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SVAZEK 29 (1984) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

CONVERGENCE OF EXTRAPOLATION COEFFICIENTS 

JAN ZITKO 

(Received April 13, 1983) 

1. INTRODUCTION 

Let X be a Hilbert space and let T9 H e [X] . We consider an operator equation 

(1) x = Tx + b 

and an iterative process 
(2) xn + l = Txn + b, 

where b is a given element from X. Let for some x0eX the sequence {x.,}̂ °=0 deter­
mined by (2) converge to x* eX. Let I > 0, k, m0, ml9 ...,mt be integers such that 
the inequalities 

(3) mt > ml-)L > ... > mt > m0 = 0 , 

(4) k > mt 

hold. 
In the paper [ l ] we solved the problem of finding complex numbers a0

k\ a(k\ ... 
..., a(k) such that 

(5) ІW-i, 
i = 0 

(6) \\H(x* - I «? V-JІI = min \H(x* 
i = 0 ß0 + ...+ßi = l 

l 

i = 0 

The norm is defined by using the scalar product (•, •) in X. In order to summarize 
shortly the results from [ l ] we recall some notations and assumptions from that paper 
which will be adopted throughout the present paper. If 

Mk = (fi0, pu . . . , iit) , Nk = (v0, v t , . . . , v j 

are two row vectors with components in X, then Nk ® Mk is a complex (5 + 1) x 
x (t + 1) matrix and (Nk ® Mk)itJ = (fij, vf). 
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We put 

(7) ek = x* - xk , nk = Hek, 

(7') Hk = (rik,rik-.mi,...,rik-mt), 

(V) Qk=Hk®Hk. 

Further, we assume that the resolvent operator R(X9 T) has r poles Xl9 Xl9 ..., Ar 

with multiplicities i1? i2, •••> *r> respectively, and satisfying the inequalities 

(8) | ^ | = |Ai| = . . . ^ |Ar| > 0 . 

Moreover, |/lr| > |A| for every X e r/(T), A # A,-, I = 1, ..., r, and Af 4= X} for i 4= j . 
For a given j e <1, r> let C^ = {A e C | JA — A,-| = £,-}, where O7- is assumed to 

fulfil 

{leC\\X-Xj\£Qj}nc(f) = {kj}. 

The symbol C denotes the set of complex numbers. Let 

(9) K0 = {XeC\\X\=Qo) 

with Q0 such that 

{XeC\\X\ = Q0} n (j(r) = (j(rj - {^,..., Ar} . 

Denote 

(io) B» = h\ (^-hy~lR(^T)dx. 

Without any loss of generality we can assume that (see [ l ] ) 

r 

(11) l <Hij = f a n d 5 j . / o * 0 for all j = 1, . . . , r . 
i = i 

On the basis of the just presented conditions we have proved (see Theorems 2 and 4 
in [1]) that there exists an integer k0 > max (ij) + mt such that for every k ^ k0 

1=i r 

only one vector 

«<*> = («<*>,«<*>,... , a « ) T 

can be found which solves (5) and (6). This vector is given by the formula 

^> = (e\n)Q^e(n))-'Q^e(n). 

Let us remark that et(n) is the i-th column of the n x n identity matrix and e(n) = 

= i «••(«)• 
i = i 
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Given a sequence {uk}k=0 c X and two integers i, j e <1, /> we denote for k > mt 

(12) O\;ufc = Wfc-m^i - Wfc-Wj 

and 

(12') O>fc = O'fiufc. 

Define 

(13) Lk^(dlrjk952nk9...,Slrjk), 

(14) 
_(Lk®HЛ 

The matrix Sfc is nonsingular and the vector a(/c) is the solution of the system 

(15) Sfca
(fc) = e,+ 1 ( l + 1). 

(See [1], Theorem 2). We call the components of the vector a(fc) the coefficients of 

extrapolation. 

In this paper we shall study the convergence of the coefficients a(fc) for k ~• co 

and construct a polynomial 

P(z) = a0z
mi + (T_zmi'mi + ... + a ^ z " 1 1 - " " - 1 + <7, 

such that the a(fc),s converge to the coefficients of this polynomial, i.e. lim a(fc) = G{. 
k-+ao 

In the special cases mt = i or mt = in (i = 0, 1, ..., /) where n is a given integer, it 

is shown that it is possible to express the coefficients Gt as functions of some poles 

of the resolvent operator R(X, T). Extrapolation by means of polynomials with 

coefficients cr- in the case mt = in for i = 0,.. ., / was studied in the paper [5]. 

In Sections 2 and 3 auxiliary assertions are proved, which are used in Sections 4 

and 5. In Section 4 we study the convergence of a(fc) for k —> co. On the basis of the 

asymptotic behaviour of a(fc) for k -> co it is shown in Section 5 that if {yk}™=Wl <~ X 

is defined by 

(16) yk = a0

k)xk + ct[k)xk_mi + ... + a ( f c ) x f c _ m . 

then 

l i m ( | | x * - j 4 / | | x * - x t | " ) = 0 
k-* oo 

for some p __: 1. 

Let all notations and assumptions concerning the integers I, m 0, m_, ..., mh t and 

the poles of R(A, T) as well as the operators BJt be valid throughout all this paper. 

2. AUXILIARY THEOREMS 

Let J f denote the set of all pairs (j, i) for j = 1, 2, ..., r and i = 1, 2, ..., iy for 

every j . Order this set in the following sequence: 
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(17) (1,4). (Ui-1), •••, (1 ,1) , 
(2,i2), ( 2 , i 2 - l ) , . . . , ( 2 , 1 ) , 

(r,ir), (r, ir_t), ..., (r, l) . 

Put 

and 

H f— J XkR(A, T) s0 dU = v(kj. 

The symbol c(k) denotes a vector from Cr whose p-th component is I . J k), 

where (j, i) lies at the p-th place in the sequence (17). Analogously, V denotes a t-
dimensional ''vector" with components vjf. For a given positive integer v < k let 
J$?fcv c l b e a subspace generated by the vectors v(k), v(k — 1J,..., v(k — v). The 
vector rjk defined by (7J can be expressed in the form (see [ l ] ) 

(18) nk = _£ J , ( . * 4 ) A>,, + t</c) = FTc(fc) + v(k). 

The operation FTc(kJ is performed in the same way as for vectors with complex 
components. Further, let / > 1. 

When proving the convergence of a(k) for k -> oo we shall work with matrices 

(19) Rk = Xfc ® L,, R,(j, i) = L! jfc(j) © L2 f k(i), 

where Lk is defined by (13J, 

(19'J LukU) = (siflk^",Sj^1rik,Sj+1rik,...,Slrik) 

for j = 1, 2, ..., / and 

(19") L2,*(0 = (5 i^ - - -» ^ - 2 ^ ^ - 1 , 1 1k,di+1tik,...,Slrik) 

for i = 1 , 2 , . . , / + 1. 

Put 

y(k) = t1k- v(k), 

Li'' =(S1y(k),S2y(k),...,Sly(k)), 

L[:k\j) = ( ^ y(k),..., V i j<*)- * J + i y(k),..., dl y(k)), 

L(
2:k\i) = (*, y(k),..., (5,-2 y(k), 5,-t.i y(/c), « l + 1 y(/c),..., 5, y(k)) 

for j = 1 , . . . , / ; i = 1 , . . . , / + 1. If we extend the validity of the operators O*^. and O\-
also for sequences {ufc}£L0 c Cr according to the relations (12) and (12') then (18) 
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and the definitions of y(k) and c(k) immediately imply that 

£<-' = vrh, L\-J(J) = vjjUk(j), L#{i) = vy2,k(n, 
where we have put 

Jk =(S1c(k),S2c(k),...,Slc(k)), 

JUf) = (Si <V, ..., 5y_i c(k), SJ+1 c(k), ..., 5- c(k)), 

JzJ}) = (»i <k),..., St_2 c(k), S^lti c(k), 3i+i c(k) , . . . , St c(kj). 

Let us remark that for vectors ut e C\ i = 1, 2, ..., s the symbol (uly u2,..., us) 
denotes the matrix with columns ur In order to express the vectors Lk, Lik(j), L2 k(i) 
which we use for the construction of the matrices Rk and Rk(j, i) it is necessary first 
to calculate 3^ rjk. 

Lemma 1. Let k0 > 0, x be integers, {yp}^x c C with yx 4= 0. Let the series 
00 

S yPjko oe absolutely convergent. Then there exist an integer k! and a sequence 
p^x 00 

Of numbers {yp}p°=-x c C such that £ yr
pjk

p is absolutely convergent for k > k', 
00 p = — X 

£ ypjk
p 4= OfOr k > k' and 

-S v \ _ 1 °° v' 
y i £ \ = y i£ 

P=x k7 p = - , kp 

The p r o o f is given in [2]. 

Lemma 2. Let k0, nx, n2, q be nonnegative integers, k0 > max.{nl, n2} 4- q. 
X 

The?? there exists a sequence of real numbers {vp}^=0 such that the series £ vp/k0 

is absolutely convergent and the equality p = 0 

Г.T".T-Ã P=O kp 

holds for all k ^ k0. 
The p r o o f is obvious. 

It is easy to see that for integers k > max (ij) + m, and p, q e <1, l> we have 
y=i, . . . ,r 

<5p,«*/fc = ^ , j W + Kfe - mp~l) - V(k ~ mq) 
and 

<w(fe) = ^T[<fe - «,-i) - <fe - mJ] • 

For the first component of the vector in brackets we have 

•1(0 [c(k - m,-x) - c(k - mj] = bt(k) X\~m*, 
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where: 

^=(Г-7)[C.:-mт')G;-"í JГПq-tПp-l 

Lemmas 1 and 2 imply that there exist an integer /i and a sequence {<p„}™=p <-= C 
such that 

*-(*) = z * 
n = /x K 

and the series is absolutely convergent for all k > max (ij) + m{. The same can be 
said for the other components of c(k — m ^ . J — c(k — m j . For all k > 0 let us 
define a vector g(k) by the relation 

(20). g(k) = ( A ^ U * , A ^ - 4 ..., X ^ j y . 

ii-times i2-times ir-times 

Since every component of the vector c(k — mp-^) — c(k — mq) can be expressed 
as a product of X\~mq and an absolutely convergent series of the above described 
form, it is possible to construct integers JJL, fi(j), fi(i), sequences {&„}?= ^ {^i,n(j)}^=^u) 
and {^2j1(i)}^°=^(0 of rectangular matrices of order t x /, t x (/ — l ) a n d t x (I — 1), 
respectively, such that the series 

y * . y *AM a n d V *iM 
n = n K «=^(j) /C n = ti(i) k 

are absolutely convergent for all k ^ max (ij) + m f; if we denote their sums by 
£jt> ^i,*0) a n ^ ^2,fc(0' respectively, then the elements of the matrices Jk*Jifk(j)

 a n ^ 
J2Ji{i) have the following form: 

(21) k es(0 = [diag (B t es(/))] g(k - ms) 

for s = 1, . . . , / , 

(2V) Jlfk(J) <l ~ 1) = [diag (B1}fc(» es(/ - l))] g(k - ms+v) 

for s = 1, . . . , / - 1 

(v = 0 for s e <1,», v = 1 for s e <j, / - 1 » , 

(2V) y2,fc(i) es(/ - 1) = [diag (B2tk(i) es(l - l))] g(k - ms+v) 

for s = 1, .. . , / - 1 

(v = 0 for s e <1, i - 1), v = 1 for s e <i - 1, / - 1 » . 

Let us remark that for a vector w e C* the symbol diag (w) denotes the diagonal 
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t x t matrix whose diagonal elements are the components of w in their natural 
order. 

Since 

Lk-> = V^Jk, L[~J(j) = VtjUk(j) and L2~k\{) = VTJ2>k(i), 

we have 

(21*) Lk = L[-) + qk, 

LUk(j) = L[-J(j) + qUk(j) and L2>k(i) = L2~k\i) + q2,k(i) 

where all components of the vectors qk, q\,k(j) and q2,k(i)
 n e i*1 t n e s P a c e ^k,mc 

r 

Lemma 3. Let k > max (iy) + mz and mt < t (t = £ i^). Then the matrices 

JkiJi,k(j) and Ji,k(i) nave maximal ranks. J = 1 

Proof. We have proved in [ l ] (Lemma 4) that the vectors y(k), y(k — m t) , . . . 
. . . , y(k — ;w,) as well as Sx y(k), ...,S{ y(k) (Lemma 1 in [ l ] j are linearly independent. 

Let for some fil9 p2,..., pt 

(22) /3t(Jk e.(0J + &(/., e2(f)) + ... + /?((L *.(») = ° • 
If 

(23) £ | / i . | 2 >0 
i= 1 

then (22J yields 

yTiPiUk^(t)) + P2(h<t)) + ... + /3,(Ae,(0)] = 0, 
I.Є. 

ZPAy(k) = o, 
i = l 

which contradicts (23). Analogously we can prove that J1>k(j) and J2tk(i) have maximal 
ranks. • 

We have defined the vectors (13), (19'), (19") and the matrices (19). As we shall 
study the properties of all matrices (19) together we introduce the following generali­
zation. 

Let O > 0, nu \i2, m, nx, ..., nQ, vu v2, ...,vQ be integers, 

r 

(24) 0 ^ nx < n2 < ... < nQ < t = £ ij , 
J=i 

(25) nt > vt Vi and m > max (i;) 4- nQ. 
J=i,...,r 

Let {-Oy^JLm* {^;2)}./%2 b e t w o sequences off x ij matrices such that the series 

(26) I - iL . and I -j- are 
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absolutely convergent for all k ^ m. We denote 

co Q(S) 

KS)= I TV ^r S M , 2 . 
j=ns kJ 

Let F*1^ Fk
2) be two t x Q matrices defined by 

(27) F « e ;(e) = diag (A<s> e,(c)) . g(fc - /.,) 

for i = 1 , . . . , O and s = 1, 2. Let # $ , i = 1, ..., O; s =-. V 2, be elements of X having 
the following form: 

(28) S S - ^ W W ^ + ^M.) . 

where tf\k, v,) e ifl>Vj. Put 

(29) MP = (9l%9k%...,$%) 
and 

(30) U ^ M i 2 ) ® ^ ' ) . 

It is easy to see that 

(31) M(
k

s) = VJF(S) + H><*> 

where all O components of w[s) lie in S£kye. 

Lemma 4. Le* 5 = 1 or s = 2. Let the matrices F(
k
s) have a rank O for all k ^ m. 

Then there exists an integer k0 ^ m such that lhe elements Q^i for i = 1, 2, .'.., O-
are linearly independent for all k ^ k0. 

The p r o o f is analogous to that of Lemma 4 or Theorem 3 in [1]. 

3. CALCULATION OF det Uk 

\ 
Let cpu q>2, ...,(peeX and A = (^ij)i,j=-i,...,e» « ^ e C. We define 

Q Q Q 

(<p1,<p2,.",<Pe)
A = ( Z W P Z ^ . V ' E V . j ' 

i = 1 i = l i = l 

Our aim in this section is to show an explicit form for det Uk. If we succeed in finding., 
for s = 1, 2, nonsingular transformations Z(

k
s) and permutations P(

k
s) such that the 

relations 

(32) eJ(0(P<s>F<s>Z<s>)e,(e) = O 

hold for i, j = 1, 2 , . . . , O; i 4= j , then we can easily express det Uk by using (28),, 
(29), (30) and the following assertion. 
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Lemma 5. If Ax and A2 are complex Q X Q matrices, then 

(33) U t 4 . = M™ Q N?>, 

(33'j A»Uk =Ni2>®M[i> 

and 

(33") A^U.A^N^BN^, 

where 

N(
k
1} = M(

k
l)At and N(2) = M(

k
2)A2 . 

Proof. The formulas (33), (33'), (33") can be obtained by a straightforward 
calculation. • 

Lemma 6. Let s = 1 Or s — 2. Let s1? s2, . . . , se be mutually different integers 
from the interval <0, t> and G(

k
s)(sl, ..., se) the g x Q matrix the i-th row of which 

is identical with the srth row of Fk
is). 

Then either detG k(su ..., s j = 0 for all k or there exists an integer k0 such 
that det Gk(sv ..., se) 4= OfOr Oll k = k0. 

The p r o o f is obvious. 
In the following we shall assume that there exists an integer m such that the matrices 

F(
k
l) and F(2) have a rank O for all k ̂  m. The matrix F^1} has a rank O for all k ̂  m; 

therefore for a given k ̂  m there exist integers su ..., sQ such that 

(34) d e t 6 < 1 ) ( s 1 , . . . , s , ) # : 0 , 

and an analogous assertion for F[2) holds-

Assumption 1. Let for 5 = 1,2. 

(35) det 6^(1 ,2 , ...,Q) + 0 

for all k = m. We shall write G(
k
s) instead ofG(

k
s)(l, 2, ..., Oj. • 

In the sequel we shall study only the matrices F(
k
l). It is easy to see that the same 

assertion will be valid for F[2). 
Since (35) holds, it is possible by using the Gauss-Jordan elimination to construct 

permutation matrices 
p(l) p(2) p(Q-l) p(l) p(2) p(g-l) 
r l,fc> r l . f c ' •••) r l . f c •> rfc •> rfc >•••- rfc •> 

upper triangular matrices W(
k
i}, W(

k
2),..., Wjf'^ and lower triangular matrices 

L?\ig.\...,L<<-1> such that 

(36) Pfr1} - W X ^ , ) w i 1 , p < f c 2 , w l 2 ) ' " p(««i)W(*-i)L(i)L(2)... Lfo--> 

is a diagonal matrix with non-zero diagonal elements. All investigated matrices 
are Q X O. The elimination is made in the following way. If the matrix 

p0 ' - l ) p(2)p(l)/-(l)p(l)u#(l) p(i- l) lA/(i- l) 
rl,fc •*• ri,fcrl,fc,Jfc rfc ** k •••rfc Wfc 
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has zero in the positions (ll9 l2), where /x = 1, ..., i — 1 and l2 = lx + 1, ..., O, 
then, moreover, 

w.^... pwm^K"... pj'-̂ wi'- **«> 
has zero in the positions (i, i + 1), (i, i + 2), . . . , (i, O). Analogously, after multiplying 
the matrix 

p ( e - i ) p ( 2 ) p ( i ) / r ( i ) p ( i ) i A / ( 1 ) p ( e - i ) M / ( c - i ) i ( i ) i ( i - i ) 
r l , fc ••• rl,krl,k%ak rk ** k •••rfc ™ k H •••H 

by L[° we obtain zero in the positions (g — i + 1, 1), (O — i + 1, 2), ..., (O — i + 1, 

Q ~ 0-
Putting 

p — p(<?-D p ( 2 ) p ( l ) rl,fc — rl,fc •••rl,fcrl,fc> 

we have 

(37) eJ^iP^P^W^ . .. P^W^L^ ... L(rl))ej(Q) = 0 

for i + j ; i,j = 1,2, ...,O. 
Without any loss of generality let all permutations in the following considerations 

be identity matrices. 
The matrices W(

k
l) and L(

k
l) from the Gauss-Jordan elimination have the form 

W<j> = le + W% and L^ = le + L%, 

where W[l)
k and L ^ are strictly upper and lower triangular matrices, respectively. 

From the formulas for the elements of G(
k

l) it follows that the nonzero elements of 
W\l)

k or L\l)
k have the following form: if z + 0 is an element of W[l)

k or L\l)
k then there 

00 

exists a sequence {(pn(
z)}n°=n(z) c C such that the series ]T ^«(z)/^" *s absolutely 

convergent with the sum z. *=P( 2 ) 
Let the symbol D(s1, 52, S3) denote the diagonal matrix defined by 

eJ(ř jD( S l ,s 2 , S 3 )e,.(ř) = 

0 for 1 ^ i < sl9 

1 for sx ś i šś s2 , 
0 f o r S2 < І < S3 , 

1 f o r i > S* 

for integers 1 <L sx < s2 ^ s3 ^ t. 

For o G Cr we put 

*>(n°(5i> 5 2' 5 3, *) = D(s l 9 S2, S3) diag (a) g(k - n-) . 

Theorem 1. Let (35) hold for all k ^ m. Then there exist integers fi(i)9 k0(l), 

a sequence of nonsingular O x O matrices {Z^}^^^ and a sequence of t x Q 
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rectangular matrices {*y1)}i/
0»|i(i) sucn tnat tne series ]T Q^jk3 is absolutely 

oo 1 = M(1) 

convergent for k ^ k0(l) and if we put B<1} = £ ^(1)jkJ
9 then for the sequence 

of matrices { E ^ } ^ defined by j=fi{1) 

(38) E<'> = F i 1 ^ ) 

we have 

(39) £(1> efe) = fa<""((, i, Q + 1, Bjj> e,<e)) for i = 1, . . . , Q . 

Moreover, the equality 

(40) detZ<1} = 1 

holds for all k _• k0. 
An analogous theorem with the matrices {Zj2)}"£,M2), { ^ J J L ^ v B£2) £*2) c o u I d 

be formulated for a transformation of the matrices F^2). 

Remark . If the permutations in (36) are not identity matrices then instead of (40) 
we have |det -Z^1)| = 1. 

Proof. The matrix Z^1} is the product of the matrices 

W^.^W^-^L^...^-^ 

defined by (36). Since the matrix G[1} was formed from the first rows of Fk
V), we obtain 

from (36) immediately the assertion of Theorem 1. 
By using Lemma 5 we obtain 

(Z<2>)Hl4Z<» = A t < 2 > © < \ 

where for s = 1, 2 

A*> = VTF<»>Z<'> + * « Z ? > = 

= VT(b<"'>(l, 1, e + 1, B<*> ...(<,)), b<"*>(2, 2, 0 + 1, B<*> e 2 ( e ) ) , . . . 

• • -, b(">\e, Q,Q + U B[s) ee(Q))) + (Xi% xi% • • •, 7&), 

where 

rfj = ii»J3(t)«(fc-vy), 
i=o 

v(k - Vj) e J2^v# and it is possible to write every />£}(k) in the form $*j(fc) = 
OO 

= J] (p\s}jkj, where this series is absolutely convergent, % is an integer and (p\*) e C. 
j = x 

Let (pi9 qt) be the pair at the i-th place in (17). 
Assumption 2. Let pe > pe+1 and \XPt\ > \lPe+1\- • 
Put fo r ; = 1,2, 3; 5 = 1,2 

Ynj) = (yi%)>yi%(J)-'-y<CU))> 
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where y$(j) e X have the form 

(40) MV-K«(i eM^M)vPl.9„ 
\j=»(s) kJ J 

(4oi ,8(2,- i k - ( i s f i i ^ s A . i. 

(40") J 0 3 ) = # } . 
Therefore, if we put 

Iv£s) = (M:\X1 ••-,<) 
then 

!vff = ^;.(i) + ^K2) + ^.K3). 

Lemma 7. Let tfte assumptions 1 and 2 be fulfilled and let k0 be the integer from 
Theorem 1. Then for every pair s, i, where s = 1, 2; i = 1, 2, ..., O there exist 
a constant £-5) =f= 0, an integer y(?\ a vector vf} and a sequence {zf)(k)}k^=ko c X 
sueft that for all k = k0 

(41) iVj,. = tf>tf'w.£--{'> + z(
f
s>(fc) 

and the equality 

(42) lim tfXQifck"™) = 0 
fc-»oo 

fto/ds. 

The vectors v^0,..., v^s) are linearly independent. • 
The p r o o f follows immediately from (40) — (40") and from the structure of the 

spectrum of the operator T 

Theorem 2. Lel assumptions 1 and 2 be valid. Then there exist a complex number 
Ce, an integer x and a function cp such that 

(43) de tU t = /c*n|APi|
2*(Cff + <Kfc)) 

1 = 1 

and 
lim <p(k) = 0 . 

fc-VOO 

IfM(1) = M 2 ) , lften C e > 0. 

Proof. Lemma 5 implies that det Uk = det (N(
k
2) ® -Vi1}). From Lemma 7 we 

obtain 

= WXWW + -?>(*). 3*>.£fc"%.2> + z?\k)) = 
= «»>#>£ w>mk^[(vr, v^) + cou(k)-\, 

where lim cou(k) = 0. The rest is obvious. Q 
fc-*oo 
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Remark . If the permutations in (36) are not identity matrices then in (43) CQ = 
= CQ(k) and |Ce(fc)| is a constant. 

4. CONVERGENCE OF oc\k) 

In [ l ] we have shown that the vector <xk = (a0
fc), a(!fc), ...,a(

z
fc))T is a solution of 

(15). The matrix Sk is defined by (14). 

Assumption 3. Let 

(44) tij=l 
J=l 

hold for some integer T e <1, rj. D 
Let us remark that use the notation described in Section 1. Let Gk be the matrix 

formed by the first / rows of the matrix 

(c(fc - mj), c(fc - m 2 ) , . . . , c(fc - m,)) 

and 

let there exist an integer fc0 such that 

(45) det Gk =# 0 

for all fc ^ fc0. 

The assumption (45) is fulfilled for a special choice of integers m0, mu . . . , m, 
which will be shown in Theorems 3 and 3'. In the other cases, analogously to Lemma 6, 
either det Gk = 0 for all fc or there exists an integer fc0 such that det Gk + 0 for 
all fc = fc0. 

In the following investigation let fc = fc0 hold. 
Put 

(46) 0 2 t e * i - - . * i ) = z"" + -a--7"'""11 + . . . + z l f 

(47) g,(z, zx, . . . , z,) =- zfc-w<a2(z, z l 5 . . . , z,) . 

For j = 1, 2 , . . . , T and i = 1, 2 define mappings A<.° : C [ + 1 -> C° in the following 
way: 

^ r l W - ^ l 2,) | 

J \Z> Zl> * ' *' ZíJ 

ð 2 ( І ^ J > 

#l'-2>gt(z,z_,...,zl) 

ðz°'-2ì 

дgi(z,zi,...,zl) 

ðz 

gt(z,zu ...,z,) _ 
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Lemma 8. If (45) holds, then the system of I linear algebraic equations 

(48) As
2)(As)Zl,z2,...,z() = 6>(is); S = 1 , 2 , . . . , T 

has exactly one solution for the unknowns z1? z2, ..., zv 

Proof. The set of all solutions of the system (48) coincides with the set of solutions 
of the system 

(49) Ai1\Xs,z1,z2,...,zl) = 0(is); S = 1 , . . . , T . 

But the system (49) is equivalent to 

(50) Gk . (Z l , ..., z()
T = ~(w](k),..., wT(/c))T 4= 0 , 

where 

( 5 1 ) ^-((^^.(.^i..,^ 

for s = 1, 2 , . . . , T. The rest is obvious. • 
Let us denote the solution of (48) by (bu b2,..., bj)T. It is independent of k. 

Theorem 3. If mt = ifOr all i = 1,..., / then detGfc + OfOr all k ^ max (/_,-) + 
+ mx and the equality 

(z - A-.)'1 (z - k2)
h . . . ( z - At)

,% = zl + l^z'"1 + ... + b - ^ z + &, 

holds for all z e C, i.e. bu b2,..., bt are the coefficients of the polynomial 

(z-^(z-X2f...(z-Xxy*. 

Proof. Similarly as in the proof of Lemma 4 in [ l ] we could show that det Gfc + 0 
and therefore the system (50) has exactly one solution (bl9 b2,..., b,)T. If we put 

U(z) = zfc + b ^ ' 1 + . . . + btz
k~l 

then Lemma 8 yields U(g_1)(2p) = 0 for all pairs (p, q) which lie at the first / places 
in the sequence (17), and therefore the polynomial (z — Xx)

li (z — A3)'2...(z — Ar)
r* 

divides the polynomial U(z). The assertion of Theorem 3 is now clear. 
Analogously it is possible to prove the following theorem. 

Theorem 3 / Ifmf = in Vi = 1, ..., /, where n is a positive integer and A", A2,..., A" 
are mutually different then there exists an integer k! such that detGk + OfOr all 
k ^ k! and 

(z - X\)h (z ~ ^it --(z - K)i% = zl + bxz
l~x + ... + bt 

holds for all z e C. 
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For the only solution (b l5 b2,.,., b*)T of the system (48) we have that the projection 
of the vector 

rjk + b!^-Wl + M k - « , " + ••• + btr]k-mi 

on the subspace generated by the vectors {v/;}7-_i,...tT is the nullvector. Analogously 
i— 1 ,...,ij 

to what was proved in [5], we may expect that the coefficients of the polynomial 
P(z) --= P-XzJ/P^l), where 

P^z) = zmi + b!Zmf-mi + . . . + b^z""-""-' + 6-, 

will be the desired limits of a(
i*

) for k -^ GO, which we prove in the sequel. 

Assumption 4. Let P ^ l ) + 0. • 
Let us define 

(53) P(z) = P ^ / P ^ l ) = <r0z
m< + <r1zm'-m' + . . . + _•,_.._"•-—« + a , 

(54) <r = (<r0, <r1 ; . . . , < r , ) T , 

(55) S,<r = (yt>0, y t > 1 , . . . , y M _ x , 1)T = V
a,(fc) , 

(56) y(/c) = y< l '(fc)-e ( + 1 ( / + l ) . 

From (55) and (56) we have 

V = v(fc)+-,+1(/+ 1) 
or 

<r = S f c - 1 e I + 1 ( / + l ) + S;;1y(fc) 
and hence (see 15)) 

(57) ^ = ff-S-1y(k). 

Lemma 9. Let (45) hOW for all k ^ k0. Then for every integer s e <0, / — 1> 
there exist an integer xs and sequences of functions {Fs(k)}^_fco such that 

limsup |Fs(k)| < +oo 
k->oo 

and 

(58) yk,s = rs(k)k*-x\xk
t+i 

for all k — k0. 

Proof. From the form of Ssnk and the inequalities (8) we obtain 

(59) 8sr,k = K"k\ xs(k) , 

where vs is an integer and lim sup |[xsk)|| < oo. Now we calculate 
k-+co 

I 

Z tftffc-m* = VT(c(k), c(k - mi),.., c(k - mij) a + w(k), 
i = 0 
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where w(k) e S£kmx. The first / components of the vector 

(c(k), c(k - mx), ..., c(k - mt))a 

equal zero. Therefore 

(60) I*™*-,. = kX+1y(k), 
i = 0 

where for vectors y(k) we analogously have 

lim sup ||j;(k)|| < oo . 
fc->oO 

The rest is obvious. • 
Let Sk denote the adjoint of Sk and let Sk = (S^(i,j))\jlsl. It is easy to see from 

(13), (14), (19"), (19r//) by using (19) and (19') that 

(61) det S*(i,j) = det (LUk(j) ® L2tk(i)) = det Rk(j, i) 

and 
(6 V) detSfc = detR* . 

In the next part we shall express the elements of the matrix Sk
 1 in a form that will 

enable us to easily obtain an estimate for the components of the vector Sk
l y(k). 

All our considerations are based on the statement of Theorem 2, We shall write the 
formulas for det Sk and detS*(i , j) using Theorem 2, thus easily obtaining an 
expression for the elements of the inverse matrix S^1. The proofs of Lemma 10 and 
Lemma 11 immediately follow from Theorem 2; in the proof of Lemma 10 we, more­
over, use the relation (6V). 

Lemma 10. Let |/lT| > U t + 1 | and let the matrix formed by the first I rows of Jk 

be nonsingular for all k = k0. 
Then there exist an integer x, a positive constant D nad a sequence of real 

functions {(p(k)}£Lko such that lim cp(k) = 0 and 
k-*ao 

dexSk = k"fl\Xs\
2^(D + <p(k)) 

s=l 

for all k = k0. • 
We have defined a vector g(k) e O by the formula (20). Let (g(l)),- denote the i-th 

component of g(l). Let ZT be the set of all integers i ^ / satisfying 

For every pair i,j, i = 1, ... /; j = 1, ..., / + 1 the following assertion is valid. 

Lemma 11. Let the assumptions from Lemma 10 be valid and let the matrix 
formed by the first I rows of Jitk(j) and J2>k(i) except the ii(j)-th and i2(i)-th row, 
respectively, where ii(j)e^ and i2(i)e&~ be nonsigular for all k _ k0. Then 
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there exist an integer xu, a complex number Dtj and a function (pij{k) such that 

lim ęij(k) = 0 
k~* oo 

and 

ПИ» 12*:/.. 

det Sft, j) = fcXiJ s = | 2k (Du + cpu(k}). D 

Lemma 12. Let the assumptions from Lemma 10 0/td Lemma 11 be fulfilled. 

Then the element of the matrix S^1 in an (i,j)-position has the form 

(63) fc-'MyW/W". 

where x0- is an integer and lim -40(k) = DjD, D and Dtj being the constants from 
Lemma 10 and Lemma 11. *~*°° 

Moreover, the m-th component of the vector S^1 y(k) has the form 

(63') 'g**+--^fc)(.^±ijf 

where the integer xs has been defined by (58) arcd 

lim sup |.Qm s (k) | < co 
k~* co 

fOr all s = V ..., / - 1. П 

Proof. From the form of det Sk and det S£(i,j) it is easy to see that the quotient 
det S*(i,j)/det Sk has the form (63). Together, 

_ Dp- + g j /k ) 

" D + cp(k) ' 

D > 0 and lim <p0(k) = lim cp(k) = 0 . 
k-*oo k-*co 

This implies that there exists an integer m such that D + (p(k) -# 0 for all k g w 
and, for this k, -4|j(fc) has the above described form. For k < m we define Aij(k) 
so that the expression (63) gives us the element of the matrix S^"1 in the position (ij)* 
From the form of the elements of S^x and y(k) we immediately conclude that Sj^i y(k) 
has the form (63'). The rest is obvious. 

Theorem 4. Let the assumptions from Lemma 11 be fulfilled. Let P be the poly­
nomial defined by (53). If 

Kl^T+l| < \K\ 
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then 

for i = 0, 1, ..., /, where o{ are the coefficients of the polynomial P. 

Proof. For / > 1 the result follows from the previous lemma, for / = 1 we obtain 
it by a straightforward calculation. 

5. RATE OF CONVERGENCE OF THE EXTRAPOLATED METHOD 

From (2) we have obtained a convergent sequence {xfc}£__0. Let us define a sequence 

{*}?_.„, by 

yk = oc0 xk + ct1 xfc_mi + .. . + al xk_mi. 

Theorem 5. Let the assumptions from the previous section, i.e. (44), (45), as well 
as those from Lemma 10 and Lemma 11 be fulfilled. We suppose that for some 
rt e <1, r) the inequality |^r i | > |^ri + 1 | holds. Further, if |A_| = |Aj| for s e ( 1 , r t> 
./Ten /et ij > is. Moreover, let 

(64) l A l " P ^ + 1 l < 1 for some p ^ l . 

T/iew there exists on integer k0 such that sk =# OfOr all k —^ k0 and 

(65) lim Jx* - ^|1 = 0 . 

fc-+oo X * — Xk\\
P 

Proof. According to (18) we have 

(66) ||x* - xfc|| = sk = H"1^ = 

« t t t ( . t t ) K-H-'vji + H " 1 v(k) = ^ * J 4(H -*vH_ + w(kj), 

where the assumptions of Theorem 5 imply that lim w(k) = 0 and there exists k0 

such that sk 4= 0 for all k ^ k0.
 fc_>0° 

Let us calculate 

x* - A = x* - £ af>xt_m( = _>?>(** - **__,) = 
i = 0 i = 0 

= H ' 1 £ otfV-,, = H"1! X aink_m + _£(«i- ff0 •»---,} • 
i = 0 > = o 
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From (61), (63) and (18) we have 

H**-^|| gfe^t+1|*.||></c)||.||if-1|| + 

/I 1 \k I C l-l 

+ ] Л . г ) Ч ? 0 {-.?1
fc*+z,'û'Л*)] [ ( т7' ) я Г m i | |я-Ч f l + w(/c 

where lim sup |[y(k)|| < oo and lim sup | |0 / > s(k) | | < oo for all i, s. 
Ä-»OO 

This estimate together with (64) and (65) immediately yields (65). 
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S o u h r n 

KONVERGENCE EXTRAPOLAČNÍCH KOEFICIENTŮ 

JAN ZÍTKO 

Nechť 

(1) xk+í = Txk + b 

je iterační proces na řešení operátorové rovnice x = Tx + b v Hilbertově prostoru X9 

kde b je daný prvek z l a T e [X], Budiž x 0 eX a sestrojme posloupnost {xk}k = 0 

podle (l) a předpokládejme, že tato posloupnost konverguje k x* = Tx* + b. 

Nechť l > 1, k, m0, mí, . . . , mt jsou celá čísla splňující nerovnosti 

ml > ml„l > . . . > ml > m0 = 0 , . k > ml. 

V práci [1] jsme sestrojili čísla af\ i = 0, 1, . . . , / taková, že pro vektor 

Уk ~ a 0 xk + a l xk-mi + ••• + al xk-mt 
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se minimalizovala vhodně zvolená norma rozdílu x* — yk. Normuje možné volit tak, 
aby konstrukci čísel af}, které nazveme extrapolačními koeficienty, bylo možno 
realizovat. 

V této práci je spočítána limita čísel at
fe) v obecném případě. Pro ilustraci uveďme 

speciální případ. Nechť \XX\ ^ ... ^ |2T |, X{ + 1, přičemž Áí9 ..., At jsou póly rezol-
T 

venty R(A, T) s násobnostmi postupně il9 ..., iT, kde £ iy = l. Položme 777, = i Vt-
1=1 

p(z) = (z-k^(z-X2ý>...(z-X^9 

P(z) = P(Z)/P(1) _ a0z
l + r/iZ^1 + . . . + al. 

Pak lim y}p = â  V/. (Podrobněji viz Theorem 5). Na základě toho je ukázáno, že 

existuje p ^ 1 tak, že 
l i m ( | | x * - j ; , | | / | [ x * - x f c p ) = 0 . 

fc-> 00 
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