those eigenvectors of 
the operator Pn(j) A\AnMj which correspond to the eigenvalues lying in the interval 
( a /+ i - a / ] - Theorems 1 and 2 imply that there exists a number n0 such that 
dim VLn(j) is independent of n for n > n0. Theorem 3 implies that 

(19) ^ ( V , , „ 0 - - l ) , V ( , „ ( y ) ) ^ 0 , 
k 

thus, by (7), dim Vl>n(j - 1) S dim Vl§n(j) for n > n0. Since jf = £ dim Vlt„(j) = 
k / = 1 

= 1 + ^ dim VUn(j — 1) we in fact have dim Vttn(j — 1) = dim Vhn(j) for all 
1 = 1 

I = 1, 2 , . . . , k except one, denoted by lj9 which together with (19) and (8) implies 
that for / =|- lj9 

(20) \\Fl>n(J) ~ Fltn(j - 1)|| = h(ViM Vi,n0 - 1)) -7 0 • 

Since 

PJU) = T.FIÁJ)> 
/ = i 

thus setting 
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we have 

\\Gj,n - (FhM - FhJJ - 1))|| = || I {F,M - FUJ - 1))|| á 
/ = 1 

^IKУMVUJ-^))-
1=1 

Let 
m 

Qr,n = I Gj,n and Wr,n = ran Qr,w , 
1-1 
lj = r 

<2r,„is the orthogonal projection on Wrt„. The previous inequality implies that 

(2i) Kwr,n,vr>n) = l e ^ - ^ H I = 
m m 

= II S (G,.B - (JU/) - FrJJ - 1))) - I (Fr,„(I) - Pr,„(I ~ l)j|| = 
j=i 1=i 
L, = r I j * r 

m k rn 

= I I ^,10* ^,0' - i)) + I < ,̂0> ^,0 - i)) • 
J=i 1=1 j=i 
lj = r l*lj lj*r 

This in virtue of (20) shows that d(Wr,n, Vr,„) -+ 0, (r = 1, 2, ..., k). This con

vergence and Theorem 2 imply that | |(A — 0Lr)\Wr>n|| -^ 0, and to complete the proof 

it suffices to note that if lj = r then xy> e Wrj„ and then 

|/f/> ~ a r | = |<(-4 - ar) xJ>n, xj$n)\ g 

^ I K A - a ^ x ^ l l ^ l K A ^ a ^ J - O . 

ERROR ESTIMATIONS 

Suppose that the eigenvalue problem for the operator An has been solved. Then,, 

using the formula 

df 
d(A, a(Áj) = inf \k - fi\ = inf ||(A - A) x|| 

цєA xєH 

11*11-1 

(cf. [1], p. 277), we can estimate how far the eigenvalues of A„ are from the spectrum of 

A. Namely, if (An — Xj n) vJ>n = 0 and [|vin|| = 1, then d(Xj n, o(A)) g (|(A — 

- IJ*)"JA = ( l l ^ y j 2 - ^ , ; < A v J > 5 vjj +X2

jfn)
1/2 = ( l A ^ . J 2 - A2,,.)1'2. In the 

same way we can find an a posteriori estimate d({ijn, cr(A)) ^ (|[AXy„||2 — l*y,n)1/2> 

where xJ%w, /iJ%„ have the same meaning as in Theorem 5. 

If ocj is an isolated eigenvalue in a(A) then the following theorem gives an a priori 

estimate of d(Xjn, v(A)) and provides fast convergence of eigenvalues and eigen

vectors of operators An. 
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Theorem 6. Suppose that for some e > 0 (a, — E, a,] n <r(A) = {a,}. Then there 
is a positive number c such that S(VJt„, EfZ-) ^ c(l — e/a,)", where F, = 
= F(a, - s, a,] = E[a,, a,] and a, - kitH S c(l - e/a,)2", for all i such that 
X% = a,. 

Proof. It follows from (10) and (11) that there is a positive number c0 such that 
for sufficiently large n, d(VJttt, ZJt„) <, c0\\(A - GC^Z.J and $(ZJtn, EjZJtn) ^ 
^ c0(l - sjocj)". Note that (A - a ,) |E . z . - 0 and F,Z,J = F,A"Z, - F,Z,; there
fore ||(A - a,)|Zj J S \\A - a,|| x S(ZJ>n, EJZJ) and <5(V,,n, F,Z,) <; O\V,,B, Z,,„) + 
S(ZJtn,EJZJ) ^ c0(\\A - a,|| + 1)(1 - a/a,)n. Suppose now that (An - Xifn) v = 0, 
v e VJtn, \\v\\ = 1. Then )H = a, and A,,., = <Av, v> = <A(l - £,) v, v> + 
+ <AF,v, v> = <A(1 - Ej) v, (1 - Ej) v> + a,||F,v|[2. Thus a, - A, „ = 
= a,(l - ||F,v||2) - <X(1 - F,) v, (1 - F,) v> ^ a,||(l - Ej) v||2 ^ ' 
^ a,(O*(V,,„, F,V,,„))2. It is easy to verify that S(EjZj9 F,V,,„) ^ ^(F,Z,, V,,„), hence 
^(V,,w5 F,V,,„) ^ 'O\V,» F,Z,,„) + S(EJZJ, EjVJtn) S 2§(VJtn, E}Z}) S 2ct(l- a/a,)". 
The above shows that a, — Xin ^ c2(l — e/a,)2", where O2 is a new constant in
dependent of n. 

A similar theorem may be proved for the approximation process considered in 
Theorem 5. 

Theorem 7. In addition to the assumptions of Theorem 5 suppose that j6, are such 
positive numbers that (a, — /?,, a,] n O"(^4) = {a,}, and put y = max (1 — Pjfoj)-

l^j^k 

Then there is a positive number c such that for j = 1, 2, ..., k and n = 1, 2, . . . 
we have 

S(WJtn, EJZJ) £ cf and |a, - fiitn\ ^ cy2n for all i 

such that fiittl —• a,. 

Proof. Applying Theorem 6 we have 

(22) S(Wj,n, EjZj) ^ B(WJtn, V,,„) + $(Vj,n, EJZJ) ^ S(WJtn, V,,„) + cf . 

We keep the notation from the proof of Theorem 5 and put Zt(j) = (Y/ + 1 n M, ) 1 n 
n Yz n M, (cf. the definition of Z, in the proof of Theorem 3). There are two pos
sibilities: 

i) zt(j) = {0} - then for sufficiently large n, Vlt„(j) = {0}, 
ii) Zt(j) 4= {0} — then we may apply Theorem 6 with M, instead of X0. Thus in 

both cases there exists a positive number c such that 

(23) KviM EtZt(j)) ^ c(l - /?,/«.)" ^ cf t 0 . 

In the inequality S(Et Z,(j), E, Z{j - l)) S KEi Zi0)> V'.«U)) + 
+ S(Vlin(j), V,,n(j - 1)) + $(V,,n(j - 1), Et Z,(j - 1)) the righthand s i d e converges 
to zero for / 4= /, in virtue of (23) and (20). This implies that El Zt(j) = E, Z,(j - 1) 
for / 4= lj, and by (23), S(Vhn(j), VUn(j - 1)) ^ S(Vl>n(j), Et Z,(f)) + $(Vhn(j - 1), 
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E, Z,(j - 1)) g ley". This inequality together with (22) and (21) gives 

$(Wj>n, EjZj) ^cy"+ £ a(V,,„(0, V,,n{i - 1)) S cl7", 
Iśišm 
lšlйk 

with a constant ct independent of n. The desired estimate of |a,- — ju{- „| may by 

obtained in nearly the same way as that of \Xif„ — o,-| in the proof of Theorem 6. 
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S o u h r n 

SPEKTRÁLNÍ APROXIMACE POSITIVNÍCH OPERÁTORŮ 
METODOU ITERACE PODPROSTORŮ 

ANDRZEJ POKRZYWA 

Vyšetřuje se metoda iterace podprostorů pro aproximaci bodů spektra positivního 
lineárního omezeného operátoru. Je popsáno chování vlastních hodnot a vlastních 
vektorů An, vznikajících při užití této metody, a jejich závislost na počátečním 
podprostorů. Vyšetřuje se rovněž užití Schmidtova ortogonalizačního procesu 
k přibližnému výpočtu vlastních prvků operátorů An. 
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