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CONVERGENCE OF EXTRAPOLATION COEFFICIENTS

JAN ZiTKO

(Received April 13, 1983)

1. INTRODUCTION

Let X be a Hilbert space and let T, H € [ X]. We consider an operator equation

(1) x=Tx+b
and an iterative process
(2) Xyo1=Tx, + b,

where b is a given element from X. Let for some x, € X the sequence {x,,},f”zo deter-
mined by (2) converge to x* € X. Let I > 0, k, mg, my, ..., m; be integers such that
the inequalities

(3) mp>mp_;>...>my >my=0,
4) k> m,
hold.

In the paper [1] we solved the problem of finding complex numbers af, af?, ...

.., o such that
1

) Yo =1,
i=0

© [ = Fotx )] = min [ = 3 )]

ot...+p1=

The norm is defined by using the scalar product (-, *) in X. In order to summarize
shortly the results from [ 1] we recall some notations and assumptions from that paper
which will be adopted throughout the present paper. If

Mk = (/105 His oees #t) ’ Nk = (vOs Vis eens vs)

are two row vectors with components in X, then N, ®@ M, is a complex (s + 1) x
x (t + 1) matrix and (N, @ M,); ; = (u;, vy)-
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We put

(7) & = x* = X, n = Heg,
(7’) Hk = (’11\" nk—m,’ LR} ”k-m;)’
(7") Q=HQ®H,.

Further, we assume that the resolvent operator R(4, T) has r poles Ay, 4,, ..., 4,
with multiplicities iy, iz, -- ., i,, respectively, and satisfying the inequalities

(8) [ 2 4] =z ... 2|4 > 0.

A

Moreover, |4,| > |)| for every /Iea(T), A%A,j=1,....r,and 4; + 4; for i + j.
For a given je(l,r) let C; = {leCl ]A - Ajl = g;}, where ¢; is assumed to
fulfil

{reC||a—A] s e} no(T) = {4}
The symbol C denotes the set of complex numbers. Let
(9) K0={/IEC||A| =Qo}
with g, such that
{2eC||i = 0o} na(T) = o(T) = {4y, ..., 4} -

Denote

1 i—1
(10) By= f = 2) 7RG T) 0

Without any loss of generality we can assume that (see [1])
(11) I<Yi;=t and Bjg +0 foral j=1,...r.
j=1

On the basis of the just presented conditions we have proved (see Theorems 2 and 4
in [1]) that there exists an integer k, > max (i;) + m, such that for every k > k,

only one vector e
a® = (&), o, .., a)T
can be found which solves (5) and (6) This vector is given by the formula
a® = ("(n) Q" e(n))™* Q¢ e(n).
Let us remark that e(n) is the i-th column of the n x n identity matrix and e(n) =

=l=ile‘-(n).
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Given a sequence {u,};=, < X and two integers i, j € {1, I> we denote for k > m,

(12) Sy = Uy, — Ug—m,
and
(12') Oy = Oyl .
Define
(13) L, = (51’110 OaMis - 51'1:() >
L H,
(14) Sk = <e'rk(;®+ 1k)> .

The matrix S, is nonsingular and the vector a®) is the solution of the system
(15) So® =e (I +1).

(See [1], Theorem 2). We call the components of the vector a® the coefficients of
extrapolation.

In this paper we shall study the convergence of the coefficients a® for k — oo
and construct a polynomial

P(z) = goz™ + 02" ™ + ...+ 6,0 2" 4 gy

such that the a{?’s converge to the coefficients of this polynomial, i.e. lim o = &;.
k— o
In the special cases m; = i or m; = in (i = 0, 1, ..., [) where n is a given integer, it

is shown that it is possible to express the coefficients o; as functions of some poles
of the resolvent operator R(4, T). Extrapolation by means of polynomials with
coefficients o, in the case m, = in for i = 0, ..., | was studied in the paper [5].

In Sections 2 and 3 auxiliary assertions are proved, which are used in Sections 4
and 5. In Section 4 we study the convergence of a*) for k — 0. On the basis of the
asymptotic behaviour of of*’ for k — oo it is shown in Section 5 that if {y, )., = X
is defined by
(16) . Vi = aPx + 0%+ oo+ aFx
then

tim (Jx =y = x07) = 0
hnd ]

for some p = 1.
Let all notations and assumptions concerning the integers [, mgy, my, ..., m;, t and
the poles of R(4, T) as well as the operators B;; be valid throughout all this paper.

2. AUXILIARY THEOREMS

Let A" denote the set of all pairs (j, iyforj=1,2,..,rand i=1,2,..., i; for
every j. Order this set in the following sequence:
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(17) (1,4y), (Li; = 1), ..., (1, 1),
(2,iy), (2,0, = 1), ..., (2, 1),

Put
H(Bjie0[2;” 1) = Uji
and

27i

H (—LJ ZR(2, T) &y di) = v(k).

The symbol c(k) denotes a vector from C' whose p-th component is (i f 1) ),'J‘I,

where (j, i) lies at the p-th place in the sequence (17). Analogously, ¥ denotes a t-
dimensional ‘‘vector” with components v;;. For a given positive integer v < k let
%, < X be a subspace generated by the vectors v(k), v(k — 1), ..., v(k — v). The
vector 7, defined by (7) can be expressed in the form (see [1])

(18) =% % ( ) ko 4+ o(k) = PTe(k) + ofk).

j=1i=1

The operation ¥ T¢(k) is performed in the same way as for vectors with complex
components. Further, let [ > 1.
When proving the convergence of at® for k — oo we shall work with matrices

(19) Rk = Lk ® Lk B Rk(j’ i) = Ll,k(j) ® Lz,k(i) s
where L, is defined by (13),
(19’) Ll,k(j) = (51’7/(, CEE) 5,‘—1’1:0 (Sj+ 1Mks +es 51’1k)
forj=1,2,...,1 and
(19") L2,k(i) = (51'1;(: cees O oMy 5i—1,i N> Oip 11> -+ o> 51’1&)
fori=1,2,...,1 + 1.

Put

(k) = n = v(k),
L7 = (00 3(k), 05 y(K), . 81 y(K)) 5
L) = (63 (k) ooy 85— 1 9(Kk), 0541 ¥(K), .-y 81 p(K))
LS = (83 (k) vy 85—y ¥(K), 851, Y(K), 8144 Y(K), ..., 3, y(K))

forj=1,....5;i=1,...,] + 1. If we extend the validity of the operators J,; and J;
also for sequences {u,}y>, = C' according to the relations (12) and (12') then (18)
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and the definitions of y(k) and ¢(k) immediately imply that
Lfcu) = VTjk > L(Ijk)(j) = VT]l,k(j) B L(ij) i} = VT]Z,k(i) 5
where we have put

J = (0, c(k), 5, e(k), ..., o, <(k)),
Jii(i) = 0y e(k), .., 8- €(k), 8,44 c(K), ..., 3, €(k)),
Louli) = (01 e(k), ... 0i-s (k). 6imy s €(k), 8;4 g €(k), -, O, €(K)) -

Let us remark that for vectors u;e C', i = 1,2, ..., s the symbol (u,, u,, ..., uy)
denotes the matrix with columns u;. In order to express the vectors Ly, Ly ,(j), L, ,(i)
which we use for the construction of the matrices R, and Ry(j, i) it is necessary first
to calculate 0;; 7.

Lemma 1. Let ko > 0, % be integers, {y,}

o0
Y *,',,/kS be absolutely convergent. Then there exist an integer k' and a sequence
p== <o)

of numbers {y,}5-_, = C such that ) Vp/k” is absolutely convergent for k > k’,

p=-—x
Y. 7,/k? & 0 for k > k' and

p=—=xn
AR /Y
P=x kp P=—x kp

< C with y, = 0. Let the series

o0
p=x

™

The proofis given in [2].

Lemma 2. Let ko, ny, ny,q be nonnegative integers, ko > max {n, n,} + gq.

o€

Then there exists a sequence of real numbers {vp};;°=0 such that the series Z v,,/kS
is absolutely convergent and the equality p=0

k— ng k—n2’1=§ﬁ.
q q p=0 k*
holds for all k = k.

The proof is obvious.
It is easy to see that for integers k > max (ij) + m, and p, q € {1, I) we have

Jj=1,..,r

Spalc = 0,0 V(k) + v(k — m,_y) — v(k — m,)
and
8,0 9(k) =VTelk — m,_,) — ek — m,)] .

For the first component of the vector in brackets we have

e1(0) [e(k — my—y) — c(k — my)] = by(k) 257",
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where

_ _ _ -1
bl(k) _ k—m, k—m,_\ (k—m, Jmamme-n _ |
ip—1 ip—1 ip—1

Lemmas 1 and 2 imply that there exist an integer x and a sequence {go,,}fzu cC
such that
o Pn
bl(k) = .

n=p k"

and the series is absolutely convergent for all k > max (ij) + m,. The same can be
said for the other components of e¢(k — m,_;) — ¢(k — m,). For all k£ > 0 let us
define a vector g(k) by the relation

(20) glk) = (A5, .. A%, 25, a8, A AT
v [ — [ —— [ —
i;-times  i,-times i-times

Since every component of the vector ¢(k — m,_;) — ¢(k — m,) can be expressed
as a product of 247" and an absolutely convergent series of the above described
form, it is possible to construct integers 1, u(j), u(i), sequences {@,} 7%, { Py .(j)} =iy
and {®, (i)}~ ;) of rectangular matrices of order t x It x (I — 1)and t x (I — 1),

Sn=p(i
respectively, such that the series
i ?in , < ¢1.lr(.i) and i ¢2.n(i)
n=p k" n=u(j) k" n=pn(i) l\’"

are absolutely convergent for all k = max (i;) + m,; if we denote their sums by
B,, B, ,(j) and B, (i), respectively, then the elements of the matrices J,. J, ,(/) and
J,..{i) have the following form:

(21 | Ji e(1) = [diag (B, e,(/))] g(k — m,)
' for s=1,...,1,
(21) Ji.(j) e — 1) = [diag (B, «(j) e(! — 1))] g(k — m,.)

for s=1,...,1—1
(v=10for se(l,j), v=1for se(j, I — 1)),

(21 L) el — 1) = [diag (B, (i) eI — 1))] g(k — m.,)
for s=1,...,1—-1
(v=0forsedl,i—1),v=1forsei—1,1—1)).

Let us remark that for a vector w e C' the symbol diag (w) denotes the diagonal
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t x t matrix whose diagonal elements are the components of w in their natural
order.

Since
L7 =V, L{3G)=V".() and LE() = VT (0),
we have
(21) L,=L7 + g,

Ly, (j) = L(l—,-k)(j) + ¢,,(j) and Lz,k(i) = L(ij)(i) + h,k(i)

where all components of the vectors ., 45 x(j) and ¢ (i) lie in the space L, .-

r

Lemma 3. Let k > max (i;) + m;, and m; <t (t = Z i;). Then the matrices
Ji. J1 x(j) and J, (i) have maximal ranks. j=1

Proof. We have proved in [1] (Lemma 4) that the vectors y(k), y(k — my), ...
.., y(k — m))as wellas 8, y(k), ..., 5, y(k) (Lemma 1in [1]) are linearly independent.
Let for some S, B,, ..., B,

(22) Ba(Jx 31(’)) + ﬂz(.’k ez(t)) + ..o+ ﬁt(]k el(t)) =0.
If
(23) i;]ﬁ,-lz >0

then (22) yields
VT[BiJkes(r)) + B2(Jie()) + ... + BilJief1))] = 0,

i.e.
. _Zlﬁi‘si,"(k) =0,

which contradicts (23). Analogously we can prove that J; x(j) and J, 4(i) have maximal
ranks. [

We have defined the vectors (13), (19), (19”) and the matrices (19). As we shall
study the properties of all matrices (19) together we introduce the following generali-
zation.

Let ¢ > 0, uy, puy, m, ny, ..., Ny, vy, V5, ..., v, be integers,

s g’
r

(24) 0Sn <nm<..<n<t=yi,

=1
(25) n;>v;, VYi and m > max (i;) + n,.

J=1,..,r
Let {2V} 7., {2} 7, be two sequences of t x ¢ matrices such that the series
=) 9(1) 53] 9(2)
(26) > =L and Y -ll;— are
' J=m Jj=n2 k
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absolutely convergent for all k = m. We denote

@ Q(_s)
AP = Y J, for s<1,2.

Jj=ns

Let F{", F{® be two ¢t x ¢ matrices defined by

(27) F efo) = diag (A e(0)) - g(k — ™)

fori=1,...,0ands = 1,2. Let 8, i = 1,...,0; s — 1, 2, be elements of X having
the following form:

(25) 91 = VTR e0)] + {0k, v) -
where ((k, v;) € £, ,,. Put

(29) MP = (9, 8%, ... 9
and

(30) U=M>@M".

It is easy to see that

(31) MP =VTFD + w®

where all ¢ components of w(” lie in £, .

Lemma 4. Let s = 1 or s = 2. Let the matrices F\® have a rank ¢ for all k Z m.
Then there exists an integer ko = m such that the elements 9, for i = 1,2,..., ¢
are linearly independent for all k = k.

The proof is analogous to that of Lemma 4 or Theorem 3 in [1].

3. CALCULATION OF det U,

N

Let @y, ¢z, ..., 9, € X and A = (a;;); j=1.... »» a;;€ C. We define

Q e e
(‘Pl, P25 -ees Q) A= (_Zlan(/’h _Zl“iz(/?i, sy Zlaig(Pi) .

Our aim in this section is to show an explicit form for det U,. If we succeed in finding,
for s = 1,2, nonsingular transformations Z;* and permutations P{> such that the
relations

(32) e/(1) (POFYZP) ej(0) = 0

hold for i,j = 1,2,...,¢; i # j, then we can easily express det U, by using (28),
(29), (30) and the following assertion.
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Lemma 5. If A, and A, are complex ¢ X ¢ matrices, then

() UA, = MP @ N,
(33) Afu, = NP @MD"
and

(33 ASUA, = NP @ N,
where

N = MDA, and NP = MPA,.

Proof. The formulas (33), (33'), (33”) can be obtained by a straightforward
calculation. [J

Lemma 6. Let s = 1 or s = 2. Let s, 5,,..., S, be mutually different integers
from the interval {0, t> and GLS)(SI, ..y S,) the @ x o matrix the i-th row of which
is identical with the s-th row of FY.

Then either det Gy(sy, ..., s,) = 0 for all k or there exists an integer k, such
that det G,(sy, ..., s,) & 0 for all k = k.

The proof is obvious.

In the following we shall assume that there exists an integer m such that the matrices
F(" and F* have arank ¢ forall k > m. The matrix F{" has a rank g for all k > m;
therefore for a given k = m there exist integers s,, ..., s, such that

(34) det G{)(sy, .., 5,) * 0,

and an analogous assertion for F{?) holds.
Assumption 1. Let for s = 1, 2.

(35) detGP(1,2,...,0) £ 0

forall k = m. We shall write G instead of GP(1, 2, ..., 0) O
In the sequel we shall study only the matrices F{!. It is easy to see that the same
assertion will be valid for F{.

Since (35) holds, it is possible by using the Gauss-Jordan elimination to construct
permutation matrices

1) (2) (e—1 (1) (2 -1
P(l,ks P[,ks“-, Plg,k ” Pk ’Pk ),"" PI((() )’

upper triangular matrices W{", W/, ... WD and lower triangular matrices
LY L2, ..., L™ such that

- 2 - - 0
(36) P .. PEIPLIGL P WP P Wi DL L)

is a diagonal matrix with non-zero diagonal elements. All investigated matrices
are ¢ X ¢. The elimination is made in the following way. If the matrix

i-1) 2)p(1 Hp(1)w (1) i—1 i—1
PUTY .. PRIPIGIPOIW . P DW(i—D)
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has zero in the positions (Iy, [,), where I, =1,...,i—1and [, =1, +1,...,0,
then, moreover,

i i-1 2 i—1 i—1)p(i i
POPITD L PRPNGIIPIW! L PITDWITDPOWD
has zero in the positions (i, i + 1),(i, i + 2), ..., (i, ¢)- Analogously, after multiplying

the matrix
P -1) 2 P 1 1 1 ‘4, 1 P(Q—I M, e—1 1 i—1
(19,k ‘gl)c (1,IZGI(c)‘1(<) i) k ) §c )LI\(')"'LE: !

by L{” we obtain zero in the positions (¢ — i + 1,1),(¢ — i + 1,2),...,(¢ — i + 1,
0 — i)

Putting
Pl,k = P(f,;“ PEZ,IZP(:’,Z s
— P, . O
P = (@, :,_9)
we have
(37) el(t) (FFLOPLOWD P DWEe DL | 1Y) e (g) = 0

fori+j,i,j=1,2,...,0.

Without any loss of generality let all permutations in the following considerations
be.identity matrices.

The matrices W(? and L{” from the Gauss-Jordan elimination have the form

W = W, and L0 =1, + L.

where W, and L{), are strictly upper and lower triangular matrices, respectively.
From the formulas for the elements of G{" it follows that the nonzero elements of
W), or LY, have the following form: if z # 0is an element of W, or L{", then there

exists a sequence {¢,(z)},2, < C such that the series Y ¢,(z)/k" is absolutely
convergent with the sum z. k=u()
Let the symbol D(s,, s, s3) denote the diagonal matrix defined by

—0 for 1 Zi<sy,

— 1 for s, £i<s
T, _ 1 = = 92
ei(1) (s, 52 55) e(1) = ——0 for s, <i<s;

—— 1 for i =53

for integers 1 < s, <5, <53 < t.
For a e C' we put

b"(sy, 55, 53, @) = D(sy, s,, 53) diag (a) g(k — n;) .

Theorem 1. Let (35) hold for all k = m. Then there exist integers (1), ko(1),
a sequence of nonsingular ¢ x @ matrices {Z\"} .1y and a sequence of t X ¢
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rectangular matrices {®V}7. ;) such that the serles Z (D(”/k] is absolutely

convergent for k = ko(1) and if we put B{") = Z di(”/k’ then for the sequence

of matrices {E{"}i2,, defined by J=uh)

(38) E(O = FhZ®

we have

(39) E{" efo) = b"(i,i,0 + 1,B{" e0)) for i=1,..,¢.

Moreover, the equality
(40) det ZV = 1
holds for all k = k.
An analogous theorem with the matrices {Z{?} 2, ), (PP}, o) B E{’ could
be formulated for a transformation of the matrices F{?.

Remark. If the permutations in (36) are not identity matrices then instead of (40)
we have |det Z{"| = 1.

Proof. The matrix Z{" is the product of the matrices
1 -1 1 -1
W owle b e

defined by (36). Since the matrix G" was formed from the first rows of F, we obtain
from (36) immediately the assertion of Theorem 1.
By using Lemma 5 we obtain

(ZF Uz = N @ N,
where for s = 1,2
N(s) VTF(v)zn) + w(s)z(S) —

=VT(b"(1, 1,0 + 1, BP e,(0)), b"2(2,2,0 + 1, B{ e5(¢)), ...

» b0, 0,0 + 1, B e)0))) + (1 22 - i) »
where

e
20 = 3B olk = )
Z

u(k —v;) € %, and it is possible to write every BE)(k) in the form BENk) =
= S’/k’ where this series is absolutely convergent, % is an integer and (pf‘} eC.
Let (p‘., q;) be the pair at the i-th place in (17).
Assumption 2. Let p, > p,.; and |i,| > |4, .| O
Putforj=12,3;s=1,2
YO(7) = (00 7300 - ¥icald)) »
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where y{)(j) € X have the form

w2 el(t) 2 e o)
(40 Y1) = A sy,
) k ( ) 4 j=Xn‘(s) k] Pidg.
’ s d ~ny x e:t ¢(s) e
(40) W) = Z&;(zx”fi%%q,
n=¢+1 J=u(s) k
(407) veG) = al

Therefore, if we put
N = (N, NS, .. NE)
then
NGk = Yl + 302) + 1200) -

Lemma 7. Let the assumptions 1 and 2 be fulfilled and let k, be the integer from
Theorem 1. Then for every pair s, i, where s = 1,2; i = 1,2, ..., 0 there exist
a constant © % 0, an integer ¥, a vector v® and a sequence {z“’(k),k o © X
such that for all k = ko

(1) N = EPR 200 + 20(k)
and the equality
(“2) Tim 20 (k) (75,0) = 0
holds.

The vectors v, ..., v are linearly independent. []

The proof fol]ows Jmmedlately from (40)—(40") and from the structure of the
spectrum of the operator T.

Theorem 2. Let assumptions 1 and 2 be valid. Then there exist a complex number
C,. an integer x and a function ¢ such that

(43) det U, = k" [,1 S (Cp + o(k))
and
lim @(k) = 0.

If MV = MP, then C, > 0.
Proof. Lemma 5 implies that det U, = det (N’ @ N{"). From Lemma 7 we

obtain
(N(Z) @ N(l)). ;=
(C(I))uk ky:(l) (1) + z(l)(k) 6(2)}"‘ k)';‘z’ (2) + 2(2)(16)) —

PR R o) + 0,06,

Pi"py

where lim w; j(k) = 0. The rest is obvious. []

ko0
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Remark. If the permutations in (36) are not identity matrices then in (43) C, =
= C,(k) and |C (k)| is a constant.

4. CONVERGENCE OF %)

In [1] we have shown that the vector a* = (a”, af®, ..., )7 is a solution of
(15). The matrix S, is defined by (14).

Assumption 3. Let

(44) Yi;=1
j=1
hold for some integer 1€ <1, 7). [

Let us remark that use the notation described in Section 1. Let G, be the matrix
formed by the first I rows of the matrix

(c(k — my), c(k — my), ..., e(k — m,))
and
let there exist an integer k, such that

(45) detG, + 0
for all k = k.

The assumption (45) is fulfilled for a special choice of integers mg, my, ..., m,
which will be shown in Theorems 3 and 3'. In the other cases, analogously to Lemma 6,
either det G, = 0 for all k or there exists an integer k, such that detG, % O for
all k = k.

In the following investigation let k = k, hold.

Put
(46) gZ(Z» Zyyeeny 21) = zM + lem,—m, + ... + 2z,
(47) 91z 21 -0 7)) = 2Mgy(2, 24, z)).

Forj=1,2,...,7 and i = 1,2 define mappings 4}’ : C'** - CY in the following
way: .

- ~
[0 Vg(z, zy, ..., 21)
9zti— D

ij—2
07D (2, 2y, ..., 7))
§z4i=2)

APz, zy5 0y 7)) =

gi(z> Zia sy Zl)
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Lemma 8. If (45) holds, then the system of I linear algebraic equations

2 .
(48) APy 2y, 250000 2) =0(i); s=1,2,..,1
has exactly one solution for the unknowns z,, z,, .

e 2

Proof. The set of all solutions of the system (48) coincides with the set of solutions
of the system

(49) AV 24,2950 2) =0O(iy); s=1,...,1.

But the system (49) is equivalent to

(50) G,. (Zn e, z,)-r = —(WI(k)> sy W;r(k))T +0,
where

1) wi(k) = ((l : 1) % (is k 2) * /v;>T

fors = 1,2, ..., 7. The rest is obvious. []
Let us denote the solution of (48) by (b4, b, ..., b,)T. It is independent of k.

Theorem 3. If m; = i for all i = 1,...,1 then det G, * 0 for all k = max (i,—) +
+ m; and the equality

(z=A)' (=) (z=A) =2+ b2  + ...+ b_yz+ b
holds forallz € C,i.e. by, b,, ..., b, are the coefficients of the polynomial
(z = )" (z = A)% ... (z — A"~

Proof. Similarly as in the proof of Lemma 4 in [1] we could show that det G + 0
and therefore the system (50) has exactly one solution (b, b,, ..., b,)T. If we put

U(z) =2+ b2t + ... + b7}

then Lemma 8 yields U@~ "(1,) = 0 for all pairs (p, q) which lie at the first I places
in the sequence (17), and therefore the polynomial (z — ;)" (z — 43)"...(z — A)"
divides the polynomial U(z). The assertion of Theorem 3 is now clear.

Analogously it is possible to prove the following theorem.

Theorem 3. If m; = inVi = 1, ..., I, where n is a positive integer and A3, A3, ..., A,

are mutually different then there exists an integer k' such that det G, % 0 for all
k= k' and

=)t Ez-B) =) =2 +b2 .+ b
holds for all z € C.
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For the only solution (by, b,, ..., b,)" of the system (48) we have that the projection
of the vector
M+ Dyl + Dol + oo + Dy,
on the subspace generated by the vectors {uj,.}j= 1,...c is the nullvector. Analogously
i=1,..,i;
to what was proved in [5] we may expect that the coefficients of the polynomial
P(z) = Py(z)[P,(1), where

Py(z) = 2™ 4+ by2™ ™ + 4 by 2" 4 by,

will be the desired limits of a{*’ for k — co, which we prove in the sequel.

Assumption 4. Let P,(1) £ 0. O
Let us define

(53) P(z) = Py(2)[Py(1) = 6oz™ + ;2™ ™™ + ...+ 0 2" 0

(54) 6 = (00,04 ...,0)7,
(55) S0 = (Yk,o, Vie,ts o+ Y,1-15 1)T = 7(1)(’\‘) s
(56) y(k) = yO(k) — e/ y(1 + 1)

From (55) and (56) we have

Swo = y(k) + ey (I + 1)
or
o =S e (I+1)+ S " yk)
and hence (see 15))
(57) a® = ¢ — 5! (k) -

Lemma 9. Let (45) hold for all k = k. Then for every integer se€<0,1 — 1)
there exist an integer %, and sequences of functions {I'(k)};%\, such that

< 4+

and
(58) Vs = Ty(k) K252,
for all k = k,.

Proof. From the form of 6,7, and the inequalities (8) we obtain
(59) S = k™A x(k)

where v, is an integer and lim sup [x,k)| < oo. Now we calculate
. k— o0
1
Y o t—m, = V(c(k), c(k — m,), ..., c(k — m,)) e + w(k),
i=0
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where w(k)e £, .- The first | components of the vector

(c(k), ek = my), ..., e(k — m))) o
equal zero. Therefore

1
(60) 'Zoo-irlk—m,- = kv}“’:+1 y(k) »

where for vectors y(k) we analogously have
lim sup || y(k)| < oo .
k-

The rest is obvious. [
Let Sf denote the adjoint of S, and let S = (S£(i. j))i ;L . It is easy to see from
(13), (14), (19”), (19”) by using (19) and (19’) that

(61) det Sp(i, j) = det (Ly 4(j) ® L, ,(i)) = det R(j, i)
and
(61') det S, = det R, .

In the next part we shall express the elements of the matrix S; ' in a form that will
enable us to easily obtain an estimate for the components of the vector S; ' y(k).
All our considerations are based on the statement of Theorem 2. We shall write the
formulas for detS, and det Sp(i,j) using Theorem 2, thus easily obtaining an
expression for the elements of the inverse matrix Sy '. The proofs of Lemma 10 and
Lemma 11 immediately follow from Theorem 2; in the proof of Lemma 10 we, more-
over, use the relation (61').

Lemma 10. Let |1, > Hrﬂl and let the matrix formed by the first | rows of Ji
be nonsingular for all k = k.
Then there exist an integer %, a positive constant D nad a sequence of real
Sunctions {¢(k)}i%y, such that lim ¢(k) = 0 and
k— 0

T

det S, = k* T [A]** (D + o(k))

=1
forallk 2 ky. O
We have defined a vector g(k) e C' by the formula (20). Let (g(1)); denote the i-th
component of g(1). Let 7 be the set of all integers i < [ satisfying

()] = |(8())] = |2

For every pair i,j, i =1,...1; j=1,...,1 + 1 the following assertion is valid.

Lemma 11. Let the assumptions from Lemma 10 be valid and let the matrix
formed by the first 1 rows of Ji «(j) and J, x(i) except the i,(j)-th and i,(i)-th row,
respectively, where iy(j)e 7 and iy(i)e I be nonsigular for all k = ko. Then
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there exist an integer »;;, a complex number D;; and a function @:(k) such that

ijs
lim (pij(k) =0
k— oo

and

1—[ IASIZHS
det Sp(i, j) = K™ S:lﬁ (Di; + @iky- O

T

Lemma 12. Let the assumptions from Lemma 10 and Lemma 11 be fulfilled.
Then the element of the matrix Sg ' in an (i, j)-position has the form

(63) A (K)]| e

where y;; is an integer and lim Aij(k) = /D D and D; being the constants from
Lemma 10 and Lemma 11.%7®

Moreover, the m-th component of the vector S; " y(k) has the form

-
(63/) Z k)ts+Xms 'Qm 3(k) (’1 )“H-i) ,

s=1 r

where the integer x has been defined by (58) and
lim sup |, (k)| < o
k- oo

foralls=1,...,1—1. [

Proof. From the form of det S, and det SA (i, _]) it is easy to see that the quotlent
det S{(i, j)/det S, has the form (63). Together,

_Diy+ ek
Y D4 ogk)

D >0 and limg;(k)=1lime(k)=0.
k— o0 k— o

This implies that there exists an integer m such that D + (p(k) £ 0 for all k =z m
and, for this k, Aij(k) has the above described form. For k < m we define Aij(k)
so that the expression (63) gives us the element of the matrix S; ' in the position (i, j)-
From the form of the elements of S; * and y(k) we immediately conclude that S; * 7(k)
has the form (63'). The rest is obvious.

Theorem 4. Let the assumptions from Lemma 11 be fulfilled. Let P be the poly-
nomial defined by (53). If

l'llj‘r-(- ll < lj,1|2
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then
lim o

k=0

=0’i

fori=0,1,..., 1, where o; are the coefficients of the polynomial P.

Proof. For I > 1 the result follows from the previous lemma, for I = 1 we obtain
it by a straightforward calculation.

5. RATE OF CONVERGENCE OF THE EXTRAPOLATED METHOD

From (2) we have obtained a convergent sequence {x, 5% . Let us define a sequence
{J%};;nn by

k
yy =

X + a(lk)xk_ml + ...+ oc(,")xk —my

Theorem 5. Let the assumptions from the previous section, i.e. (44),(45), as well
as those from Lemma 10 and Lemma 11 be fulfilled. We suppose that for some
r,edl, lnﬂl holds. Further, if llsl = V‘l! forsell,r>
then let i, > i, Moreover, let

2-p
j'1 At+l

(69 -

<1 forsome p=1.

Then there exists an integer ko such that ¢, & 0 for all k = k, and

(65) tim X =0l g

ke | X% — x,]|”
Proof. According to (18) we have

.(66) [x* = x| = & = H 'y, =

r iy
=y ( k >/1’}H‘lvﬁ + H ' o(k) = < k 1) A’;(H_lvm + w(k)),
= i i —

-1
where the assumptions of Theorem 5 imply that hm w(k) = 0 and there exists ko

such that ¢, =+ O for all k = k,.
Let us calculate

1 ]
X =gy = X = TP, = o = ¥ =
i=0 i=o
1 ) 1 1 .
= H_I.Z,)O(E )’1k—m.~ = H_l{.Zoo'ink-mi +_ZO(°Ci - ‘7;') ’7k—m.-} .
i= i= i=
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From (61), (63) and (18) we have

Ix* = wil < ’”vljrﬂlk Iyl - [HY] +

where lim sup ||y(k)| < o and lim sup ”Q,-,s(k)” < oo for all i, s.
k= o0 k= o

This estimate together with (64) and (65) immediately yields (65).
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Souhrn

KONVERGENCE EXTRAPOLACNICH KOEFICIENTU

JAN ZitkO

Necht
(1) Xeer1 =Tx, + b

je iteracni proces na feSeni operdtorové rovnice x = Tx + b v Hilbertové prostoru X,
kde b je dany prvek z X a Te[X]. BudiZ x, € X a sestrojme posloupnost {x,}i%
podle (1) a piedpoklddejme, 7e tato posloupnost konverguje k x* = Tx* + b.
Necht I > 1, k, mg, my, ..., m; jsou celd Cisla spliiujici nerovnosti

my>m_;>...>my>my=0, k>m.
V préci [1] jsme sestrojili &isla of*, i = 0, 1, ..., I takovd, Ze pro vektor

k k
Ve = 0% + 0%y + o+ X,
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se minimalizovala vhodné zvolend norma rozdilu x* — y,. Normu je mozné volit tak,
aby konstrukci ¢isel o, které nazveme extrapolanimi koeficienty, bylo moZno
realizovat.
V této prdci je spocitdna limita &isel ot v obecném ptipadé€. Pro ilustraci uvedme
specidlni ptipad. Necht |4,| = ... = |4, 4; # 1, pfiemZ Ay, ..., A, jsou pdly rezol-
.

venty R(4, T) s ndsobnostmi postupng iy, ..., i,, kde Y i; = I. PoloZme m; = i V,
ji=1

P(Z) = (Z - 21)i‘ (z - Az)iz ez = l,)i‘ R
P(z) = p(z)[p(1) = 6oz + 032" ' + ... + ;.
Pak lim 2{" = ¢, Vi. (Podrobngji viz Theorem 5). Na zdklad& toho je ukdzdno, Ze

k=@

existuje p = 1 tak, ze

lim (| = il = ) = 0.
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