Aplikace matematiky

Jan Zítko
Convergence of extrapolation coefficients

Aplikace matematiky, Vol. 29 (1984), No. 2, 114-133

Persistent URL: http://dml.cz/dmlcz/104075

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CONVERGENCE OF EXTRAPOLATION COEFFICIENTS

Jan Zítko

(Received April 13, 1983)

1. INTRODUCTION

Let X be a Hilbert space and let $T, H \in[X]$. We consider an operator equation

$$
\begin{equation*}
x=T x+b \tag{1}
\end{equation*}
$$

and an iterative process

$$
\begin{equation*}
x_{n+1}=T x_{n}+b \tag{2}
\end{equation*}
$$

where b is a given element from X. Let for some $x_{0} \in X$ the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ determined by (2) converge to $x^{*} \in X$. Let $l>0, k, m_{0}, m_{1}, \ldots, m_{l}$ be integers such that the inequalities

$$
\begin{equation*}
m_{l}>m_{l-1}>\ldots>m_{1}>m_{0}=0 \tag{3}
\end{equation*}
$$

(4)

$$
k>m_{l}
$$

hold.
In the paper [1] we solved the problem of finding complex numbers $\alpha_{0}^{(k)}, \alpha_{1}^{(k)}, \ldots$ $\ldots, \alpha_{l}^{(k)}$ such that

$$
\begin{equation*}
\sum_{i=0}^{l} \alpha_{i}^{(k)}=1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left\|H\left(x^{*}-\sum_{i=0}^{l} \alpha_{i}^{(k)} x_{k-m_{i}}\right)\right\|=\min _{\beta_{0}+\ldots+\beta_{1}=1}\left\|H\left(x^{*}-\sum_{i=0}^{l} \beta_{i} x_{k-m_{i}}\right)\right\| . \tag{6}
\end{equation*}
$$

The norm is defined by using the scalar product (\cdot, \cdot) in X. In order to summarize shortly the results from [1] we recall some notations and assumptions from that paper which will be adopted throughout the present paper. If

$$
\boldsymbol{M}_{k}=\left(\mu_{0}, \mu_{1}, \ldots, \mu_{t}\right), \quad \boldsymbol{N}_{k}=\left(v_{0}, v_{1}, \ldots, v_{s}\right)
$$

are two row vectors with components in X, then $\boldsymbol{N}_{k} \otimes \boldsymbol{M}_{\boldsymbol{k}}$ is a complex $(s+1) \times$ $\times(t+1)$ matrix and $\left(\boldsymbol{N}_{k} \otimes \boldsymbol{M}_{k}\right)_{i, j}=\left(\mu_{j}, v_{i}\right)$.

We put

$$
\begin{equation*}
\varepsilon_{k}=x^{*}-x_{k}, \quad \eta_{k}=H \varepsilon_{k}, \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{H}_{k}=\left(\eta_{k}, \eta_{k-m_{1}}, \ldots, \eta_{k-m_{l}}\right), \tag{7'}
\end{equation*}
$$

$$
\mathbf{Q}_{k}=\boldsymbol{H}_{k} \otimes \boldsymbol{H}_{k} .
$$

Further, we assume that the resolvent operator $R(\lambda, T)$ has r poles $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ with multiplicities $i_{1}, i_{2}, \ldots, i_{r}$, respectively, and satisfying the inequalities

$$
\begin{equation*}
\left|\lambda_{1}\right| \geqq\left|\lambda_{2}\right| \geqq \ldots \geqq\left|\lambda_{r}\right|>0 . \tag{8}
\end{equation*}
$$

Moreover, $\left|\lambda_{r}\right|>|\lambda|$ for every $\lambda \in \sigma(T), \lambda \neq \lambda_{j}, j=1, \ldots, r$, and $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$.
For a given $j \in\langle 1, r\rangle$ let $C_{j}=\left\{\lambda \in C| | \lambda-\lambda_{j} \mid=\varrho_{j}\right\}$, where ϱ_{j} is assumed to fulfil

$$
\left\{\lambda \in C\left|\left|\lambda-\lambda_{j}\right| \leqq \varrho_{j}\right\} \cap \sigma(T)=\left\{\lambda_{j}\right\} .\right.
$$

The symbol C denotes the set of complex numbers. Let

$$
\begin{equation*}
K_{0}=\left\{\lambda \in C| | \lambda \mid=\varrho_{0}\right\} \tag{9}
\end{equation*}
$$

with ϱ_{0} such that

$$
\left\{\lambda \in C\left||\lambda| \leqq \varrho_{0}\right\} \cap \sigma(T)=\sigma(T)-\left\{\lambda_{1}, \ldots, \lambda_{r}\right\} .\right.
$$

Denote

$$
\begin{equation*}
B_{j i}=\frac{1}{2 \pi \mathrm{i}} \int_{c_{j}}\left(\lambda-\lambda_{j}\right)^{i-1} R(\lambda, T) \mathrm{d} \lambda \tag{10}
\end{equation*}
$$

Without any loss of generality we can assume that (see [1])

$$
\begin{equation*}
l<\sum_{j=1}^{r} i_{j} \equiv t \quad \text { and } \quad B_{j i j} \varepsilon_{0} \neq 0 \quad \text { for all } j=1, \ldots, r . \tag{11}
\end{equation*}
$$

On the basis of the just presented conditions we have proved (see Theorems 2 and 4 in [1]) that there exists an integer $k_{0}>\max _{j=1, \ldots, r}\left(i_{j}\right)+m_{l}$ such that for every $k \geqq k_{0}$ only one vector

$$
\boldsymbol{\alpha}^{(k)}=\left(\alpha_{0}^{(k)}, \alpha_{1}^{(k)}, \ldots, \alpha_{l}^{(k)}\right)^{\top}
$$

can be found which solves (5) and (6). This vector is given by the formula

$$
\boldsymbol{\alpha}^{(k)}=\left(\mathbf{e}^{\top}(n) \mathbf{Q}_{k}^{-1} \mathbf{e}(n)\right)^{-1} \mathbf{Q}_{k}^{-1} \mathbf{e}(n) .
$$

Let us remark that $\mathbf{e}_{i}(n)$ is the i-th column of the $n \times n$ identity matrix and $\mathbf{e}(n)=$ $=\sum_{i=1}^{n} \mathbf{e}_{i}(n)$.

Given a sequence $\left\{u_{k}\right\}_{k=0}^{\infty} \subset X$ and two integers $i, j \in\langle 1, l\rangle$ we denote for $k>m_{l}$

$$
\begin{equation*}
\delta_{i j} u_{k}=u_{k-m_{i-1}}-u_{k-m_{1}} \tag{12}
\end{equation*}
$$

and

$$
\delta_{i} u_{k}=\delta_{i i} u_{k} .
$$

Define

$$
\begin{gather*}
\boldsymbol{L}_{k}=\left(\delta_{1} \eta_{k}, \delta_{2} \eta_{k}, \ldots, \delta_{l} \eta_{k}\right), \tag{13}\\
\boldsymbol{S}_{k}=\binom{\boldsymbol{L}_{k} \otimes \boldsymbol{H}_{k}}{\mathbf{e}^{\top}(l+1)} . \tag{14}
\end{gather*}
$$

The matrix $\boldsymbol{S}_{\boldsymbol{k}}$ is nonsingular and the vector $\boldsymbol{\alpha}^{(k)}$ is the solution of the system

$$
\begin{equation*}
\boldsymbol{S}_{k} \boldsymbol{\alpha}^{(k)}=\mathbf{e}_{l+1}(l+1) \tag{15}
\end{equation*}
$$

(See [1], Theorem 2). We call the components of the vector $\boldsymbol{\alpha}^{(k)}$ the coefficients of extrapolation.

In this paper we shall study the convergence of the coefficients $\alpha_{i}^{(k)}$ for $k \rightarrow \infty$ and construct a polynomial

$$
P(z)=\sigma_{0} z^{m_{l}}+\sigma_{1} z^{m_{l}-m_{1}}+\ldots+\sigma_{l-1} z^{m_{l}-m_{l}-1}+\sigma_{l}
$$

such that the $\alpha_{i}^{(k)}$'s converge to the coefficients of this polynomial, i.e. $\lim _{k \rightarrow \infty} \alpha_{i}^{(k)}=\sigma_{i}$. In the special cases $m_{i}=i$ or $m_{i}=\operatorname{in}(i=0,1, \ldots, l)$ where n is a given integer, it is shown that it is possible to express the coefficients σ_{i} as functions of some poles of the resolvent operator $R(\lambda, T)$. Extrapolation by means of polynomials with coefficients σ_{i} in the case $m_{i}=$ in for $i=0, \ldots, l$ was studied in the paper [5].

In Sections 2 and 3 auxiliary assertions are proved, which are used in Sections 4 and 5. In Section 4 we study the convergence of $\alpha_{i}^{(k)}$ for $k \rightarrow \infty$. On the basis of the asymptotic behaviour of $\alpha_{i}^{(k)}$ for $k \rightarrow \infty$ it is shown in Section 5 that if $\left\{y_{k}\right\}_{k=m_{I}}^{\infty} \subset X$ is defined by

$$
\begin{equation*}
y_{k}=\alpha_{0}^{(k)} x_{k}+\alpha_{1}^{(k)} x_{k-m_{1}}+\ldots+\alpha_{l}^{(k)} x_{k-m_{l}} \tag{16}
\end{equation*}
$$

then

$$
\lim _{k \rightarrow \infty}\left(\left\|x^{*}-y_{k}\right\| /\left\|x^{*}-x_{k}\right\|^{p}\right)=0
$$

for some $p \geqq 1$.
Let all notations and assumptions concerning the integers $l, m_{0}, m_{1}, \ldots, m_{l}, t$ and the poles of $R(\lambda, T)$ as well as the operators $B_{j i}$ be valid throughout all this paper.

2. AUXILIARY THEOREMS

Let \mathscr{K} denote the set of all pairs (j, i) for $j=1,2, \ldots, r$ and $i=1,2, \ldots, i_{j}$ for every j. Order this set in the following sequence:

$$
\begin{align*}
& \left(1, i_{1}\right),\left(1, i_{1}-1\right), \ldots,(1,1), \tag{17}\\
& \left(2, i_{2}\right),\left(2, i_{2}-1\right), \ldots,(2,1) \\
& \ldots \ldots \ldots \ldots \cdots \cdots \cdots \cdots \\
& \left(r, i_{r}\right),\left(r, i_{r-1}\right), \ldots,(r, 1)
\end{align*}
$$

Put

$$
H\left(B_{j i} \varepsilon_{0} \mid \lambda_{j}^{i-1}\right)=v_{j i}
$$

and

$$
H\left(\frac{1}{2 \pi \mathrm{i}} \int_{K_{0}} \lambda^{k} R(\lambda, T) \varepsilon_{0} \mathrm{~d} \lambda\right)=v(k) .
$$

The symbol $\boldsymbol{c}(k)$ denotes a vector from C^{t} whose p-th component is $\binom{k}{i-1} \lambda_{j}^{k}$, where (j, i) lies at the p-th place in the sequence (17). Analogously, \boldsymbol{V} denotes a t dimensional "vector" with components $v_{j i}$. For a given positive integer $v<k$ let $\mathscr{L}_{k, v} \subset X$ be a subspace generated by the vectors $v(k), v(k-1), \ldots, v(k-v)$. The vector η_{k} defined by (7) can be expressed in the form (see [1])

$$
\begin{equation*}
\eta_{k}=\sum_{j=1}^{r} \sum_{i=1}^{i_{j}}\binom{k}{i-1} \lambda_{j}^{k} v_{j \boldsymbol{i}}+v(k)=\boldsymbol{V}^{\boldsymbol{\top}} \boldsymbol{c}(k)+v(k) . \tag{18}
\end{equation*}
$$

The operation $\boldsymbol{V}^{\boldsymbol{\top}} \boldsymbol{c}(k)$ is performed in the same way as for vectors with complex components. Further, let $l>1$.

When proving the convergence of $\alpha_{i}^{(k)}$ for $k \rightarrow \infty$ we shall work with matrices

$$
\begin{equation*}
\boldsymbol{R}_{k}=\boldsymbol{L}_{k} \otimes \boldsymbol{L}_{k}, \quad \boldsymbol{R}_{k}(j, i)=\boldsymbol{L}_{1, k}(j) \otimes \boldsymbol{L}_{2, k}(i), \tag{19}
\end{equation*}
$$

where \boldsymbol{L}_{k} is defined by (13),

$$
\begin{equation*}
\boldsymbol{L}_{1, k}(j)=\left(\delta_{1} \eta_{k}, \ldots, \delta_{j-1} \eta_{k}, \delta_{j+1} \eta_{k}, \ldots, \delta_{l} \eta_{k}\right) \tag{19'}
\end{equation*}
$$

for $j=1,2, \ldots, l$ and

$$
\boldsymbol{L}_{2, k}(i)=\left(\delta_{1} \eta_{k}, \ldots, \delta_{i-2} \eta_{k}, \delta_{i-1, i} \eta_{k}, \delta_{i+1} \eta_{k}, \ldots, \delta_{l} \eta_{k}\right)
$$

for $i=1,2, \ldots, l+1$.
Put

$$
\begin{aligned}
& y(k)=\eta_{k}-v(k) \\
& \boldsymbol{L}_{k}^{(-)}=\left(\delta_{1} y(k), \delta_{2} y(k), \ldots, \delta_{l} y(k)\right) \\
& \boldsymbol{L}_{1, k}^{(-)}(j)=\left(\delta_{1} y(k), \ldots, \delta_{j-1} y(k), \delta_{j+1} y(k), \ldots, \delta_{l} y(k)\right), \\
& \boldsymbol{L}_{2, k}^{(-)}(i)=\left(\delta_{1} y(k), \ldots, \delta_{i-2} y(k), \delta_{i-1, i} y(k), \delta_{i+1} y(k), \ldots, \delta_{l} y(k)\right)
\end{aligned}
$$

for $j=1, \ldots, l ; i=1, \ldots, l+1$. If we extend the validity of the operators $\delta_{i j}$ and δ_{i} also for sequences $\left\{u_{k}\right\}_{k=0}^{\infty} \subset C^{t}$ according to the relations (12) and (12') then (18)
and the definitions of $y(k)$ and $\boldsymbol{c}(k)$ immediately imply that

$$
\boldsymbol{L}_{k}^{(-)}=\boldsymbol{V}^{\top} \boldsymbol{J}_{k}, \quad \boldsymbol{L}_{1, k}^{(-)}(j)=\boldsymbol{V}^{\top} \boldsymbol{J}_{1, k}(j), \quad \boldsymbol{L}_{2, k}^{(-)}(i)=\boldsymbol{V}^{\top} \boldsymbol{J}_{2, k}(i),
$$

where we have put

$$
\begin{aligned}
& \boldsymbol{J}_{k}=\left(\delta_{1} \boldsymbol{c}(k), \delta_{2} \boldsymbol{c}(k), \ldots, \delta_{l} \boldsymbol{c}(k)\right), \\
& \boldsymbol{J}_{1, k}(j)=\left(\delta_{1} \boldsymbol{c}(k), \ldots, \delta_{j-1} \mathbf{c}(k), \delta_{j+1} \boldsymbol{c}(k), \ldots, \delta_{l} \boldsymbol{c}(k)\right), \\
& \boldsymbol{J}_{2, k}(i)=\left(\delta_{1} \boldsymbol{c}(k), \ldots, \delta_{i-2} \mathbf{c}(k), \delta_{i-1, i} \boldsymbol{c}(k), \delta_{i+1} \mathbf{c}(k), \ldots, \delta_{l} \mathbf{c}(k)\right) .
\end{aligned}
$$

Let us remark that for vectors $\boldsymbol{u}_{i} \in C^{t}, i=1,2, \ldots, s$ the symbol $\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{s}\right)$ denotes the matrix with columns \boldsymbol{u}_{i}. In order to express the vectors $\boldsymbol{L}_{k}, \boldsymbol{L}_{1, k}(j), \boldsymbol{L}_{2, k}(i)$ which we use for the construction of the matrices \boldsymbol{R}_{k} and $\boldsymbol{R}_{k}(j, i)$ it is necessary first to calculate $\delta_{i j} \eta_{k}$.

Lemma 1. Let $k_{0}>0, \chi$ be integers, $\left\{\gamma_{p}\right\}_{p=x}^{\infty} \subset C$ with $\gamma_{\chi} \neq 0$. Let the series $\sum_{p=x}^{\infty} \gamma_{p} \mid k_{0}^{p}$ be absolutely convergent. Then there exist an integer k^{\prime} and a sequence
 $\sum_{p=-x}^{\infty} \gamma_{p} / k^{p} \neq 0$ for $k>k^{\prime}$ and

$$
\left(\sum_{p=\kappa}^{\infty} \frac{\gamma_{p}}{k^{p}}\right)^{-1}=\sum_{p=-\kappa}^{\infty} \frac{\gamma_{p}^{\prime}}{k^{p}} .
$$

The proof is given in [2].
Lemma 2. Let k_{0}, n_{1}, n_{2}, q be nonnegative integers, $k_{0}>\max \left\{n_{1}, n_{2}\right\}+q$. Then there exists a sequence of real numbers $\left\{v_{p}\right\}_{p=0}^{\infty}$ such that the series $\sum_{p=0}^{\infty} v_{p} \mid k_{o}^{p}$ is absolutely convergent and the equality

$$
\binom{k-n_{1}}{q}\binom{k-n_{2}}{q}^{-1}=\sum_{p=0}^{\infty} \frac{v_{p}}{k^{p}} .
$$

holds for all $k \geqq k_{0}$.
The proof is obvious.
It is easy to see that for integers $k>\max _{j=1, \ldots, r}\left(i_{j}\right)+m_{l}$ and $p, q \in\langle 1, l\rangle$ we have

$$
\delta_{p, q} \eta_{k}=\delta_{p, q} y(k)+v\left(k-m_{p-1}\right)-v\left(k-m_{q}\right)
$$

and

$$
\delta_{p, q} y(k)=\boldsymbol{V}^{\top}\left[\mathbf{c}\left(k-m_{p-1}\right)-\mathbf{c}\left(k-m_{q}\right)\right] .
$$

For the first component of the vector in brackets we have

$$
\mathbf{e}_{1}^{\top}(t)\left[\mathbf{c}\left(k-m_{p-1}\right)-\mathbf{c}\left(k-m_{q}\right)\right]=b_{1}(k) \lambda_{1}^{k-m_{q}},
$$

where

$$
b_{1}(k)=\binom{k-m_{q}}{i_{1}-1}\left[\binom{k-m_{p-1}}{i_{1}-1}\binom{k-m_{q}}{i_{1}-1}^{-1} \lambda^{m_{q}-m_{p-1}}-1\right] .
$$

Lemmas 1 and 2 imply that there exist an integer μ and a sequence $\left\{\varphi_{n}\right\}_{n=\mu}^{\infty} \subset C$ such that

$$
b_{1}(k)=\sum_{n=\mu}^{\infty} \frac{\varphi_{n}}{k^{n}}
$$

and the series is absolutely convergent for all $k>\max \left(i_{j}\right)+m_{l}$. The same can be said for the other components of $\mathbf{c}\left(k-m_{p-1}\right)-\mathbf{c}\left(k-m_{q}\right)$. For all $k>0$ let us define a vector $\mathbf{g}(k)$ by the relation

$$
\begin{equation*}
\mathbf{g}(k)=(\underbrace{\lambda_{1}^{k}, \ldots, \lambda_{1}^{k}}_{i_{1} \text {-times }}, \underbrace{\lambda_{2}^{k}, \ldots, \lambda_{2}^{k}}_{i_{2} \text {-times }}, \ldots, \underbrace{\lambda_{r}^{k}, \ldots, \lambda_{r}^{k}}_{i_{r} \text {-times }})^{\top} . \tag{20}
\end{equation*}
$$

Since every component of the vector $\boldsymbol{c}\left(k-m_{p-1}\right)-\boldsymbol{c}\left(k-m_{q}\right)$ can be expressed as a product of $\lambda_{1}^{k-m_{q}}$ and an absolutely convergent series of the above described form, it is possible to construct integers $\mu, \mu(j), \mu(i)$, sequences $\left\{\boldsymbol{\Phi}_{n}\right\}_{n=\mu}^{\infty},\left\{\boldsymbol{\Phi}_{1, n}(j)\right\}_{n=\mu(j)}^{\infty}$ and $\left\{\Phi_{2, n}(i)\right\}_{n=\mu(i)}^{\infty}$ of rectangular matrices of order $t \times l, t \times(l-1)$ and $t \times(l-1)$, respectively, such that the series

$$
\sum_{n=\mu}^{\infty} \frac{\boldsymbol{\Phi}_{n}}{k^{n}}, \quad \sum_{n=\mu(j)}^{\infty} \frac{\boldsymbol{\Phi}_{1, n}(j)}{k^{n}} \text { and } \sum_{n=\mu(i)}^{\infty} \frac{\boldsymbol{\Phi}_{2, n}(i)}{k^{n}}
$$

are absolutely convergent for all $k \geqq \max \left(i_{j}\right)+m_{l}$; if we denote their sums by $\boldsymbol{B}_{k}, \boldsymbol{B}_{1, k}(j)$ and $\boldsymbol{B}_{2, k}(i)$, respectively, then the elements of the matrices $\boldsymbol{J}_{k} . \boldsymbol{J}_{1, k}(j)$ and $\boldsymbol{J}_{2, k}(i)$ have the following form:

$$
\begin{align*}
& \boldsymbol{J}_{k} \mathbf{e}_{s}(l)=\left[\operatorname{diag}\left(\mathbf{B}_{k} \mathbf{e}_{s}(l)\right)\right] \boldsymbol{g}\left(k-m_{s}\right) \tag{21}\\
& \text { for } s=1, \ldots, l, \\
& \boldsymbol{J}_{1, k}(j) \mathbf{e}_{s}(l-1)=\left[\operatorname{diag}\left(\boldsymbol{B}_{1, k}(j) \mathbf{e}_{s}(l-1)\right)\right] \mathbf{g}\left(k-m_{s+v}\right) \\
& \text { for } \quad s=1, \ldots, l-1 \\
& (v=0 \text { for } s \in\langle 1, j), v=1 \text { for } s \in\langle j, l-1\rangle)
\end{align*}
$$

$$
\begin{align*}
& J_{2, k}(i) \mathbf{e}_{s}(l-1)=\left[\operatorname{diag}\left(\mathbf{B}_{2, k}(i) \mathbf{e}_{s}(l-1)\right)\right] \mathbf{g}\left(k-m_{s+v}\right) \\
& \text { for } s=1, \ldots, l-1 \\
& (v=0 \text { for } s \in\langle 1, i-1), v=1 \text { for } s \in\langle i-1, l-1\rangle) .
\end{align*}
$$

Let us remark that for a vector $\mathbf{w} \in C^{t}$ the symbol diag (\mathbf{w}) denotes the diagonal
$t \times t$ matrix whose diagonal elements are the components of \mathbf{w} in their natural order.

Since

$$
\boldsymbol{L}_{k}^{(-)}=\boldsymbol{V}^{\top} \boldsymbol{J}_{k}, \quad \boldsymbol{L}_{1, k}^{(-)}(j)=\boldsymbol{V}^{\boldsymbol{\top}} \boldsymbol{J}_{1, k}(j) \quad \text { and } \quad \boldsymbol{L}_{2, k}^{(-)}(i)=\boldsymbol{V}^{\top} \boldsymbol{J}_{2, k}(i),
$$

we have

$$
\begin{gather*}
\boldsymbol{L}_{k}=\boldsymbol{L}_{k}^{(-)}+\boldsymbol{q}_{k}, \\
\boldsymbol{L}_{1, k}(j)=\boldsymbol{L}_{1, k}^{(-)}(j)+\boldsymbol{q}_{1, k}(j) \text { and } \boldsymbol{L}_{2, k}(i)=\boldsymbol{L}_{2, k}^{(-)}(i)+\boldsymbol{q}_{2, k}(i)
\end{gather*}
$$

where all components of the vectors $\boldsymbol{q}_{k}, \boldsymbol{q}_{1, k}(j)$ and $\boldsymbol{q}_{2, k}(i)$ lie in the space $\mathscr{L}_{k, m_{i}}$.
Lemma 3. Let $k>\max \left(i_{j}\right)+m_{l}$ and $m_{l}<t\left(t=\sum_{j=1}^{r} i_{j}\right)$. Then the matrices $\boldsymbol{J}_{k}, \boldsymbol{J}_{1, k}(j)$ and $\boldsymbol{J}_{2, k}(i)$ have maximal ranks.

Proof. We have proved in [1] (Lemma 4) that the vectors $y(k), y\left(k-m_{1}\right), \ldots$ $\ldots, y\left(k-m_{l}\right)$ as well as $\delta_{1} y(k), \ldots, \delta_{l} y(k)$ (Lemma 1 in [1]) are linearly independent.

Let for some $\beta_{1}, \beta_{2}, \ldots, \beta_{l}$

$$
\begin{equation*}
\beta_{1}\left(J_{k} \mathbf{e}_{1}(t)\right)+\beta_{2}\left(\boldsymbol{J}_{k} \mathbf{e}_{2}(t)\right)+\ldots+\beta_{l}\left(J_{k} \mathbf{e}_{l}(t)\right)=0 . \tag{22}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{i=1}^{l}\left|\beta_{i}\right|^{2}>0 \tag{23}
\end{equation*}
$$

then (22) yields

$$
\boldsymbol{V}^{\top}\left[\beta_{1}\left(\boldsymbol{J}_{k} \mathbf{e}_{1}(t)\right)+\beta_{2}\left(\boldsymbol{J}_{k} \mathbf{e}(t)\right)+\ldots+\beta_{l}\left(J_{k} \mathbf{e}_{l}(t)\right)\right]=0,
$$

i.e.

$$
\sum_{i=1}^{l} \beta_{i} \delta_{i} y(k)=0
$$

which contradicts (23). Analogously we can prove that $\boldsymbol{J}_{1, k}(j)$ and $\boldsymbol{J}_{2, k}(i)$ have maximal ranks.

We have defined the vectors (13), $\left(19^{\prime}\right),\left(19^{\prime \prime}\right)$ and the matrices (19). As we shall study the properties of all matrices (19) together we introduce the following generalization.

Let $\varrho>0, \mu_{1}, \mu_{2}, m, n_{1}, \ldots, n_{e}, v_{1}, v_{2}, \ldots, v_{\varrho}$ be integers,

$$
\begin{gather*}
0 \leqq n_{1}<n_{2}<\ldots<n_{e}<t=\sum_{j=1}^{r} i_{j} \tag{24}\\
n_{i}>v_{i} \quad \forall i \text { and } m>\max _{j=1, \ldots, r}\left(i_{j}\right)+n_{e} \tag{25}
\end{gather*}
$$

Let $\left\{\boldsymbol{\Omega}_{j}^{(1)}\right\}_{j=\mu_{1}}^{\infty},\left\{\boldsymbol{\Omega}_{j}^{(2)}\right\}_{j=\mu_{2}}^{\infty}$ be two sequences of $t \times \varrho$ matrices such that the series

$$
\begin{equation*}
\sum_{j=\mu_{1}}^{\infty} \frac{\boldsymbol{\Omega}_{j}^{(1)}}{k^{j}} \text { and } \sum_{j=\mu_{2}}^{\infty} \frac{\boldsymbol{\Omega}_{j}^{(2)}}{k^{j}} \text { are } \tag{26}
\end{equation*}
$$

absolutely convergent for all $k \geqq m$. We denote

$$
\boldsymbol{A}_{k}^{(s)}=\sum_{j=\mu_{s}}^{\infty} \frac{\boldsymbol{\Omega}_{j}^{(s)}}{k^{j}} \text { for } s \leqslant 1,2 .
$$

Let $\boldsymbol{F}_{k}^{(1)}, \boldsymbol{F}_{k}^{(2)}$ be two $t \times \varrho$ matrices defined by

$$
\begin{equation*}
\boldsymbol{F}_{k}^{(s)} \mathbf{e}_{i}(\varrho)=\operatorname{diag}\left(\mathbf{A}_{k}^{(s)} \mathbf{e}_{i}(\varrho)\right) \cdot \mathbf{g}\left(k-n_{i}\right) \tag{27}
\end{equation*}
$$

for $i=1, \ldots, \varrho$ and $s=1,2$. Let $\vartheta_{k, i}^{(s)}, i=1, \ldots, \varrho ; s=1,2$, be elements of X having the following form:

$$
\begin{equation*}
\vartheta_{k, i}^{(s)}=\boldsymbol{V}^{\top}\left[\boldsymbol{F}_{k}^{(s)} \mathbf{e}_{i}(\varrho)\right]+\zeta_{i}^{(s)}\left(k, v_{i}\right), \tag{28}
\end{equation*}
$$

where $\zeta_{i}^{(s)}\left(k, v_{i}\right) \in \mathscr{L}_{k, v_{i}}$. Put

$$
\begin{equation*}
\boldsymbol{M}_{k}^{(s)}=\left(\vartheta_{k, 1}^{(s)}, \vartheta_{k, 2}^{(s)}, \ldots, \vartheta_{k, \ell}^{(s)}\right) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{U}_{k}=\boldsymbol{M}_{k}^{(2)} \otimes \boldsymbol{M}_{k}^{(1)} . \tag{30}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\boldsymbol{M}_{k}^{(s)}=\boldsymbol{V}^{\top} \boldsymbol{F}_{k}^{(s)}+\boldsymbol{w}_{k}^{(s)} \tag{31}
\end{equation*}
$$

where all ϱ components of $\boldsymbol{w}_{k}^{(s)}$ lie in $\mathscr{L}_{k, v_{e}}$.
Lemma 4. Let $s=1$ or $s=2$. Let the matrices $F_{k}^{(s)}$ have a rank ϱ for all $k \geqq m$. Then there exists an integer $k_{0} \geqq m$ such that the elements $\vartheta_{k, i}^{(s)}$ for $i=1,2, \ldots, \varrho$ are linearly independent for all $k \geqq k_{0}$.

The proof is analogous to that of Lemma 4 or Theorem 3 in [1].

3. CALCULATION OF $\operatorname{det} \boldsymbol{U}_{\boldsymbol{k}}$

Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{e} \in X$ and $\boldsymbol{A}=\left(a_{i j}\right)_{i, j=1, \ldots, e}, a_{i j} \in C$. We define

$$
\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{e}\right) \boldsymbol{A}=\left(\sum_{i=1}^{\varrho} a_{i 1} \varphi_{i}, \sum_{i=1}^{\varrho} a_{i 2} \varphi_{i}, \ldots, \sum_{i=1}^{\varrho} a_{i e} \varphi_{i}\right) .
$$

Our aim in this section is to show an explicit form for det \boldsymbol{U}_{k}. If we succeed in finding, for $s=1,2$, nonsingular transformations $\boldsymbol{Z}_{k}^{(s)}$ and permutations $\boldsymbol{P}_{k}^{(s)}$ such that the relations

$$
\begin{equation*}
\mathbf{e}_{i}^{\top}(t)\left(\boldsymbol{P}_{k}^{(s)} \boldsymbol{F}_{k}^{(s)} \boldsymbol{Z}_{k}^{(s)}\right) \mathbf{e}_{j}(\varrho)=0 \tag{32}
\end{equation*}
$$

hold for $i, j=1,2, \ldots, \varrho ; i \neq j$, then we can easily express $\operatorname{det} \mathbf{U}_{\boldsymbol{k}}$ by using (28), (29), (30) and the following assertion.

Lemma 5. If \mathbf{A}_{1} and \mathbf{A}_{2} are complex $\varrho \times \varrho$ matrices, then

$$
\begin{align*}
& \mathbf{U}_{k} \boldsymbol{A}_{1}=\boldsymbol{M}_{k}^{(2)} \otimes \boldsymbol{N}_{k}^{(1)}, \tag{33}\\
& \boldsymbol{A}_{2}^{\mathrm{H}} \mathbf{U}_{k}=\boldsymbol{N}_{k}^{(2)} \otimes \boldsymbol{M}_{k}^{(1)}
\end{align*}
$$

and

$$
A_{2}^{\mathrm{H}} U_{k} A_{1}=N_{k}^{(2)} \otimes N_{k}^{(1)}
$$

where

$$
\boldsymbol{N}_{k}^{(1)}=\boldsymbol{M}_{k}^{(1)} \boldsymbol{A}_{1} \quad \text { and } \quad \boldsymbol{N}_{k}^{(2)}=\boldsymbol{M}_{k}^{(2)} \boldsymbol{A}_{2}
$$

Proof. The formulas (33), (33'), (33") can be obtained by a straightforward calculation.

Lemma 6. Let $s=1$ or $s=2$. Let $s_{1}, s_{2}, \ldots, s_{\varrho}$ be mutually different integers from the interval $\langle 0, t\rangle$ and $\mathbf{G}_{k}^{(s)}\left(s_{1}, \ldots, s_{e}\right)$ the $\varrho \times \varrho$ matrix the i-th row of which is identical with the s_{i}-th row of $\boldsymbol{F}_{k}^{(s)}$.

Then either $\operatorname{det} \boldsymbol{G}_{k}\left(s_{1}, \ldots, s_{e}\right)=0$ for all k or there exists an integer k_{0} such that $\operatorname{det} \mathbf{G}_{k}\left(s_{1}, \ldots, s_{e}\right) \neq 0$ for all $k \geqq k_{0}$.

The proof is obvious.
In the following we shall assume that there exists an integer m such that the matrices $\boldsymbol{F}_{k}^{(1)}$ and $\boldsymbol{F}_{k}^{(2)}$ have a rank ϱ for all $k \geqq m$. The matrix $\boldsymbol{F}_{k}^{(1)}$ has a rank ϱ for all $k \geqq m$; therefore for a given $k \geqq m$ there exist integers $s_{1}, \ldots, s_{\varrho}$ such that

$$
\begin{equation*}
\operatorname{det} \mathbf{G}_{k}^{(1)}\left(s_{1}, \ldots, s_{e}\right) \neq 0 \tag{34}
\end{equation*}
$$

and an analogous assertion for $\boldsymbol{F}_{k}^{(2)}$ holds.
Assumption 1. Let for $s=1,2$.

$$
\begin{equation*}
\operatorname{det} \mathbf{G}_{k}^{(s)}(1,2, \ldots, \varrho) \neq 0 \tag{35}
\end{equation*}
$$

for all $k \geqq m$. We shall write $\boldsymbol{G}_{k}^{(s)}$ instead of $\boldsymbol{G}_{k}^{(s)}(1,2, \ldots, \varrho)$.
In the sequel we shall study only the matrices $\boldsymbol{F}_{k}^{(1)}$. It is easy to see that the same assertion will be valid for $\boldsymbol{F}_{k}^{(2)}$.

Since (35) holds, it is possible by using the Gauss-Jordan elimination to construct permutation matrices

$$
\boldsymbol{P}_{1, k}^{(1)}, \mathbf{P}_{1, k}^{(2)}, \ldots, \boldsymbol{P}_{1, k}^{(Q-1)}, \boldsymbol{P}_{k}^{(1)}, \boldsymbol{P}_{k}^{(2)}, \ldots, \boldsymbol{P}_{k}^{(Q-1)}
$$

upper triangular matrices $\mathbf{W}_{k}^{(1)}, \mathbf{W}_{k}^{(2)}, \ldots, \mathbf{W}_{k}^{(o-1)}$ and lower triangular matrices $\boldsymbol{L}_{k}^{(1)}, \boldsymbol{L}_{k}^{(2)}, \ldots, \boldsymbol{L}_{k}^{(0-1)}$ such that

$$
\begin{equation*}
\boldsymbol{P}_{1, k}^{(Q-1)} \ldots \boldsymbol{P}_{1, k}^{(2)} \boldsymbol{P}_{1, k}^{(1)} \boldsymbol{G}_{k}^{(1)} \mathbf{P}_{k}^{(1)} \mathbf{W}_{k}^{(1)} \boldsymbol{P}_{k}^{(2)} \mathbf{W}_{k}^{(2)} \ldots \boldsymbol{P}_{k}^{(Q-1)} \mathbf{W}_{k}^{(Q-1)} \boldsymbol{L}_{k}^{(1)} \boldsymbol{L}_{k}^{(2)} \ldots \boldsymbol{L}_{k}^{(Q-1)} \tag{36}
\end{equation*}
$$

is a diagonal matrix with non-zero diagonal elements. All investigated matrices are $\varrho \times \varrho$. The elimination is made in the following way. If the matrix

$$
\boldsymbol{P}_{1, k}^{(i-1)} \ldots \boldsymbol{P}_{1, k}^{(2)} \mathbf{P}_{1, k}^{(1)} \mathbf{G}_{k}^{(1)} \boldsymbol{P}_{k}^{(1)} \mathbf{W}_{k}^{(1)} \ldots \mathbf{P}_{k}^{(i-1)} \mathbf{W}_{k}^{(i-1)}
$$

has zero in the positions $\left(l_{1}, l_{2}\right)$, where $l_{1}=1, \ldots, i-1$ and $l_{2}=l_{1}+1, \ldots, \varrho$, then, moreover,

$$
\boldsymbol{P}_{1, k}^{(i)} \boldsymbol{P}_{1, k}^{(i-1)} \ldots \boldsymbol{P}_{1, k}^{(2)} \boldsymbol{P}_{1, k}^{(1)} \boldsymbol{G}_{k}^{(1)} \boldsymbol{P}_{k}^{(1)} \mathbf{W}_{k}^{(1)} \ldots \boldsymbol{P}_{k}^{(i-1)} \mathbf{W}_{k}^{(i-1)} \boldsymbol{P}_{k}^{(i)} \mathbf{W}_{k}^{(i)}
$$

has zero in the positions $(i, i+1),(i, i+2), \ldots,(i, \varrho)$. Analogously, after multiplying the matrix

$$
\mathbf{P}_{1, k}^{(\varrho-1)} \ldots \mathbf{P}_{1, k}^{(2)} \boldsymbol{P}_{1, k}^{(1)} \mathbf{G}_{k}^{(1)} \mathbf{P}_{k}^{(1)} \mathbf{W}_{k}^{(1)} \ldots \mathbf{P}_{k}^{(\varrho-1)} \mathbf{W}_{k}^{(\varrho-1)} \mathbf{L}_{k}^{(1)} \ldots \mathbf{L}_{k}^{(i-1)}
$$

by $L_{k}^{(i)}$ we obtain zero in the positions $(\varrho-i+1,1),(\varrho-i+1,2), \ldots,(\varrho-i+1$, $\varrho-i)$.

Putting

$$
\begin{gathered}
\boldsymbol{P}_{1, k}=\boldsymbol{P}_{1, k}^{(\boldsymbol{e}-1)} \ldots \\
\overline{\boldsymbol{P}}_{k}=\left(\begin{array}{ll}
\boldsymbol{P}_{1, k}^{(2)}, \boldsymbol{\Theta} \\
\boldsymbol{\Theta}, & \boldsymbol{I}_{t-\varrho}^{(1)}
\end{array}\right)
\end{gathered}
$$

we have

$$
\begin{equation*}
\mathbf{e}_{i}^{\top}(t)\left(\overline{\boldsymbol{P}}_{k} \boldsymbol{F}_{k}^{(1)} \boldsymbol{P}_{k}^{(1)} \mathbf{W}_{k}^{(1)} \ldots \boldsymbol{P}_{k}^{(e-1)} \mathbf{W}_{k}^{(e-1)} \boldsymbol{L}_{k}^{(1)} \ldots \boldsymbol{L}_{k}^{(Q-1)}\right) \mathbf{e}_{j}(\varrho)=0 \tag{37}
\end{equation*}
$$

for $i \neq j ; i, j=1,2, \ldots, \varrho$.
Without any loss of generality let all permutations in the following considerations be identity matrices.

The matrices $\boldsymbol{W}_{k}^{(i)}$ and $\boldsymbol{L}_{k}^{(i)}$ from the Gauss-Jordan elimination have the form

$$
\mathbf{W}_{k}^{(i)}=\boldsymbol{I}_{\varrho}+\mathbf{W}_{1, k}^{(i)} \quad \text { and } \quad \boldsymbol{L}_{k}^{(i)}=\boldsymbol{I}_{e}+\boldsymbol{L}_{1, k}^{(i)}
$$

where $\boldsymbol{W}_{1, k}^{(i)}$ and $\boldsymbol{L}_{1, k}^{(i)}$ are strictly upper and lower triangular matrices, respectively. From the formulas for the elements of $\boldsymbol{G}_{k}^{(1)}$ it follows that the nonzero elements of $\boldsymbol{W}_{1, k}^{(i)}$ or $\boldsymbol{L}_{1, k}^{(i)}$ have the following form: if $z \neq 0$ is an element of $\boldsymbol{W}_{1, k}^{(i)}$ or $\boldsymbol{L}_{1, k}^{(i)}$ then there exists a sequence $\left\{\varphi_{n}(z)\right\}_{n=\mu(z)}^{\infty} \subset C$ such that the series $\sum_{k=\mu(z)}^{\infty} \varphi_{n}(z) / k^{n}$ is absolutely convergent with the sum z.

Let the symbol $\boldsymbol{D}\left(s_{1}, s_{2}, s_{3}\right)$ denote the diagonal matrix defined by
for integers $1 \leqq s_{1} \leqq s_{2} \leqq s_{3} \leqq t$.
For $a \in C^{t}$ we put

$$
\boldsymbol{b}^{\left(n_{i}\right)}\left(s_{1}, s_{2}, s_{3}, \boldsymbol{a}\right)=\boldsymbol{D}\left(s_{1}, s_{2}, s_{3}\right) \operatorname{diag}(\boldsymbol{a}) \boldsymbol{g}\left(k-n_{i}\right) .
$$

Theorem 1. Let (35) hold for all $k \geqq m$. Then there exist integers $\mu(1), k_{0}(1)$, a sequence of nonsingular $\varrho \times \varrho$ matrices $\left\{\boldsymbol{Z}_{k}^{(1)}\right\}_{k=k_{0}(1)}^{\infty}$ and a sequence of $t \times \varrho$
rectangular matrices $\left\{\boldsymbol{\Phi}_{j}^{(1)}\right\}_{j=\mu(1)}^{\infty}$ such that the series $\sum_{j=\mu(1)}^{\infty} \boldsymbol{\Phi}_{j}^{(1)} / k^{j}$ is absolutely convergent for $k \geqq k_{0}(1)$ and if we put $\mathbf{B}_{k}^{(1)}=\sum_{j=\mu(1)}^{\infty} \Phi_{j}^{(1)} / k^{j(1)}$, then for the sequence
of matrices $\left\{\mathbf{E}_{k}^{(1)}\right\}_{k=k_{0}}^{\infty}$ defined by

$$
\begin{equation*}
E_{k}^{(1)}=F_{k}^{(1)} Z_{k}^{(1)} \tag{38}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbf{E}_{k}^{(1)} \mathbf{e}_{i}(\varrho)=\boldsymbol{b}^{\left(n_{i}\right)}\left(i, i, \varrho+1, \mathbf{B}_{k}^{(1)} \mathbf{e}_{i}(\varrho)\right) \text { for } \quad i=1, \ldots, \varrho . \tag{39}
\end{equation*}
$$

Moreover, the equality

$$
\begin{equation*}
\operatorname{det} \boldsymbol{Z}_{k}^{(1)}=1 \tag{40}
\end{equation*}
$$

holds for all $k \geqq k_{0}$.
An analogous theorem with the matrices $\left\{\boldsymbol{Z}_{k}^{(2)}\right\}_{k=k_{0}(2)}^{\infty},\left\{\boldsymbol{\Phi}_{j}^{(2)}\right\}_{j=\mu(2)}^{\infty}, \boldsymbol{B}_{k}^{(2)} \boldsymbol{E}_{k}^{(2)}$ could be formulated for a transformation of the matrices $\boldsymbol{F}_{k}^{(2)}$.

Remark. If the permutations in (36) are not identity matrices then instead of (40) we have $\left|\operatorname{det} \boldsymbol{Z}_{k}^{(1)}\right|=1$.

Proof. The matrix $\boldsymbol{Z}_{k}^{(1)}$ is the product of the matrices

$$
W_{k}^{(1)} \ldots W_{k}^{(Q-1)} L_{k}^{(1)} \ldots L_{k}^{(\rho-1)}
$$

defined by (36). Since the matrix $\boldsymbol{G}_{k}^{(1)}$ was formed from the first rows of $\boldsymbol{F}_{k}^{(1)}$, we obtain from (36) immediately the assertion of Theorem 1.

By using Lemma 5 we obtain

$$
\left(Z_{k}^{(2)}\right)^{H} U_{k} Z_{k}^{(1)}=N_{k}^{(2)} \otimes N_{k}^{(1)},
$$

where for $s=1,2$

$$
\begin{gathered}
N_{k}^{(s)}=\boldsymbol{V}^{\top} \boldsymbol{F}_{k}^{(s)} \boldsymbol{Z}_{k}^{(s)}+\boldsymbol{w}_{k}^{(s)} \boldsymbol{Z}_{k}^{(s)}= \\
=\boldsymbol{V}^{\top}\left(\boldsymbol{b}^{\left(n_{1}\right)}\left(1,1, \varrho+1, \mathbf{B}_{k}^{(s)} \mathbf{e}_{1}(\varrho)\right), \boldsymbol{b}^{\left(n_{2}\right)}\left(2,2, \varrho+1, \mathbf{B}_{k}^{(s)} \mathbf{e}_{2}(\varrho)\right), \ldots\right. \\
\left.\ldots, \boldsymbol{b}^{\left(n_{e}\right)}\left(\varrho, \varrho, \varrho+1, \mathbf{B}_{k}^{(s)} \mathbf{e}_{\varrho}(\varrho)\right)\right)+\left(\chi_{k, 1}^{(s)}, \chi_{k, 2}^{(s)}, \ldots, \chi_{k, \ell}^{(s)}\right),
\end{gathered}
$$

where

$$
\chi_{k, i}^{(s)}=\sum_{j=0}^{\varrho} \beta_{i, j}^{(s)}(k) v\left(k-v_{j}\right),
$$

$v\left(k-v_{j}\right) \in \mathscr{L}_{k, v_{e}}$ and it is possible to write every $\beta_{i, j}^{(s)}(k)$ in the form $\beta_{i, j}^{(s)}(k)=$ $=\sum_{j=\alpha}^{\infty} \varphi_{i, j}^{(s)} / k^{j}$, where this series is absolutely convergent, χ is an integer and $\varphi_{i, j}^{(s)} \in C$. Let $\left(p_{i}, q_{i}\right)$ be the pair at the i-th place in (17).

Assumption 2. Let $p_{e}>p_{e^{+1}}$ and $\left|\lambda_{p_{e}}\right|>\left|\lambda_{p_{e_{e}}}\right|$.
Put for $j=1,2,3 ; s=1,2$

$$
\boldsymbol{Y}_{k}^{(s)}(j)=\left(y_{k, 1}^{(s)}(j), y_{k, 2}^{(s)}(j), \ldots, y_{k, \boldsymbol{e}}^{(s)}(j)\right),
$$

where $y_{k, i}^{(s)}(j) \in X$ have the form

$$
\begin{equation*}
y_{k, i}^{(s)}(1)=\lambda_{p_{i}}^{k-n_{i}}\left(\sum_{j=\mu(s)}^{\infty} \frac{\mathbf{e}_{i}^{\top}(t) \Phi_{j}^{(s)} \mathbf{e}_{i}(\varrho)}{k^{J}}\right) v_{p_{i}, q_{i}}, \tag{40}
\end{equation*}
$$

$$
y_{k, i}^{(s)}(2)=\sum_{n=\varrho+1}^{t}\left\{\lambda_{p_{n}}^{k-n_{i}}\left(\sum_{j=\mu(s)}^{\infty} \frac{\mathbf{e}_{n}^{\top}(t) \Phi_{j}^{(s)} \mathbf{e}_{i}(\varrho)}{k^{j}}\right) v_{p_{n}, q_{n}}\right\},
$$

Therefore, if we put

$$
y_{k, i}^{(s)}(3)=\chi_{k, i}^{(s)} .
$$

$$
N_{k}^{(s)}=\left(N_{k, 1}^{(s)}, N_{k, 2}^{(s)}, \ldots, N_{k, e}^{(s)}\right)
$$

then

$$
N_{k, i}^{(s)}=y_{k, i}^{(s)}(1)+y_{k, i}^{(s)}(2)+y_{k, i}^{(s)}(3) .
$$

Lemma 7. Let the assumptions 1 and 2 be fulfilled and let k_{0} be the integer from Theorem 1. Then for every pair s, i, where $s=1,2 ; i=1,2, \ldots, \varrho$ there exist a constant $\xi_{i}^{(s)} \neq 0$, an integer $\gamma_{i}^{(s)}$, a vector $v_{i}^{(s)}$ and a sequence $\left\{z_{i}^{(s)}(k)\right\}_{k=k_{0}}^{\infty} \subset X$ such that for all $k \geqq k_{0}$

$$
\begin{equation*}
N_{k, i}^{(s)}=\xi_{i}^{(s)} k^{\gamma_{i}(s)} \lambda_{p_{i}}^{k} v_{i}^{(s)}+z_{i}^{(s)}(k) \tag{41}
\end{equation*}
$$

and the equality

$$
\begin{equation*}
\lim _{k \rightarrow \infty} z_{i}^{(s)}(k) /\left(\lambda_{p_{i}}^{k} k^{\gamma_{i}^{(s)}}\right)=0 \tag{42}
\end{equation*}
$$

holds.
The vectors $v_{1}^{(s)}, \ldots, v_{e}^{(s)}$ are linearly independent.
The proof follows immediately from (40)-(40") and from the structure of the spectrum of the operator T.

Theorem 2. Let assumptions 1 and 2 be valid. Then there exist a complex number C_{e}, an integer \varkappa and a function φ such that

$$
\begin{equation*}
\operatorname{det} \mathbf{U}_{k}=k^{x} \prod_{i=1}^{e}\left|\lambda_{p_{i}}\right|^{2 k}\left(C_{\varrho}+\varphi(k)\right) \tag{43}
\end{equation*}
$$

and

$$
\lim _{k \rightarrow \infty} \varphi(k)=0
$$

If $\boldsymbol{M}_{k}^{(1)}=\boldsymbol{M}_{k}^{(2)}$, then $C_{\varrho}>0$.
Proof. Lemma 5 implies that $\operatorname{det} \boldsymbol{U}_{k}=\operatorname{det}\left(\boldsymbol{N}_{k}^{(2)} \otimes \boldsymbol{N}_{k}^{(1)}\right)$. From Lemma 7 we obtain

$$
\begin{gathered}
\left(\boldsymbol{N}_{k}^{(2)} \otimes \boldsymbol{N}_{k}^{(1)}\right)_{i, j}= \\
=\left(\xi_{j}^{(1)} \lambda_{p j}^{k} k^{\gamma_{j}^{(1)}} v_{j}^{(1)}+z_{j}^{(1)}(k), \xi_{i}^{(2)} \lambda_{p_{1}^{k}} k^{\gamma_{i}^{(2)}} v_{i}^{(2)}+z_{i}^{(2)}(k)\right)= \\
=\xi_{i}^{(2)} \xi_{j}^{(1)} \lambda_{p_{i}}^{k} i_{p_{j}}^{k} k^{\gamma_{i}(2)} k^{\gamma_{j}^{(1)}}\left[\left(v_{j}^{(1)}, v_{i}^{(2)}\right)+\omega_{i, j}(k)\right],
\end{gathered}
$$

where $\lim \omega_{i, j}(k)=0$. The rest is obvious.

$$
k \rightarrow \infty
$$

Remark. If the permutations in (36) are not identity matrices then in (43) $C_{\varrho}=$ $=C_{e}(k)$ and $\left|C_{e}(k)\right|$ is a constant.

4. CONVERGENCE OF $\alpha_{i}^{(k)}$

In [1] we have shown that the vector $\alpha^{k}=\left(\alpha_{0}^{(k)}, \alpha_{1}^{(k)}, \ldots, \alpha_{l}^{(k)}\right)^{\top}$ is a solution of (15). The matrix $\boldsymbol{S}_{\boldsymbol{k}}$ is defined by (14).

Assumption 3. Let

$$
\begin{equation*}
\sum_{j=1}^{\tau} i_{j}=l \tag{44}
\end{equation*}
$$

hold for some integer $\tau \in\langle 1, r)$.
Let us remark that use the notation described in Section 1. Let \mathbf{G}_{k} be the matrix formed by the first l rows of the matrix

$$
\left(\mathbf{c}\left(k-m_{1}\right), \mathbf{c}\left(k-m_{2}\right), \ldots, \mathbf{c}\left(k-m_{l}\right)\right)
$$

and
let there exist an integer k_{0} such that

$$
\begin{equation*}
\operatorname{det} \boldsymbol{G}_{k} \neq 0 \tag{45}
\end{equation*}
$$

for all $k \geqq k_{0}$.
The assumption (45) is fulfilled for a special choice of integers $m_{0}, m_{1}, \ldots, m_{l}$ which will be shown in Theorems 3 and 3^{\prime}. In the other cases, analogously to Lemma 6, either $\operatorname{det} \boldsymbol{G}_{\boldsymbol{k}}=0$ for all k or there exists an integer k_{0} such that $\operatorname{det} \boldsymbol{G}_{k} \neq 0$ for all $k \geqq k_{0}$.

In the following investigation let $k \geqq k_{0}$ hold.
Put

$$
\begin{align*}
& g_{2}\left(z, z_{1}, \ldots, z_{l}\right)=z^{m_{l}}+z_{1} z^{m_{1}-m_{1}}+\ldots+z_{l} \tag{46}\\
& g_{1}\left(z, z_{1}, \ldots, z_{l}\right)=z^{k-m_{l}} g_{2}\left(z, z_{1}, \ldots, z_{l}\right) . \tag{47}
\end{align*}
$$

For $j=1,2, \ldots, \tau$ and $i=1,2$ define mappings $A_{j}^{(i)}: C^{l+1} \rightarrow C^{i_{j}}$ in the following way:

$$
A_{j}^{(i)}\left(z, z_{1}, \ldots, z_{l}\right)=\left[\begin{array}{c}
\frac{\partial^{\left(i_{j}-1\right)} g_{i}\left(z, z_{1}, \ldots, z_{l}\right)}{\partial z^{\left(i_{j}-1\right)}} \\
\frac{\partial^{(i,-2)} g_{i}\left(z, z_{1}, \ldots, z_{l}\right)}{\partial z^{\left(i_{j}-2\right)}} \\
\frac{\partial g_{i}\left(z, z_{1}, \ldots, z_{l}\right)}{\partial z} \\
g_{i}\left(z, z_{1}, \ldots, z_{l}\right)
\end{array}\right] .
$$

Lemma 8. If (45) holds, then the system of I linear algebraic equations

$$
\begin{equation*}
A_{s}^{(2)}\left(\lambda_{s}, z_{1}, z_{2}, \ldots, z_{l}\right)=\boldsymbol{\Theta}\left(i_{s}\right) ; \quad s=1,2, \ldots, \tau \tag{48}
\end{equation*}
$$

has exactly one solution for the unknowns $z_{1}, z_{2}, \ldots, z_{l}$.
Proof. The set of all solutions of the system (48) coincides with the set of solutions of the system

$$
\begin{equation*}
A_{s}^{(1)}\left(\lambda_{s}, z_{1}, z_{2}, \ldots, z_{l}\right)=\boldsymbol{\Theta}\left(i_{s}\right) ; \quad s=1, \ldots, \tau \tag{49}
\end{equation*}
$$

But the system (49) is equivalent to

$$
\begin{equation*}
\mathbf{G}_{k} \cdot\left(z_{1}, \ldots, z_{l}\right)^{\top}=-\left(\mathbf{w}_{1}^{\top}(k), \ldots, \mathbf{w}_{\tau}^{\top}(k)\right)^{\top} \neq \boldsymbol{\Theta}, \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{w}_{s}(k)=\left(\binom{k}{i_{s}-1} \lambda_{s}^{k},\binom{k}{i_{s}-2} \lambda_{s}^{k}, \ldots, \lambda_{s}^{k}\right)^{\top} \tag{51}
\end{equation*}
$$

for $s=1,2, \ldots, \tau$. The rest is obvious.
Let us denote the solution of (48) by $\left(b_{1}, b_{2}, \ldots, b_{l}\right)^{\boldsymbol{\top}}$. It is independent of k.
Theorem 3. If $m_{i}=i$ for all $i=1, \ldots$, l then $\operatorname{det} \mathbf{G}_{k} \neq 0$ for all $k \geqq \max \left(i_{j}\right)+$ $+m_{l}$ and the equality

$$
\left(z-\lambda_{1}\right)^{i_{1}}\left(z-\lambda_{2}\right)^{i_{2}} \ldots\left(z-\lambda_{\tau}\right)^{i_{\tau}}=z^{l}+b_{1} z^{l-1}+\ldots+b_{l-1} z+b_{l}
$$

holds for all $2 \in C$, i.e. $b_{1}, b_{2}, \ldots, b_{l}$ are the coefficients of the polynomial

$$
\left(z-\lambda_{1}\right)^{i_{1}}\left(z-\lambda_{2}\right)^{i_{2}} \ldots\left(z-\lambda_{\tau}\right)^{i_{\tau}} .
$$

Proof. Similarly as in the proof of Lemma 4 in [1] we could show that $\operatorname{det} \boldsymbol{G}_{\boldsymbol{k}} \neq 0$ and therefore the system (50) has exactly one solution $\left(b_{1}, b_{2}, \ldots, b_{l}\right)^{\top}$. If we put

$$
U(z)=z^{k}+b_{1} z^{k-1}+\ldots+b_{l} z^{k-l}
$$

then Lemma 8 yields $U^{(q-1)}\left(\lambda_{p}\right)=0$ for all pairs (p, q) which lie at the first l places in the sequence (17), and therefore the polynomial $\left(z-\lambda_{1}\right)^{i_{1}}\left(z-\lambda_{3}\right)^{i_{2}} \ldots\left(z-\lambda_{\tau}\right)^{i_{2}}$ divides the polynomial $U(z)$. The assertion of Theorem 3 is now clear.

Analogously it is possible to prove the following theorem.
Theorem 3.' If $m_{i}=$ in $\forall i=1, \ldots, l$, where n is a positive integer and $\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{r}^{n}$ are mutually different then there exists an integer k^{\prime} such that $\operatorname{det} \boldsymbol{G}_{k} \neq 0$ for all $k \geqq k^{\prime}$ and

$$
\left(z-\lambda_{1}^{n}\right)^{i_{1}}\left(z-\lambda_{2}^{n}\right)^{i_{2}} \ldots\left(z-\lambda_{\tau}^{n}\right)^{i_{r}}=z^{l}+b_{1} z^{l-1}+\ldots+b_{l}
$$

holds for all $z \in C$.

For the only solution $\left(b_{1}, b_{2}, \ldots, b_{l}\right)^{\top}$ of the system (48) we have that the projection of the vector

$$
\eta_{k}+b_{1} \eta_{k-m_{1}}+b_{2} \eta_{k-m_{2}}+\ldots+b_{l} \eta_{k-m_{l}}
$$

on the subspace generated by the vectors $\left\{v_{j i}\right\}_{\substack{j=1, \ldots, \tau \\ i=1, \ldots, i_{j}}}$ is the nullvector. Analogously to what was proved in [5], we may expect that the coefficients of the polynomial $P(z)=P_{1}(z) / P_{1}(1)$, where

$$
P_{1}(z)=z^{m_{l}}+b_{1} z^{m_{l}-m_{l}}+\ldots+b_{l-1} z^{m_{l}-m_{l-1}}+b_{l},
$$

will be the desired limits of $\alpha_{i}^{(k)}$ for $k \rightarrow \infty$, which we prove in the sequel.
Assumption 4. Let $P_{1}(1) \neq 0$.
Let us define

$$
\begin{gather*}
P(z)=P_{1}(z) / P_{1}(1)=\sigma_{0} z^{m_{l}}+\sigma_{1} z^{m_{l}-m_{1}}+\ldots+\sigma_{l-1} z^{m_{l}-m_{l-1}}+\sigma, \tag{53}\\
\boldsymbol{\sigma}=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{l}\right)^{\top}, \tag{54}\\
\boldsymbol{S}_{k} \sigma=\left(\gamma_{k, 0}, \gamma_{k, 1}, \ldots, \gamma_{k, l-1}, 1\right)^{\top}=\gamma^{(1)}(k), \tag{55}\\
\gamma(k)=\gamma^{(1)}(k)-\mathbf{e}_{l+1}(l+1) . \tag{56}
\end{gather*}
$$

From (55) and (56) we have

$$
\boldsymbol{S}_{k} \boldsymbol{\sigma}=\gamma(k)+\mathbf{e}_{l+1}(l+1)
$$

or

$$
\boldsymbol{\sigma}=\boldsymbol{S}_{k}^{-1} \mathbf{e}_{l+1}(l+1)+\boldsymbol{S}_{k}^{-1} \gamma(k)
$$

and hence (see 15))

$$
\begin{equation*}
\boldsymbol{\alpha}^{(k)}=\boldsymbol{\sigma}-\boldsymbol{S}_{k}^{-1} \gamma(k) . \tag{57}
\end{equation*}
$$

Lemma 9. Let (45) hold for all $k \geqq k_{0}$. Then for every integer $s \in\langle 0, l-1\rangle$ there exist an integer x_{s} and sequences of functions $\left\{\Gamma_{s}(k)\right\}_{k=k_{0}}^{\infty}$ such that

$$
\lim _{k \rightarrow \infty} \sup \left|\Gamma_{s}(k)\right|<+\infty
$$

and

$$
\begin{equation*}
\gamma_{k, s}=\Gamma_{s}(k) k^{\alpha_{s}} \lambda_{1}^{k} \lambda_{\tau+1}^{k} \tag{58}
\end{equation*}
$$

for all $k \geqq k_{0}$.
Proof. From the form of $\delta_{s} \eta_{k}$ and the inequalities (8) we obtain

$$
\begin{equation*}
\delta_{s} \eta_{k}=k^{v_{s}} \lambda_{1}^{k} x_{s}(k), \tag{59}
\end{equation*}
$$

where v_{s} is an integer and $\left.\lim _{k \rightarrow \infty} \sup \| x_{s} k\right) \|<\infty$. Now we calculate

$$
\sum_{i=0}^{l} \sigma_{i} \eta_{k-m_{i}}=\boldsymbol{V}^{\top}\left(\mathbf{c}(k), \mathbf{c}\left(k-m_{1}\right), \ldots, \mathbf{c}\left(k-m_{l}\right)\right) \boldsymbol{\sigma}+w(k),
$$

where $w(k) \in \mathscr{L}_{k, m l}$. The first l components of the vector

$$
\left(\boldsymbol{c}(k), \boldsymbol{c}\left(k-m_{1}\right), \ldots, \boldsymbol{c}\left(k-m_{l}\right)\right) \boldsymbol{\sigma}
$$

equal zero. Therefore

$$
\sum_{i=0}^{l} \sigma_{i} \eta_{k-m_{i}}=k^{v} \lambda_{\tau+1}^{k} y(k),
$$

where for vectors $y(k)$ we analogously have

$$
\lim _{k \rightarrow \infty} \sup \|y(k)\|<\infty
$$

The rest is obvious.
Let $\boldsymbol{S}_{k}^{\mathrm{A}}$ denote the adjoint of \boldsymbol{S}_{k} and let $\boldsymbol{S}_{k}^{\mathrm{A}}=\left(\boldsymbol{S}_{k}^{\mathrm{A}}(i, j)\right)_{i, j=1}^{l+1}$. It is easy to see from (13), (14), (19"), (19"') by using (19) and (19') that

$$
\begin{equation*}
\operatorname{det} \boldsymbol{S}_{k}^{\mathrm{A}}(i, j)=\operatorname{det}\left(\boldsymbol{L}_{1, k}(j) \otimes \boldsymbol{L}_{2, k}(i)\right)=\operatorname{det} \boldsymbol{R}_{k}(j, i) \tag{61}
\end{equation*}
$$

and
(61')

$$
\operatorname{det} \boldsymbol{S}_{k}=\operatorname{det} \boldsymbol{R}_{k}
$$

In the next part we shall express the elements of the matrix \boldsymbol{S}_{k}^{-1} in a form that will enable us to easily obtain an estımate for the components of the vector $\boldsymbol{S}_{k}^{-1} \gamma(k)$. All our considerations are based on the statement of Theorem 2. We shall write the formulas for $\operatorname{det} \boldsymbol{S}_{k}$ and $\operatorname{det} \boldsymbol{S}_{k}^{\mathrm{A}}(i, j)$ using Theorem 2 , thus easily obtaining an expression for the elements of the inverse matrix $\boldsymbol{S}_{\mathbf{k}}^{-1}$. The proofs of Lemma 10 and Lemma 11 immediately follow from Theorem 2; in the proof of Lemma 10 we, moreover, use the relation (61').

Lemma 10. Let $\left|\lambda_{\tau}\right|>\left|\lambda_{\tau+1}\right|$ and let the matrix formed by the first l rows of \boldsymbol{J}_{k} be nonsingular for all $k \geqq k_{0}$.

Then there exist an integer \varkappa, a positive constant D nad a sequence of real functions $\{\varphi(k)\}_{k=k_{0}}^{\infty}$ such that $\lim _{k \rightarrow \infty} \varphi(k)=0$ and

$$
\operatorname{det} \boldsymbol{S}_{k}=k^{x} \prod_{s=1}^{\tau}\left|\lambda_{s}\right|^{2 k i_{s}}(D+\varphi(k))
$$

for all $k \geqq k_{0}$.
We have defined a vector $\boldsymbol{g}(k) \in C^{t}$ by the formula (20). Let $(\mathbf{g}(1))_{i}$ denote the i-th component of $\mathbf{g}(1)$. Let \mathscr{T} be the set of all integers $i \leqq l$ satisfying

$$
\left|(\boldsymbol{g}(1))_{i}\right|=\left|(\boldsymbol{g}(1))_{l}\right|=\left|\lambda_{\tau}\right| .
$$

For every pair $i, j, i=1, \ldots l ; j=1, \ldots, l+1$ the following assertion is valid.
Lemma 11. Let the assumptions from Lemma 10 be valid and let the matrix formed by the first l rows of $\boldsymbol{J}_{1, k}(j)$ and $\boldsymbol{J}_{2, k}(i)$ except the $i_{1}(j)$-th and $i_{2}(i)$-th row, respectively, where $i_{1}(j) \in \mathscr{T}$ and $i_{2}(i) \in \mathscr{T}$ be nonsigular for all $k \geqq k_{0}$. Then
there exist an integer $x_{i j}$, a complex number $D_{i j}$ and a function $\varphi_{i j}(k)$ such that

$$
\lim _{k \rightarrow \infty} \varphi_{i j}(k)=0
$$

and

$$
\operatorname{det} \boldsymbol{S}_{k}^{\mathrm{A}}(i, j)=k^{\chi_{i j}} \frac{\prod_{s=1}^{\tau}\left|\lambda_{s}\right|^{2 k i_{s}}}{\left|\lambda_{\tau}\right|^{2 k}}\left(D_{i j}+\varphi_{i j}(k)\right) .
$$

Lemma 12. Let the assumptions from Lemma 10 and Lemma 11 be fulfilled. Then the element of the matrix \boldsymbol{S}_{k}^{-1} in an (i, j)-position has the form

$$
\begin{equation*}
\left.k^{x_{i j}} \Lambda_{i j}(k)| | \lambda_{\tau}\right|^{2 k} \tag{63}
\end{equation*}
$$

where $\chi_{i j}$ is an integer and $\lim \Lambda_{i j}(k)=D_{i j} / D, D$ and $D_{i j}$ being the constants from Lemma 10 and Lemma 11. ${ }^{k \rightarrow \infty}$

Moreover, the m-th component of the vector $\mathbf{S}_{k}^{-1} \gamma(k)$ has the form

$$
\sum_{s=1}^{l-1} k^{x_{s}+\chi_{m s}} \Omega_{m, s}(k)\left(\frac{\lambda_{1} \lambda_{\tau+1}}{\left|\lambda_{\tau}\right|^{2}}\right)^{k},
$$

where the integer \varkappa_{s} has been defined by (58) and

$$
\lim _{k \rightarrow \infty} \sup \left|\Omega_{m, s}(k)\right|<\infty
$$

for all $s=1, \ldots, l-1$.
Proof. From the form of $\operatorname{det} \boldsymbol{S}_{k}$ and $\operatorname{det} \boldsymbol{S}_{\boldsymbol{k}}^{\boldsymbol{A}}(i, j)$ it is easy to see that the quotient $\operatorname{det} \boldsymbol{S}_{k}^{\mathrm{A}}(i, j) / \operatorname{det} \boldsymbol{S}_{k}$ has the form (63). Together,

$$
\begin{gathered}
\Lambda_{i j}=\frac{D_{i j}+\varphi_{i j}(k)}{D+\varphi(k)}, \\
D>0 \text { and } \lim _{k \rightarrow \infty} \varphi_{i j}(k)=\lim _{k \rightarrow \infty} \varphi(k)=0 .
\end{gathered}
$$

This implies that there exists an integer m such that $D+\varphi(k) \neq 0$ for all $k \geqq m$ and, for this $k, \Lambda_{i j}(k)$ has the above described form. For $k<m$ we define $\Lambda_{i j}(k)$ so that the expression (63) gives us the element of the matrix \boldsymbol{S}_{k}^{-1} in the position (i, j). From the form of the elements of $\boldsymbol{S}_{\boldsymbol{k}}^{-1}$ and $\gamma(k)$ we immediately conclude that $\boldsymbol{S}_{\boldsymbol{k}}^{-1} \gamma(k)$ has the form (63^{\prime}). The rest is obvious.

Theorem 4. Let the assumptions from Lemma 11 be fulfilled. Let P be the polynomial defined by (53). If

$$
\left|\lambda_{1} \lambda_{\tau+1}\right|<\left|\lambda_{\tau}\right|^{2}
$$

then

$$
\lim _{k \rightarrow \infty} \alpha_{i}^{(k)}=\sigma_{i}
$$

for $i=0,1, \ldots, l$, where σ_{i} are the coefficients of the polynomial P.
Proof. For $l>1$ the result follows from the previous lemma, for $l=1$ we obtain it by a straightforward calculation.

5. RATE OF CONVERGENCE OF THE EXTRAPOLATED METHOD

From (2) we have obtained a convergent sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$. Let us define a sequence $\left\{y_{k}\right\}_{k=m_{1}}^{\infty}$ by

$$
y_{k}=\alpha_{0}^{(k)} x_{k}+\alpha_{1}^{(k)} x_{k-m_{1}}+\ldots+\alpha_{l}^{(k)} x_{k-m_{l}} .
$$

Theorem 5. Let the assumptions from the previous section, i.e. (44),(45), as well as those from Lemma 10 and Lemma 11 be fulfilled. We suppose that for some $r_{1} \in\langle 1, r)$ the inequality $\left|\lambda_{r_{1}}\right|>\left|\lambda_{r_{1}+1}\right|$ holds. Further, if $\left|\lambda_{s}\right|=\left|\lambda_{1}\right|$ for $s \in\left\langle 1, r_{1}\right\rangle$ then let $i_{1}>i_{s}$. Moreover, let

$$
\begin{equation*}
\frac{\left|\lambda_{1}^{2-p} \lambda_{\tau+1}\right|}{\left|\lambda_{\tau}\right|^{2}}<1 \text { for some } p \geqq 1 \text {. } \tag{64}
\end{equation*}
$$

Then there exists an integer k_{0} such that $\varepsilon_{k} \neq 0$ for all $k \geqq k_{0}$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|x^{*}-y_{k}\right\|}{\left\|x^{*}-x_{k}\right\|^{p}}=0 \tag{65}
\end{equation*}
$$

Proof. According to (18) we have

$$
\begin{gather*}
\left\|x^{*}-x_{k}\right\|=\varepsilon_{k}=H^{-1} \eta_{k}= \tag{66}\\
=\sum_{j=1}^{r} \sum_{i=1}^{i_{j}}\binom{k}{i-1} \lambda_{j}^{k} H^{-1} v_{j i}+H^{-1} v(k)=\binom{k}{i_{1}-1} \lambda_{1}^{k}\left(H^{-1} v_{1 i_{1}}+w(k)\right),
\end{gather*}
$$

where the assumptions of Theorem 5 imply that $\lim _{k \rightarrow \infty} w(k)=0$ and there exists k_{0} such that $\varepsilon_{k} \neq 0$ for all $k \geqq k_{0}$.

Let us calculate

$$
\begin{gathered}
x^{*}-y_{k}=x^{*}-\sum_{i=0}^{l} \alpha_{i}^{(k)} x_{k-m_{i}}=\sum_{i=0}^{l} \alpha_{i}^{(k)}\left(x^{*}-x_{k-m_{i}}\right)= \\
=H^{-1} \sum_{i=0}^{l} \alpha_{i}^{(k)} \eta_{k-m_{i}}=H^{-1}\left\{\sum_{i=0}^{l} \sigma_{i} \eta_{k-m_{i}}+\sum_{i=0}^{l}\left(\alpha_{i}^{k}-\sigma_{i}\right) \eta_{k-m_{i}}\right\} .
\end{gathered}
$$

From (61), (63) and (18) we have

$$
\begin{gathered}
\left\|x^{*}-y_{k}\right\| \leqq k^{v}\left|\lambda_{\tau+1}\right|^{k} \cdot\|y(k)\| \cdot\left\|H^{-1}\right\|+ \\
+\left(\frac{\lambda_{1} \lambda_{\tau+1}}{\left|\lambda_{\tau}\right|^{2}}\right)^{k} \lambda_{1}^{k} \sum_{i=0}^{l}\left\{\left[\sum_{s=1}^{l-1} k^{x_{s}+\chi_{i s}} \Omega_{i, s}(k)\right]\left[\left(\frac{k-m_{i}}{i_{1}-1}\right) \lambda_{1}^{-m_{i}}\left\|H^{-1} v_{1 i_{1}}+w\left(k-m_{i}\right)\right\|\right]\right\}
\end{gathered}
$$

where $\lim _{k \rightarrow \infty} \sup \|y(k)\|<\infty$ and $\lim _{k \rightarrow \infty} \sup \left\|\Omega_{i, s}(k)\right\|<\infty$ for all i, s.
This estimate together with (64) and (65) immediately yields (65).

References

[1] J. Zitko: Improving the convergence of iterative methods. Apl. Mat. 28 (1983), 215-229.
[2] J. Zitko: Kellogg's iterations for general complex matrix. Apl. Mat. 19 (1974), 342-365.
[3] G. Maess: Iterative Lösung linear Gleichungssysteme. Deutsche Akademie der Naturforscher Leopoldina Halle (Saale), 1979.
[4] G. Maess: Extrapolation bei Iterationsverfahren. ZAMM 56, 121-122 (1976).
[5] I. Marek, J. Zitko: Ljusternik Acceleration and the Extrapolated S.O.R. Method. Apl. Mat. 22 (1977), 116-133.
[6] I. Marek: On a method of accelerating the convergence of iterative processes. Journal Comp. Math. and Math. Phys. 2 (1962), N2, 963-971 (Russian).
[7] 1. Marek: On Ljusternik's method of improving the convergence of nonlinear iterative sequences. Comment. Math. Univ. Carol, 6 (1965), N3, 371-380.
[8] A. E. Taylor: Introduction to Functional Analysis. J. Wiley Publ. New York 1958.

Souhrn

KONVERGENCE EXTRAPOLAČNÍCH KOEFICIENTU゙

Jan Zítko

Necht

$$
\begin{equation*}
x_{k+1}=T x_{k}+b \tag{1}
\end{equation*}
$$

je iterační proces na řešení operátorové rovnice $x=T x+b$ v Hilbertově prostoru X, kde b je daný prvek z X a $T \in[X]$. Budiž $x_{0} \in X$ a sestrojme posloupnost $\left\{x_{k}\right\}_{k=0}^{\infty}$ podle (1) a předpokládejme, že tato posloupnost konverguje $\mathrm{k} x^{*}=T x^{*}+b$. Necht́ $l>1, k, m_{0}, m_{1}, \ldots, m_{l}$ jsou celá čísla splňující nerovnosti

$$
m_{l}>m_{l-1}>\ldots>m_{1}>m_{0}=0, k>m_{l}
$$

V práci [1] jsme sestrojili čísla $\alpha_{i}^{(k)}, i=0,1, \ldots, l$ taková, že pro vektor

$$
y_{k}=\alpha_{0}^{(k)} x_{k}+\alpha_{1}^{(k)} x_{k-m_{1}}+\ldots+\alpha_{l}^{(k)} x_{k-m_{l}}
$$

se minimalizovala vhodně zvolená norma rozdílu $x^{*}-y_{k}$. Normu je možné volit tak, aby konstrukci čísel $\alpha_{i}^{(k)}$, které nazveme extrapolačními koeficienty, bylo možno realizovat.

V této práci je spočítána limita čísel $\alpha_{i}^{(k)}$ v obecném případě. Pro ilustraci uvedme speciální případ. Necht $\left|\lambda_{1}\right| \geqq \ldots \geqq\left|\lambda_{\tau}\right|, \lambda_{i} \neq 1$, přičemž $\lambda_{1}, \ldots, \lambda_{\tau}$ jsou póly rezolventy $R(\lambda, T)$ s násobnostmi postupně i_{1}, \ldots, i_{τ}, kde $\sum_{j=1}^{\tau} i_{j}=l$. Položme $m_{i}=i \forall_{i}$

$$
\begin{gathered}
p(z)=\left(z-\lambda_{1}\right)^{i_{1}}\left(z-\lambda_{2}\right)^{i_{2}} \ldots\left(z-\lambda_{\tau}\right)^{i_{\tau}} \\
P(z)=p(z) / p(1) \equiv \sigma_{0} z^{l}+\sigma_{1} z^{l-1}+\ldots+\sigma_{l}
\end{gathered}
$$

Pak $\lim _{k \rightarrow \infty} \chi_{i}^{(k)}=\sigma_{i} \forall i$. (Podrobněji viz Theorem 5). Na základě toho je ukázáno, že existuje $p \geqq 1$ tak, že

$$
\lim _{k \rightarrow \infty}\left(\left\|x^{*}-y_{k}\right\| /\left\|x^{*}-x_{k}\right\|^{p}\right)=0
$$

Author's address: RNDr. Jan Zitko, CSc., Katedra numerické matematiky na MFF UK, Malostranské náměstí 25, 11800 Praha 1.

