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SVAZEK 29 (1984) APLIKACE MATEMATIKY ČlSLO 6 

ON IRROTATIONAL FLOWS THROUGH CASCADES 
OF PROFILES IN A LAYER OF VARIABLE THICKNESS 

MlLOSLAV FEISTAUER 

(Received December 20, 1983) 

INTRODUCTION 
In this paper we deal with the study of flows in blade rows, which is one of the most 

important subjects in the theory of blade machines (i.e. turbines, compressors, 
pumps etc). Fig. 1 gives a simplified view of a part of a blade machine. It consists 
of a certain number of blades, periodically spaced round an axis of symmetry. These 
blades form the so-called blade row which is inserted into an axially symmetric 
channel. 

Fig. 1. 
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Very complicated (three-dimensional, non-stationary, rotational, turbulent) flows 
in blade rows are studied with the use of simplified boundary value problems. We can 
mention the widely used model of plane, irrotational, incompressible, non-viscous 
flows through cascades of profiles, represented e.g. by the well-known Martensen 
method ([22]). Significant results were also obtained by Polasek, Vlasek and other 
authors ([25, 33, 15, 16]). This model can be successfully applied if the walls of the 
channel, into which the blades are inserted, do not differ too much from con­
centric cylindrical surfaces. 

Here we shall present new results concerning the more complex model of flows 
through cascades of profiles in a layer of variable thickness. This model takes account 
of the three-dimensional character of the stream field in a better way and can be used 
for the study of flows in blade rows inserted into channels with walls considerably 
differing from cylindrical surfaces. 

A series of papers ([1,4, 14, 17, 21, 26, 27, 30, 34]) is devoted to the study of 
irrotational, incompressible, non-viscous flows through cascades of profiles in a layer 
of variable thickness. The authors tried to apply the singularity method and the 
method of integral equations (used successfully by Martensen in [22] for the solution 
of plane flows) via a convenient iterative process. 

In this paper we investigate general incompressible and also subsonic compressible, 
irrotational, non-viscous flows through cascades of profiles in a layer of variable 
thickness under complex boundary conditions. We introduce the stream function 
formulation of several boundary value problems that represent adequate two-
dimensional models of stream fields in blade rows, and present a detailed analysis 
of their solvability. 

1. FORMULATION OF FLOWS THROUGH CASCADES OF PROFILES 

1.1. Geometry of the blade row and the cascade of profiles 

Let us denote by Rm an m-dimensional Euclidean space. If A c Bm, then A and 
dA denote the closure and the boundary of the set A, respectively. In the space R3 

we shall use cylindrical coordinates z, r, s (z-axial, r-radial, £-angular coordinates, 
z G JR1? r e <0, + oo), e e Rt). If A c Rm is an open set and k ^ 0 is an integer, 
then Ck(A) (C*(A)) is the space of all functions that have continuous k-th order 
derivatives in A (in A). 

Let QM c R2 be a bounded domain lying in the upper half-plane (z, r), r > 0. 
The boundary dQM consists of arcs Lu L2, F/? F0, as is drawn in Fig. 2. By rotating 
the domain QM round the axis z we get a three-dimensional axially symmetric channel. 
We denote it by Q3. The rotation of Lt (i — 1, 2), Ff and F0 round the axis z gives 
the walls of the channel Q3, the inlet (through which the fluid enters the channel) 
and the outlet (through which the fluid flows out from the channel), respectively. 

Let us consider a blade row inserted into the channel .Q3, formed by N blades 
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periodically spaced in the direction s (see Fig. 1). Our aim is to approximate compli­
cated three-dimensional stream fields in this blade row by a simplified model of flows 
past the blades in the space between two axially symmetric surfaces. 
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Fig. 2. 

We start from the assumption that we have already calculated an axially sym­
metric flow in the channel Q3 (without blades) and have obtained a family of axially 
symmetric stream surfaces. Let us consider two close surfaces £f u £f 2 from this 
family, represented in the meridional cross-section QM by the curves Sx and S2 

(see Fig. 2). The space between these surfaces is called a layer of variable thickness. 
Its geometry is determined by two quantities: h — the distance of points lying on Sf-± 
from y 2 measured in the direction normal to 9*x and r — the distance of these 
points from the axis of symmetry z. In a special case, when r = const, on £f x and 
hence 9\ is a cylindrical surface, h is the so-called axial-velocity-ratio (abbr. AVR) 
factor (cf. [34]). 

It is obvious that h and r can be considered as functions dependent on the length s 
of the arc measured on the curve St from its intersection with rr to the point in con­
sideration lying on Si- Under the assumption that r = r(s) is continuous and r > 0 
let us introduce a coordinate system xu x2 on the surface S?l9 defined by the relations 

( i . i ) * i = r(0) 
• кo 

, x2 = r(0) є 

(x, є <d., đ2} , d, = 0 , d2 = r(0) ľV~»({) dś , 

s- = length of S 1 ? x 2
 G -^i) a n d express h and r as functions of xt: h = ^(xt), r 

= r(x-), Xi e(dud2}. 
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If we transform the surface SS\ and its intersections with the blades into the (xu x2)-

plane, we get a two-dimensional domain Q (shown in Fig. 3). The boundary dQ of Q 

is formed by two straight lines 

(1.2) Kt = {(xu x2); xx = di9 x2 є KJ , i = 1, 2 

г 

V TL 

inlet K 

Fig. 3. 

and by an infinite number of disjoint Jordan curves Ck, k = 0, ± 1 , ±2, ..., periodi­

cally spaced in the direction x2 with the period T = 2% r(0)/N. The curves Q a r e given 

by the intersections of the blades with the surface Sf x and form the so-called cascade 

of profiles. The lines Kx and K2 are called the inlet and the outlet of the cascade, 

since they represent the intersections of the surface Sf\ with the inlet and outlet 

of the channel Q3, respectively. 

The profile Ck is obtained by moving C0 in the direction x 2 by kT: 

(1.3) Ck = {(*!, x2 + kx) ; (xu x2) є C0} 
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Hence, the domain Q is periodic in the direction x2 with the period T. It means that 

(1.4) (xu x2) e Q o (xu x2 + T) e Q . 

We shall consider the following assumption concerning the profiles Ck: 

A s s u m p t i o n (Al) . The profile C0 (and hence Q , k = + 1 , ± 2 , . . . ) is a piece-
wise smooth Jordan curve and the angles between neighbouring smooth parts of C0 

lie in the open interval (0, 2n). • 

1.2. Equations describing the flows in a layer of variable thickness 

In order to obtain a simplified two-dimensional model approximating the flows 
in the space between the surfaces Sfu Sf2, we assume: 

1) The surfaces Sf u Sf2 are impermeable. 
2) Sfu Sf2 are "close enough" so that we can assume that the quantities describing 

the flow in the layer between Sf\ and Sf2 are constant in the direction normal to Sf x. 
3) The blade row is not moving, blades are fixed and the flow is stationary. 
4) The fluid is non-viscous, 
5) The flow is irrotational. 
6) Outer volume forces are neglected. 
7) If the fluid is compressible, then the flow is subsonic and isentropic. 

The system of equations describing the flow considered under the above assump­
tions consists of the equation of continuity, condition of the irrotational flow and 
the equation for density: 

(1.5) £ i - (r{Xl) h(Xl) Q(X) V£X)) = 0 , 
j= i dxt 

(1.6) ^fo1) Pl(*)) - dlK*-)*^*)) = 0 9 
dx2 dx± 

(1.7) a) Q(X) = Q0 , 

if the fluid is incompressible, 

u\ ( \ A x - I v ^ + vKxW^^ 

if the fluid is compressible. 

Here, we consider x = (xux2)eQ and use the following notation: Q — density 
of the fluid, vt — velocity component in the direction xt (i = 1, 2), v = (vu v2) — 
velocity vector, |v| — absolute value of v, a = ^o^/Oo)^"1 — speed of sound, 
M = \v\\a — Mach number, Q0 > 0, a0 > 0, x > 1 — given constants. The equa­
tions (1.5) —(1.7) were derived e.g. in [21, 32] for incompressible flows and in [11] 
or [12] also in the case of compressible flows. They can be obtained from the general 
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laws of fluid dynamics written in the integral form by neglecting the terms of higher 
orders in h. 

In what follows we assume that 

(1.8) r, h e Cx((du d2}), h, r > 0 in (du d2}. 

With respect to the periodicity of the domain Q we shall assume that the functions 
vl5 v2, O are periodic in the direction x2 with the period T: 

(1.9) vt(xu x2 + T) = Vi(xu x2), l = l , 2 , 

Q(XU X2 + T) = Q(XU x2), 

(xl9 X2) E Q . 

1.3. Stream function 

It is convenient to introduce the so-called stream function \j/ : Q-+ Rt that satis­
fies the relations 

(1-10) ! - • (x) = -r(xt) h(Xl) Q(X) V2(X) , 
Ox! 

— (x) = r(xi) h(x!) O(x) vx(x) 
O"x2 

Vx e (x1? x2) G .Q . 

The existence of the stream function can be proved on the basis of the equation 
(1.5) and the assumption that the blades are impermeable and fixed. From the perio­
dicity conditions (1.9) it follows that 

(1.11) Hxu X2 + ?) = Kxu x2) + Q V(x1? x2) e Q . 

The constant Q is given by the total mass flux per second through the space bounded 
by the surfaces Sfu Sf\ and two neighbouring blades. 

If we substitute the relations (L10) into (V6), we get the equation 

(Li.) £A(i<*.\ = o •„ a. 
i=i dxt \hg dxj 

For an incompressible fluid we have Q = Q0 = const and the equation (1.12) is 
linear and elliptic. 

If the fluid is compressible, the situation is more complicated. From (1.10) and 
(l.7)b)weget 

(1.13) Q = 0o ( 1 - ^ ~ (a0rhQ)-2(^)2\ 

where Vi/' — (dijjjdxu dil/jBx2). 
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We see that the density is an implicit function dependent on x and t] = (Vi/J)2. 
The equation (1.13) is solvable with respect to Q for values of r] from a bounded 
interval only and for these rj there exist two solutions — one corresponding to sub­
sonic and the other to supersonic flows. 

These difficulties can be avoided, if we confine our considerations to subsonic 
flows with Mach number M ^ M*, where M* e (0,1) can be chosen arbitrarily 
close to one. Following the results from [5, 6, 10] we can construct the equation 
of the form 

(1.14) ^ ( % W f ) = 0 inO, 
i=l OXi \ cxj 

with "good" mathematical properties, which describes stream fields with M g M*. 
(The details are contained in [11, 12].) 

1.3.1. The function b is defined in the following way: 

2 / | y 1 
(1.15) a) A = ( > 0 ) , akr = , 9kr = <rkr; 

x - 1 \X + 1/ X + 1 

/M* 2 V A 

b) ff*=(—+ 1J e(<xfcr,l), 

o* = a* - ( J * ( 1 + 1 / A ) G ( 0 , ^ f c r ) ; 

c) if &e<0, S*>, then G(S) e <G*, 1> 

is a (unique) solution of the equation 

d) <r: <0, + oo) -> <G0, 1> K e (0, o-fcr» 

is a function with the following properties: 

(i) & has a Lipschitz continuous k-th order derivative in <0, + oo) (k ^ 1), 

(ii) a | <o, s*> = o-, 
(iii) C T ' ^ 0 in <0, +oo) , 

(iv) there exists a constant 3 ^ 9kr such that &(9) = O0 V3 §: 5; 

e) b(x, v) = (e o ^ x , ) ) - 1 [ffCA-^aoffo K*i) K*i))~2 *0]~1 / 2 

Vx = (xux2)eQ, Vr/ ^ 0 . • 

1.3.2. Remark. A simple example of the extension of the function u from the 
interval <0, #*> onto <0, + oo), convenient for the numerical solution of the problem, 
can be found e.g. in [6]. • 
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If the fluid is incompressible, we put 

(1.16) b = b(x) = — 1 -
Kxi) £o 

and the equation (1A2) can also be written in the form (1.14). 

In the study of boundary value problems for the stream function we shall use 
the following properties of the function b: 

1.3.3. Lemma 1) The function b is continuous in Q x <0, +oo). 

2) There exist constants cuc2 > 0 such that 

(1.17) ct = b = c2 in Q x <0, +oo) . 

3) The function b has continuous derivatives dbjdn and dbjdxt (i = 1, 2) in 
Q x <0, +oo). 

4) There exists fj > 0 such that 

(1.18) — (x,n) = 0 V x e O , Viy = j -
O> 

(I/ the fluid is incompressible, then of course dbjdrj = 0 in Q x <0, + oo).) 

5) There exist constants c3, c4 > 0 such that 

(1.19) 0 = — = c3 in D x <0, + oo) , 

(1.20) 
O^ O77 

= cA ' Vx є Q , V<ř є K! 

6) If ax e K1? x e ;Q, £/i£n t/ze function b(x, a\ + ci;2) £ Of t/ie variable £ is in­
creasing in Ru 

l) b(x1? x2 + x, n) = b(x1? x2, -7) V(xl5 x2) e .Q and V77 = 0 . 

P roo f follows from the relations (V15) e) or (1.16), the assumptions (1.8) and the 
properties (1.15) d) of the function o. • 

1.3.4. Remark. On the basis of the detailed analysis ( [ l l ] ) we can clarify the rela­
tion between the system (1.5) —(1.7) and the equation (1.14): 

1) If 1//: Q —> R1 is a solution of the equation (V14), where the function b is defined 
by (1.16) or (1A5) for incompressible or subsonic compressible flows, respectively, 
then the functions Q, VU V2 given by the relations 

(1.21) a) Q(X) = Qo = [h(Xl) b(x)y1 or Q(X) = [h(Xl) b(x, (V^)2 ( x ) ) ] ' 1 
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in the cases of incompressibility or compressibility, respectively, 

b) Vl(x) = ^—— - ^ (x) , 
r(xx) h(x1)g(x) dx2 

c) v2(x)= T , - M > 
r^Xi) ^(Xx) £>(x) Oxx 

X G £2 , 

form a solution of the equations (1.5), (1.6). If the condition (1.11) is fulfilled, then 
Q, vu v2 satisfy the periodicity conditions (1.9). In the case of incompressible flows, 
(1.7) a) is equivalent to (V21) a). If the fluid is compressible and 

(1.22) (ViA)2 (x) = l[a0Q0 r(xx) h(xt)f S* Vx e Q , 

then the equation (1.7) b) holds and M = M* in Q. 

2) If Q, vu v2 form a solution of (1.5) — (1.7) and if M = M* in fi in the case 
of compressibility, then there exists a stream function xj/ satisfying the relations (1.10). 
This \jj is a solution of the equation (V14) in Q. 

1.4. Boundary conditions 

There exists a series of various boundary conditions that can be added to the 
equation (1.14) in order to characterize the behaviour of the stream fields on the 
boundary. 

We shall denote by n = (nu n2) the unit outer normal to dQ and by djdn the 
derivative in the direction n. 

1.4.1. Conditions on profiles. Since the blades are fixed and impermeable, we have 

(V23) ^\Ck = q0 + kQ, k = 0,±l,±2,..., 

where Q is the given constant from ( l .H). The constant q0 may be unknown. H 

1.4.2. Conditions on the inlet or outlet. Here we have more possibilities. 

a) If the quantity rl\Qv1 | Kt is equal to a given function q>h then we consider the 
condition of the form 

(1-24) ilf(dt9 x2) = W{x2) + qt, x2 E Rt . 

The functions <p{ are x-periodic in Ru !P/(x2) are given by 

(1.25) Vs(x2) = [X2(Pi(0 d{, x2 eRl9 I = 1 ,2 
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and satisfy the conditions 

(1.26) Tt(x2 + T) = Tt(x2) + Q Vx2 e R,, i = 1, 2 

with 

(1.27) Q= ľ? i(É)dí= ľ%2(č) dí . 
J 0 J 0 

The constants qt may be unknown. 

b) If the tangential component of the velocity v2 | Kt is given, then 

(1.28) b(;(VфУ) 
дn 

(dhx2) = - ^ ( x 2 ) , x2eRt, 

i = 1 or i — 2 , 

where nt : K! -> K! is a given T-periodic function. 

c) Sometimes we do not know the distribution of the tangential component 
of the velocity on Ku but we can determine its average value. In this case we have 
the condition 

1 /**2 + T I 

(1.29) b(.,(Щf)f 
дn 

(dьţ)àţ - -ЏІ, x2eRl9 

i = 1 or / = 2 , 

with a given constant pc£ e Rv 

d) The constant Q is determined either by (1.27) or from the given total mass 
flux per second through the space bounded by the surfaces Sf u $f2 and two neigh­
bouring blades. • 

1.4.3. Complementary conditions, a) If the circulation of the velocity round the 
blades is known, then we consider the following conditions with the line integrals 
along the curves Ck: 

(1.30) ľ b(-,(Vф)2)д-^ds= -y, k = 0, ± 1 , ± 2 , .... 
J ck ðn 

y e Rj is a given constant. 

b) Usually, the circulation of the velocity is not known and then we consider 
the so-called trailing conditions which are more suitable from the physical point 
of view (cf. e.g. [7]): 

(1.31) 
ÔП 

(zk) = 0 , k = 0, ± 1 , ± 2 , . . . . 

Here, zk = z 0 + (0, kx) e Ck are given trailing points. 
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1.5. Classical formulation of the problem 

By a convenient choice of the above boundary conditions added to the equation 
(1.14) we get various boundary value problems describing the flows through cascades 
of profiles. We introduce here only several possibilities which seem to be the most 
convenient ones for technical practice. 

I) Let T-periodic functions cpu cp2 : Rx -> Rt satisfying (1.27) be given. Let 
the constant Q and functions Wu W2 be given by (1.27) and (1.25), respectively. 
Then Wu *F2 and Q satisfy (1.26). 

P r o b l e m (PSI. l . l) . Given constants ~u jl2e Ru find i// e C2(Q) and constants 
gi? g2 ~ Ki satisfying the equation (1.14) in Q and the conditions a) ( l .U) , b) (1.23) 
with q0 = 0, c) (1.24) and (1.29) for i = V 2. 

P r o b l e m (PSI. 1.2). Given constants jlu y e Ru find \j/e C2(Q) and constants 
go, gi satisfying (1.14) in Q and the conditions a) ( l .U) , b) (1.23) (with q0 unknown), 
c) (1.24) for i = 1, 2 with qx unknown and q2 = 0, d) (1.29) for i = 1 and e) (1.30). 

P r o b l e m (PSI. 1.3). Given a constant fiieRl and trailing points zk = z0 + 
+ (0, kT) e Ck. Find i// e C2(Q) and constants q0, qx satisfying the equation (1.14) 
and the conditions a) ( l .U) , b) (1.23) (with q0 unknown), c) (1.24) for i = 1,2 
with qx unknown and q2 = 0, d) (1.29) for i = 1 and e) (1.31). • 

II) Given a constant QeRt and T-periodic functions Lf1? Lt2
 : Ki -* Ri* 

P r o b l e m (PSI. 2.1). Find \j/ e C2(Q) satisfying the equation (1-14) in Q and the 
conditions a) ( l .U), b) (1.23) with q0 = 0 and c) (1.28)fOr i = 1,2. • 

2. SOLVABILITY OF THE PROBLEM (PSI. 1.1) 

Let Qx c Q be a curved strip of the width T in the x2-direction cut from the domain 
Q. Its boundary dQx consists of two components — the inner component formed 
by the profile C0 and the outer component, which is the union Fi U V2 U V U V+-
Here, Ff = {(db x2); x2 e (eh et + T>] cz K. is a segment of the length T, F~ is 
a piecewise linear arc and F+ = {(xu x2 + T); (x l3 x2) e F~}. See Fig. 4. 

The initial points (du ex), (du ex + T) of the arcs F~, F+ belong to K1? their 
terminal points (d2, e2), (d2, e2 + i ) e X 2 and all the other points of these arcs 
are elements of the domain Q. In view of the assumption (A 1) from Section 1.1, 
the boundary dQx is Lipschitz-continuous and it is possible to define the one-dimen­
sional Lebesgue measure on dQx (see [18] or [24]). Let Q* de the bounded domain 
with SQ* = Fj u F2 u F~ u F+. 

Let \jj e C2(Q) be a solution of the equation (1.14). Let us multiply this equation 
by any function v e C™(QX) and integrate over the domain Qx. By the application 
of Green's theorem we get 

(2.1) 0 = f £ -^(b8^-)vdx= f bd~^vds-f bViA.Vvdx. 
jQr^1 dXi\ dXJ J Mr dn JOt 
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Hence, 

(2.2) b Vt/> . Vv dx = j 
J Пr J c o u Г i u Г 2 u Г - u Г + 

uW л 
Ъ — v ás . 

дn 
By a suitable choice of functions v e C 0 0 ^ ) we get variational formulations of the 

particular problems for the stream function. 

(d7,ef<C) 

Fig. 4. 

2.1. Variational formulation of the problem (PSI. 1.1) 

If x = ( x 1 , x 2 ) e R 2 , then we shall use the simplified notation for the point 

(x 1 ? x 2 + T): 

(2.3) xT = (x l 5 x 2 + T) . 

Let us define 

(2.4) 1T% = {v e C™(QX); v | C 0 = 0, v | rt = const for i = l, 2, v(xT) = 

= v(x) VXGF"} . 

If v e i^x, then we denote by vr, the constant value v | Ff. 

Let the function \j/ and constants qu q2 form a solution of the problem (PSI. l . l). 

In (2.2) we shall consider the functions v e "Tt. If we take into account (1.29), (2.4) 

and 

(2.5) f(S)=-f(x), 
on on 

b(x\ (Vij/)2 (x1)) = b(x, (V^)2 (*)), x e f " 
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(obtained from (1.11) and the assertion 7) of Lemma 1.3.3), then for any veir
x 

we get 

"tfiiVfi, 

(2.6) a) ' A d s = 0, 
c0 ðn 

b) f A d s ^ l T І b^ds = 
J r . õn JГ ( дn 

c) Г uW A 
b — vds = — 

г- ôn 

b — v ăs . 
r + дn 

By (2.2) and (2.6) we fìnd out that 

(2.7) b Vф . Vvăx = -тf/í Vve-Tx. 
i = l 

Moreover, \j/ satisfies the conditions 

(2.8) a) xji e C2(QX), b) i/> | C0 = 0 , 

c) ^( x
r ) = i//(x) + Q Vx e F- , 

d) i/> | Ff = Wt + qt, qt = const, i = 1, 2 . 

((2.8) d) means that i//(d,-, x2) = *Fj(x2) + qf for (df, x2) e Ft.) 

The conditions (2.7) and (2.8) a) — d) (with the given constant Q and functions 
Wu W2 satisfying (V26)) form the so-called variational formulation of the problem 
(PSI. 1.1). 

Now, let us assume that \j/ : Qx -> R1 and constants qu q2 form a solution of (2.7), 
(2.8) a) —d). In the following we shall show that with the help of i/> it is possible to 
construct a solution of the problem (PSI. 1.1): 

a) By a suitable choice of v e ir
x such that v | dQx = 0 and by the application 

of Green's theorem we find out that i/> is a solution of the equation (1.14) in Qx. 

b) In virtue of (2.8) c), 

(2.9) ^ (xT) = ^ (x) Vx e F" - ( x \ ..., xs} , 
V ; dt V ' dt W l j 

where d^jdt denotes the derivative of \j/ with respect to the arc F~ and x1, ..., x5 

are all points where F" is not smooth. Now let us consider any veir
x for which 

v | Fi U r2 = 0. Then on the basis of (2.1), (2.2) and (2.7) we find out that (2.6) c) 
holds for these v, which implies the relation 

<-> iH>h(M)>-
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From (2.9), (2.10) and the assertions 6), 7) of Lemma 1.3.3 we get 

(2.11) 5_(X.)=_^_(X) vxer--{x\...,x*}. 
on on 

Hence, since 1// e C2(QX), 

(2.12) V^(xT) = Vi//(x) VxeF" . 

The last two identities imply that (2.6) c) is valid for each v e Yx. 

If we extend the function \j/ from Qx onto the set Q so that the condition (1.11) is 
satisfied, we get a function which belongs to the space C1(Q). Let us denote it by \j/E. 

c) Let us consider any v eir

x such that v | Ft = 1 and v | F2 = 0. If we substitute 
this function into (2.7), use (2.1), (2.2) and (2.6) c), then we have 

L # J 
b — ds = — T/^! , 

r i dn 
which implies that the extended function \j/E satisfies the condition (1.29), i = 1. 
Similarly, we prove also (1.29), i = 2. 

d) In order to show that \j/E (together with qu q2) is a solution of the problem 
(PSI. 1.1), we have to prove that i/J e C2(Q). 

In view of the assumption xj/ e C2(QX), of (2.9) and (2.11), 

(2.13) 

õJźM-дЛ(x) 
ÔЃ{X) ÕЃЏҺ 

ð v ( « • ) • 
õt дn 

- дҶ' (V) = - ð V (x) -
дn дt дn дt 

VxєF" - {x\...,xs} . 

-ђЧ м 
дtдn ' 

If we express the equation (1.14) at any x e T~ \J T+ - {x1,(x1)x, ..., xs,(xs)x} 

with the use of the derivatives in the normal and tangential directions to F~ \J F+, 

we get 

(2.14) 0 = a n ( x , V(A(x)) ^ (x) + 2a 1 2 (x, ViA(x)) - ^ f (x) + 
on ot on 

p2 / 

+ a22(x, Vi/y(x)) - f (x) + a 0 0 (x, V*/l(x)) 
Or 

with a l x > 0. Moreover, a 0(xT, V^(xT)) = ( - 1 ) " " 7 fly(x, V\j/(x)) for i,j = 0, 1,2 

and x e F". This relation, (2.13) and (2.14) immediately give the equality 

(2-15) S ^ ) = r t W Vxer--{x\...,x*}, 
5H Z OV 

which together with the above results already implies that \\iE e C2(Q). 
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Thus we have proved: 

2.1.1 Theorem. The problem (PSI. 1.1) is equivalent to (2.7) and (2.8) a)-d) 
in the following sense: If \jj, qu q2 form a solution of the problem (PSI. 1.1), then 
\l/\Qx,quq2 satisfy (2.7) and (2.8) a)-d). On the other hand, on the basis of 
xjj : Qx -> Rt and qu q2 that solve the problem (2.7), (2.8) a)-d), we can construct 
a solution y/E: Q -> Rt of the problem (PSI. IT) such that \\iE | Qx = \jj. *-

2.L2. Remark. If the solution of (2.7), (2.8) a ) - d ) is unique, then the solution »/l£ 

does not depend on the choice of the strip Qx. To prove this, let us consider two 
strips Qx9 Q'x and the corresponding variational problems with unique solutions 
\jj : Qx —> Rt and \\J' : Qr

x -> Ru respectively. From \\i and \\i' we construct solutions 
\JJE and \\i'E of the problem (PSI. 1.1). In view of Theorem 2.1.1, \j/'E | Qx is also a solu­
tion of the problem (2.7), (2.8) a) —d), considered in the domain Qx. As a consequence 
of the supposed unique solvability of this problem we have \]/'E [ Qx = yj, which 
implies that \J/E = y\f'E. • 

2.2. Weak solutions 

The preceding considerations lead us to the concept of generalized weak solutions 
to our stream function problem. 

First, we introduce some functional spaces. We denote by L2(QX) the space of all 
(equivalent classes of) measurable functions square integrable over Qx. H1(QX) is 
the well-known Sobolev space formed by all v e L2(QX) whose first order distribution 
derivatives belong also to L2(QX). L2(QX) and H1(QX) are Hilbert spaces with scalar 
products 

(216) (U>V)L2ЏÌГ) 

and 

uv áx , u, veL2(Qx) 

(2.11) (u, v)H = (uv + Vu . Vv) dx, u9ve H^Q,), 

which induce the normes 

(2-18) |H|L2(flr) = M i l k ) i n L2(fi0 
and 

(2-19) \\v\\H = (v,vyj2 in H\QZ), 

respectively. 

Since dQx is Lipschitz-continuous, it is possible to define the space L2(dQx) of all 
(equivalent classes of) measurable functions on dQx square integrable over dQx: 

J v2 ds < + oo for v e L2(dQx) . 
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L2(dQx) is equipped with the scalar product 

(2.20) (w, v)L2(dQv) = uvds, u9ve L2(dQx) 
J dQv 

and the norm 

(2'21) HllaW.) = 0>> »)ii(WJ») ' » G L 2 ( ^ ) • 

If a, j8 e ivl9 a < /?, then of course L2((a, ft)) is the space of all (equivalent classes of) 
measurable functions square integrable over the interval (a, p). 

<2)(QX) denotes the set formed by all functions v e ^(Q^ with compact supports 
supp v a Qx. By Hl(Qx) we denote the closure of @(QX) in the topology of the space 

We shall often use the important theorem on traces: 

2.2.1. Theorem. There exists a continuous linear mapping 9 : HX(QX) -> L2(dQx) 
such that 9u = u | dQxfor every u e C°°(.Or). Hence, 

(2.21) HI-**-,) = MMIU VueH1^) 

with a constant ke independent of u. • 

In the following we shall write 6u = u J dQx for u e H1^). The space HQ(QT) 
can be characterized as 

(2.22) Hl(Qx) = {UE H\QX); u \ dQx = 0} . 

(Cf. [13, 18, 24].) 

2.2.2. Lemma. Let the functions cpu i = 1, 2,/rOm 1.4.2. a) be T-periodic in Ru 

satisfy the condition (1.27) and let cp | (0, T) e L2((0, T)). Then there exists ^* G 
e i / 1 ^ . ) with the following properties: 

(2.23) a) iA*(xT) = i/>*(x) + Q, x e r , 

b) r\Fi = «*,, i = l , 2 , 

c) i/J* | C0 = 0 , 

where 3^ and Q are defined by (1.25) and (1.27), respectively. 

Proof. The function Wt (i = 1, 2) can be written in the form Wt(x2) = (Q/T) X2 + 
+ 9i(x2) (xi e Ki), where ^ is T-periodic in _RX. Moreover, gf is an indefinite integral 
of the function f}t = <pt - Q/T : Kt -> Ru Pi | (0, T) e L2((0, T)). Let us consider 
the infinitely differentiable transformation 

(2.24) (x l5 x2) -> (x1? x2) - F(xu x2) = (F l vx l 9 x2), F2(xl5 x2)) = 

= (exp (Inxxlz) cos (2TTX2/T), exp (IKXJT) sin (2TTX2/T)) , 
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T-periodic in the direction x2, which maps the strip & = {(xl9 x2); d1 < xt < dl9 

x2 e Rt] onto the domain F(&) = {(xl9 x2); exp (ind^x) < [](x\ + x\) < 
< zxp(27id2jx)}. The boundary dF(0) is infinitely differentiable, since it is formed 
by the disjoint circle lines K; = F(Kt)9 i = 1, 2 (K^ are straight lines defined by (1.2)). 

The inverse F_t = ((F-t)l9 (F- i)2) to F can be considered as an infinitely valued 
analytic function. Let us put gt = gt° ((P-O2 | ^ ; ) : &t -* Ri (i = 1, 2). From the 
properties of gt and F it follows that gt is a single-valued function which can be 
written as an indefinite integral along Kt of a function j5f e L2(Kt). If we define 
g : dF(0) —> Rx by the relations g [ Kt- = #f, i = 1, 2, then according to [23] there 
exists £ e H\F(^)) such that £ \ 3F(0) = g. Hence, £ | Kt = gf, i = 1, 2. 

Now let us put $ = $ oF. We see that <f is T-periodic in the direction x2 and 
S(di9 x2) = gi(x2)9 x2 e Rl9 i = 1, 2. Since F | Q* is a one-to-one mapping of the 
domain ;Q* onto Q = F(0>) - F(F~), F e C°°(.Q*) and the Jacobian determinant 
|(DF/Dx)(x)| 4= Ofor all x e Q*,the restriction F | Q* and its inverse are Lipschitz-
continuous. It is evident that $ e HX(Q). By the direct application of results from 
[24] (Ch. 2, § 3, page 66) we find out that 8 j Qx e H\QX). 

Further, it is easy to see that there exists S e C™^) such that & = 1 in a neigh­
bourhood of the outer component of dQx9 formed by the union Fx \J F2 \J F~ \J F+, 
and 9 = 0 in a neighbourhood of C0. If we put 

(2.25) \j/*(xux2) = I — x2 + S(xl9 x2)\B(xl9x2)9 (xl9x2)eQx9 

then \jj* is the sought function with the properties (2.23) a) —c). • 

2.2.3. Remark. We can prove even a stronger result. In virtue of the properties 
of g, we have g e W\(dF(0>)) (cf. e.g. [18] or [24]). This and the results from [18], 
Ch. 8 imply the existence of 

S e W\ + 1/2(F(0>)) (dH\F(^)) f| C(F(9>))) 

such that $ I SF(9) = g. Now it is possible to show that £ = S o F e W\ + 1/2(Q*) 
and thus, the function \j/* defined in Qx by (2.25) satisfies the conditions (2.23) a) — c) 
and \jj* e W1

2
 + 1/2(QX). (For the complete proof, see Appendix.) • 

Next, in H1(QX) we define a subspace V(QX) by 

(2.26) V(QX) = {ve H\Qx)-9 v\Ft = const, i = 1, 2, v \ C0 = 0, v(x*) = v(x) 

for almost every x e F~} . 

(The concept "almost every x e F ~ " is considered here in the sense of the one-
dimensional Lebesgue measure on dQx.) 

2.2.4. Lemma. 1) fTx c V(QX). 2) V(QX) is a closed subspace ofHx(Q\ 
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Proof. 1) Assertion 1) is evident. 2) We want to prove that the closure V(QX) 
of the space V(Qt) in the topology of Hx(Qt) is V(QX). If v e V(Qt), then there exist 
vn e V(QX), n = 1,2,..., such that vn -> v in H1^), if n -> + oo. Let us prove that 
v e V(QX). 

From Theorem 2.2.1 on traces we get 

(2.27) lira f \vn - v\2 ds = 0 
«-+ + «> Ja« T 

and thus, 

\vn — ^|2 ds -> 0 , \vn — v|2 ds -> 0 for n -> + oo . 
J Co J T. 

This and the definition of the space V(f2T) imply that v | C0 = 0 and v | _Tf = 
= const = lim vnr. (here vnr. = v„ \ Tt = const), i = 1, 2. Next, by (2.27) we have 

n-> + oo 

0 £ ( f |t>(V) - t<x)|2 d s ) ' ' ' = ( f l^x1) - ».(**) + ,„(x) - .(x)l2 d s ) ' 7 ' 22 

52 ( f |t>(x<) - »„(x<)|2 d s ) 1 " + ( j* |i»(x) - ,„(x)|2 d s ) ' ' ' = 

(Í, |2ds\ + ([ |г;-t;„|2ds( й 

^ 2 ( \vn — v\2 ds ) -> 0 for n -> + oo . 

This yields v(xT) = v(x) for almost every x e F~. If we summarize our results, we 
see that v e V(QX). • 

For u e H1(QX) we put 

(2.28) | | ti | |F = (l (Vu) 2 dxj . 

2.2.5. Lemma. The function \\*\\v *s a norm in the space V(Qt), equivalent to the 
norm || • | |H. It means that there exist constant c5, c6 > 0 such that 

c 5 | |u | j F <£ | | M |H = e6||w||K Vu e V(QX) . 

Proof. Since the one-dimensional measure of C0 (defined on dQx) is positive and 
v | C0 = 0 for each v e V(QX), this lemma is a consequence of the well-known Frid-
richs inequality. (Cf. [18,24, 28].) • 

By V*(Qt) we denote the dual to the space V(QX) (i.e. the space of all continuous 
linear functional defined on V(QX)). lffeV*(Qt), v e V(QX), then </, v> denotes 
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the value of the functional/ at the point v. The norm of/ in V*(.QT) is defined by the 
relation 

(2.29) | / | K . = sup |< / ,p> | . 
veV(Qx) 
\\v\\v = l 

2.2.6. Lemma. V(QX) is a Hilbert space, whose norm is induced by the scalar 
product 

(2.30) (u, v)y = Vu . Vv dx , u, v e V(QX). 
J fir 

If f eV*(Qx), then there exists exactly one cp eV(Qx) such that 

(2.31) (fv} = ((p,v)v VveV(Qx). 

(Cf. e.g. [13, 20].) • 

Let us remark that the functions "u, v -> (u, v)"v and"u -> | |M||K" a r e a^ s o defined 
for u,veH1(QT). However, | | - | F is only a seminorm on H1^). In the following 
considerations it will be more convenient to work with the norm | • ||K in the space 
V(Qr) instead of the norm |[ * ||H. 

Now, let us define the form a : H\QX) x H^Q,) -> Rt: 

(2.32) a(\l/9 v)=[ b(% (Vi//)2) V^ . Vv dx , \j/,ve Hl(Qx) 
J Qr 

and the function \i : V(QX) -> Rx: 

(2.33) fi(v)= - T E W P veV(Qx). 

From the continuity and boundedness of the function b (see Lemma 1.3.3) it follows 

that for any \j/,ve H1(QX) the finite integral in (2.32) exists. 

Main properties of a and fi: 

2.2.7. Theorem, l) If \jj e H1(QX), then the mapping "v e V(QX) -> a(ij/, v) e Rt" 
represents a continuous linear functional defined on V(QX). It means that we can 
write 

(2.34) aty, v) = <^(iA), v> , i/> e H1^), v e V(Qt), 

where s/fy) e V*(QX). Hence, s/ : Hl(Qt) -> V*(0T). 

2) The mapping ji : V(QX) -> jRx is a continuous linear functional on V(QX): 

(2.35) {n, v) = ti(v) = - x £ ftfflr,, v e V(QT) . 

3) There exists a constant a > 0 sMch that 

(2.36) O ^ / j - stty2), ^ - ^2> £ ajl^i - <Jr2||* ^u^2eH\Qt), 

«AI - V>2e V(QX). 
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4) There exists a constant K > 0 such that 

(2.37) | < ^ x ) - s/fy2), v)\ S K||^i - *2\v \\v\\v V ^ , ilf2 e H\QX), 

Vv e V(QX) . 

5) Let us put T(u) = stf(y\i* + w)fOr w e V(QX), where y/* e H1(QX) is a function 

with the properties (2.23) a)-c). Then T: V(Qt) -> V*(QX) and 

(2.38) <T(wj) - T(w2), ut - w2> ^ oc\\u1 - w2 | |F Vwl9 w2 e V(QX) 

(Tis strongly monotone in V(QX)), 

(2.39) |<T( W l ) - T(w2), v>| S K\\ut - u2\\v \\v\\v 

Vw1? w2, ve V(QX) . 

Thus, in view of (2.29), 

(2.40) \\T(ui) ~ T(u2)\v, ^ Klu! - u2\v Vwl5 w2 e V(a) 

(T is Lipschitz-continuous in V(QX)). 

6) There exists exactly one mapping M* : V(QT) -> V(&T) defined by the relation 

(2.41) <T(w), v> = (^f(w), v)F Vw, v e V(QX) . 

Next, there exists a uniquely determined ft e V(QX) such that 

(2.42) ^,v} = (fL,v)v VveV(0 T ) . 

The following inequalities hold: 

(2.43) (#?(u\) - #?(u2), u1 - w2)F ^ QL\U1 - u2\v Vw1? w2 e V(lT2T) 

( j f is strongly monotone), 

(2.44) | ^ ( M i ) ~ ^( W 2) | |V .= JS:||MI - w2 | |F Vw1? w2 e V(QX) § 

(«̂ f is Lipschitz-continuous). 

Proof. 1) If i/> e H1^) and v G V(-3T), then (1.17) and the Cauchy inequality yield 

.(•A, »)| = b(-,(Vф)2Vф. Vdx ^ f |b(-,(V^) 2 )ViA.Vv | dx^ 
Jr3r 

\l/2 / f \l/2 
( V ^ ) 2 d x j / (Vv) 2 dx) = c 2 | | ^ | F | |v | |F = ^ | | v | | F . 

Moreover, it is evident that a(\jj, v) is linear with respect to v, which proves the 

assertion 1). 
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2) It is easy to see that the function ji is linear. Let us prove its boundedness. 
If v e V(QX), then 

2 2 

Hv)\ = hl^TJ = T E N K I -
Due to the relations 

— - \v\ ds , meas (T;) = T 
m e a s ^ J r , 

(meas (E,) denotes the one-dimensional Lebesgue measure (defined on dQr) of the set 
E,), to Theorem 2.2.1, Lemma 2.2.5 and the Cauchy inequality, we get the estimates 

|v| ds ^ 
õQt 

1/2 

Kf)l = ENf Mds = (N + N) 

^ dliii+i/i2i)ff i d s ) i / 2 ( f ^ d s y 
\JdQn J \J dQx J 

= (\fii\ + |/*2|)(meas(30t))1/2 Hk(*-- ) = 

= (|/*i| + N ) (meas (dQx)y
2 k6c6\\v\\v = fcjtffl-, Vv e K(Ot) . 

Hence, /* e V*(QX). 

3) Let £, I, 9 e R2, h = | - £, x e Qx, t e Rt . 
If we denote 

(2.45) g(t) = b(x9(£ + th)2)(Z + th).S, 

then 

(2.46) a(l) - 0(0) = [>(*, ?2) I - *>(*> ^ ) *] • 9 • 

From the properties of the function A (see Lemma 1.3.3) it follows that in the interval 
<0, 1> the derivative 

(2.47) g'(t) = b(x, (i + thf) h . 9 + 

+ 21* (x, (£ + thf) [({ + th). h] [(£ + .h). 5] 
dr/ 

exists and is finite. 

a) Let us put $ = h. Then in view of (1.17) and (1.19), we have 

g'(t) = cxh
2 V te<0, 1> . 

By the Mean Value Theorem, g(1) - g(Q) = J*o g'(0 d* = c i^ 2 a nd thus, 

(2.48) [b(x, I2) I - b(x, e) f ] • (f - {) ^ c x ( | - £)2 . 
Now, if (/>!, i//2 G H1(QX) (\//1 — i/>2 e V(.Qr)), then from (2.48) we get the inequality 

(2.49) [b(x, (ViAO2 (*)) ViAi(x) - b(x, (V*l>2)
2 (*)) V^2(x)] . 

. (ViAi(x) - Wi//2(x)) = Cl(ViAi(x) - Wf2(x))2 , 
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which holds for almost every x e Qt. (2.49) immediately yields 

<j*tyi) - ^(\jj2), 1A1 - rp2} = 

= f EH'* (V'h)2) V<Ai - K*. ( W ) V^2] . (Vtfr, - V^2) dx £ 

[ V ( ^ i - ^ 2 ) ] 2 d x = c1||^1 - ^ . f l j . l 

which is (2.36) with a = cx. 

b) Let us go back to (2.45) -(2.47), which give 

\[b(x,¥)!i-b(x,e){].9\ = \g(l)-g(0)\z 

g f \g'(t)\ dt ^ f 6(x,(€ + tfc)2) |fc| |S| dt + 
Jo Jo 

+ 2 f* — (x, (f + t/z)2) ({ + th)2 \h\ |S| dt ^ 
Jo ^ 

£ (c2 + 2c4) |h| |9| = K|/i| |a| = K\l - £\ \9\ . 

Hence we already derive the estimate (2.37): If \j/u \j/2 e H1^), v e V(Qt), then for 
almost every x e Qx 

\[b(x, (V^)2 (*)) V^(x) - b(x, (V^)2 (x)) V^2(x)] . V<x)| 

£ K|V^!(x) - VA2(x)| |V<x)|, 
so that 

|<^, ) - s/ty2),v>\ = 
0(-,(W.)2)v^ - K-.(v^)2)vvr2].v»<b 

< 

< K 

^ K i |V^i - Vi/t2| |Vv|dx S 
Jí?r 

f (V î - W dx)1'2 ( f (Wv) = KM/Í - \j/2\\r \\v\\v. 

This completes the proof of (2.37). 
4) The rest of Theorem 2.2.7 is an easy consequence of the assertions 1) —4) 

we have already proved and of Riesz's theorem on the representation of a linear 
functional defined on a Hilbert space (see Lemma 2.2.6). • 

Now, we can introduce the following 

2.2.8. Definition of the weak solution. A function \j/ : Qx -> Rt is called a weak 
solution of the problem (PSI. LI), if 
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(2.50) a) i/t e H\QX), b) ij/ - i/j* e V(QX), 

c) <j/(tfr), v> = </L, v> Vv e 7 ( 0 t ) , 

where \J/* e Hl(:QT) is a function satisfying the conditions (2.23) a) —c). • 

(2.50) a)—c) is a generalized analogue of the variational formulation (2.7), (2.8) a) 
— d). The condition (2.50) a) represents the generalization of the assumption (2.8) a), 
(2.50) b) expresses the conditions (2.8) b) — d) and (2.50) c) is a weak form of (2.7). 

2.2.9. Remark. The problem (2.50) a ) - c ) is formally equivalent to the problem 
(PSI. 1.1) in the following sense: If \jj e C(QX) is a solution of the problem (2.50) 
a ) - c ) , then (since ir

x a V(QX)), \jj obviously satisfies (2.7), (2.8) a ) - d ) with some 
qu q2 and in view of 2.1.1, it induces the so lu t ion^ , qu q2 of the problem (PSI. 1.1). 
On the other hand, if xj/ e C2(Q), quq2eRt form a solution of the problem (PSI. 1.1), 
then, as we have already proved, \jj | Qx satisfies (2.7), (2.8) a) —d). In order to show 
that this function is also a solution of (2.50) a) —c), it is necessary to prove that the 
set yx is dense in V(QX). This property is also important for the numerical solution 
of our problem by the finite element method ([8, 9]). Therefore, we shall prove 
the following: 

2.2A0. Theorem. The set ir
x is dense in the space V(QX). 

Proof of this theorem is based on the partition of unity and on regularization. 

Let us denote by QE the domain whose closure QE is the extension of Qx obtained 

by adding the sets E0, Eu E2, E~, E+ to Qx, as is shown in Fig. 5; F0 ~^ I n t C0*)-

E~ = {(xl9 x2 - d); (xu x2) e F~, 5 e <0, §)} , 

E+ = {(xu x2 + 3); (xu x2) e F + , S e <0, §)} , 

Et = {(dt, x2) - Skt; x2 e (et - §, et + T + §), 3 e <0, §)} , 

Ft = {(d» x2) ~ $ki9 x2 e (et — §, e( + T + §)} , i = 1, 2 . 

Here, kt is a unit vector parallel to F~ and F+ near rt and pointing into Qx (i.e., 
k-. n < 0 on F£, n being the unit outer normal to dQx). § > 0 is sufficiently small 
so that QE 0 Ck = 0 for k = + 1 , +2 , .... We can write dQE = f t (J ^2 U I"~ U 
U F+, as is shown in Fig. 5. 

Further, let Bh i = 0, 1, 2, 3, be open sets such that Et c Bt- for i = 0, 1, 2, 
3 

B. f| B0 = 0 for i = 1, 2, B0 c 0T U £o> -~E c U £.- The sets aB,- f| -~E (i = 1, 2) 
; = o 

nad O"B3 fl -̂ £ — #o a r e straight lines parallel to the axis x2 and intersecting the 
arcs F~, F+ near Fi9 where F~, F+ have the direction kt. § > 0 and B0 are chosen 
in such a way that dist (dB0, F~) and dist (dB0, F+) > §. We shall consider a parti-

*) Int Co is the bounded component of R2 — C0. 
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tion {<Pj}?=0 of unity corresponding to the covering {-BI-}f==0 of the set QE (see [24], 
Ch. 1, §2.4). It means that (pf e C°°(K2), 0 ^ <p,- ^ 1, the support supp <p£ c £ , 

3 

and X ViO*) = 1 for every x e QE. Choosing the sets Bt in the above way and follow-
»=o 

ing the proof concerning the existence of a partition of unity contained in [24], 
we can assume that (pt(x

x) = <pf(x) for all x = (xu x2), xT = (xl9 x2 + t) such that 
x, xx e QE and for i = 0 , . . . , 3. 

Fig. 5. 

ЗBn 

SBo^B^SB^j 

Now, let us consider an arbitrary v e V(Or). In order to prove the assertion of the 
theorem we need to show that 

(2.51) Ve > 0 -vee-rr \\v v*\\v < e . 

We shall proceed in the following way: We denote by vE the extension of v to the 
set QE, defined by 

(2.52) vE\Qt = v, vE | E0 = 0 , vE\Ei = vrt, i = 1, 2 ; 

vE(*u x2) = vE(xu x2 + T) , (x l s x 2) e £~ 

**(*i> *2) = vE(xu x2 - T) , (x l f x2) e E+ . 

(vis extended onto E0, El9 E2 by constants, and "periodically" onto E~, E + .) Accord­
ing to (2.52), vEeHx(QE). 
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Now, we put vj = vE(pi in DE. It is easy to see that 

(2.53) a) vt(x
x) — Vi(x) for x, xx e QE , 

3 

b ) VE = E Vi> 
i = 0 
3 

c) v = £ vt I Qx, 
i = 0 

d) » , £ % ) , 

e) t> . | f l t e7 (G t ) . 

From (2.53) c) it follows that the verification of the condition (2.51) can be converted 
to the proof of the assertion 

(2.54) V a > 0 3v*G^T I k I Qx - v\\\v < - (i = 0, . . . , 3 ) . 
11 4 

a) Let us begin with i = 0. Since v0 | Qt e H0(QT) <= V(QX), there exists a sequence 
K}+=°°i> vl e ^(QT) ( c ^ r ) such that v0 -> v0 in Hl(Qx) (and thus, in V(QT))> w h i c h 

proves (2.54), i = 0. 

b) Now, we consider i = 1 or i = 2. Let us define the function vid(x) = vt(x + O*kf) 
* for all x + OJcf G Q£. It is evident that if 5 e (0, Sx), where O\ > 0 is sufficiently 

small, vi(5 is defined for (almost) every x from a certain neighbourhood XI of Qx, 
vt,d = vrt

 m a neighbourhood of the arc Ff, vi>l5(x
T) = f /5(x) if x, xT G XI, vid = 0 

in neighbourhoods of C0 and Fy if j + i. Moreover, vid | XI G H1(XX), vid \ U d^ > v^| 
XI in H^Xt), which implies that vi>s \ Qx e V(QX) and vitd\Qx-j^*Vi\ Qz in V(Ot). Let 
us choose and fix d > 0 so small that 

(2.55) | ( „ w -vt) | Qt\v<l. 
8 

Next, we apply the regularization process. Let coh be a mollifier, i.e., h > 0, 
\ 

Ixl2 

o)^(x) = exp ' I for Ixl < / i , 
|x|2 - hL 

coh(x) = 0 for |x| ^ h (x G R2) , 

coi(x) dx . 
1*1 <i 

For h > 0 sufficiently small we define 

(2.56) ^i,d,h(x) =-- ^~ih~2 coh(x - y) vi)d(y) dy , x e Qx. 
J | x - y | < / j 

447 



From the properties of vt d mentioned above it follows that vitdh e C°°(.QT), vitdth | C0 = 
= 0, vi)dth 11\ = vrt, vi)dih | Fj = 0 if j #= i, viidJl(x

x) = vw,(x) for all x e F". 
Thus, vitdh e "Tx. According to the results in [24, 29], vidh -> vi><51 Qx in V(QX) if 
ft -» 0 + . If we choose h > 0 so small that 

\\vi,*,h " vt,d | Ot\\v < -
8 

and put v\ = vIj5ft, then (2.55) implies ||v; — vt | Qr\\ < e/4, which we wanted to prove, 

c) Finally, let i = 3. In this case we can define directly 

(2.57) v3th = K~lh~2 wh(x - y) v3(y) dy , x e Qx. " 
J\x-y\^h 

It is easy to verify that for sufficiently small h > 0 we have v3h e C00^), v3j/l | FA (J 
U r2 = 0, v3>ft | C0 = 0 and v3,ft(x

T) = ^ ^ ( x ) for all x e F~, so that v3 h e iTt. 
Moreover, v3fc -> v3 in V(iQt) if h -> 0 + . It means that we have verified (2.54) for 
i = 3, and this completes the proof of Theorem 2.2.10. « 

2.2.11. Remark. Let us notice that from the proof of Theorem 2.210 it follows 
that an arbitrary v e V(QX) can be approximated with a given accuracy £ > 0 by an 
element vE e i^x that is equal to zero in a neighbourhood of C0 and equal to vr. 
in a neighbourhood of Fi. We can also remark that the assertion 2) of Lemma 2.2.4 
is a consequence of Theorem 2.2.10. • 

Now, we come to the study of the solvability of the problem (2.50) a) —c). Let us 
notice that the solution of this problem can be sought in the form \j/ = ^* -f u, 
where ue V(QX). With respect to Theorem 2.2.7 we get the following equivalent 
formulations of this problem: 

(2.50*) <j / ty* + u), v> = {fi, v> Vv e V(QX) , 

(2.50**) <T(ti), v> = </i, v> Vv E V(QX) , 

(2.50***) (jf(w), v)v = (fi, v)v Vv e 7 (0 t ) 

for an unknown function u e V(QX). The last equation can be written as the operator 
equation 

(2.50****) jf(ti) = fi 

in the space V(.Qt) for an unknown u e V(QX). 

23. Existence and uniqueness of the weak solution 

2.3.1. Theorem. Let the following assumptions be satisfied: 1) <pi9 i = 1,2, are 
T-periodic functions in jRl5 <pt | (0, t) e L2((0, T)). 
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2) The functions ^Fh i = 1, 2, and the constant Q are defined by (1.25) and (1.27), 
respectively (and satisfy (1.26)). 

3) fiu fi2e Rt are given constants. Then there exists exactly one weak solution y/ 
Of the problem (PSI. 1.1). This solution does not depend on the choice of the func­
tion t/>* e HX(0T) satisfying the conditions (2.23) a) — c). 

Proof 1) The solvability can be proved on the basis of the monotone operator 
theory ([2], [19], [31]). However, it is not necessary to apply this powerful method. 
If we take into consideration the Hilbert structure of the space V(QX), then the proof 
of the solvability of the equation (2.50****) becomes quite elementary. For the sake 
of completeness of our theory we reproduce here this well-known approach (cf. e.g. 
[3, 13]). 

For v > 0 let us put 

(2.58) Fv(w) = u - v(Jt?(u) - fi), ue V(QX) . 

It is evident that the equation (2.50****) has a solution u e V(QX) if and only if 

(2.59) u = Fv(u) , 

i.e. if and only if u is a fixed point of the mapping Fv : V(QX) -> V(QX). To prove 
the existence and uniqueness of the solution of the equation (2.50****), it is suffi­
cient to verify that Fv is contractive for some v. 

Let u, v e V(QX). Then, using (2.43) and (2.44), we get 

\\Fv(u) - Fv(v)||2 = (Fy(u) - FV(v), FV(u) - Fy(v))v = 

= ||u - v|j2 - 2v(#e(u) - 2tf(v), u - v)v + v2\\^f(u) - 3P(v)\\v ^ 

S (1 - 2va + v2K2) Iti - v||2 

and thus, 

(2.60) \\Fy(u) - Fy(v)\\v S q\\u - v\\v Vu, v e V(QX) 

with q = (1 - 2va + v2K2)1 / 2 . It is easy to find out that 0 < g < l i f 0 < v < 2a/K2 

and Fv is contractive. 
2) We have just proved that the equation (2.50****) has a unique solution u e 

e V(QX), from which we get a solution ij/ = if/* + u of the problem (2.50) a) — c). 
However, since the operator Jf depends on the function \j/*, we have to prove the 
uniqueness of this solution \jj. 

Let \jj*, \l/*2eH1(Qx) be two functions satisfying the conditions (2.23) a) — c). 
Then \jj* — \jj* e V(QX). Let ut e V(QX) be the (unique) solution of the problem 

(2.61), (stty* + uf), v> = {ii, v> Vv e V(QX). 

Then ^ f = \\J* + ut, i = 1, 2, are weak solutions of the problem (PSI. 1.1). Let us 
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substract the equation (2.61)2 from (2.62)!, substitute v = xj/i — \j/2 = \j/* — ij/* + 
+ u! - w2 G V(.QT) and apply (2.36). Then 

0 = (ҖфJ - s/Џ2), фt - 4>г> = aЏ^ - ф 2 
2 II V 

so that l^ i — \\i2\v = 0. Since i/^ — i//2 G V(.QT), we get \J/1 = i/y2. This completes 
the proof of Theorem 2.3.1. -i 

3. VARIATIONAL FORMULATION AND SOLUTION OF THE PROBLEMS 
(PSL 1.2) AND (PSI. 2T) 

Now, we shall proceed more briefly, since the situation is quite analogous as in 
the preceding sections. 

3.1. Problem (PSI. 1.2) 

Let us put 

(2.4*) iTx = {v e C°°(:Qt); v | F2 = 0, v | Ft = const, 

v | C 0 = const, v(xT) = v(x) Vx G F~} . 

Then the problem (PSI. 1.2) is equivalent to the problem of determining a function ^ 
and constants q0i qi satisfying the following conditions: 

(2.7*) I b(; (Vi//)2) Vi/f . Vv dx = -yv I C 0 - z^v \ft Vv e Tt, í b(;(Щ) 
ІSìx 

(2.8*) a) $ e C\QX), 

b) <A | Co = q0, 

c) 1^(x t) = lA(x) + Q, xel~~ , 

d) 4,1 r. = wt I r t + 9l, 
e) 4> I r 2 = T21 r 2 . 

Let i/>* G H 1 ^ ) be a function with the properties (2.23) a) — c), whose existence 
is ensured by Lemma 2.2.2. We define 

(2.26*) V(QX) = {v G H1^); v | F2 = 0, v | Fx = const, 

v | C0 = const, v(xT) = v(x) for almost every x G F~} . 

3.1.1. Lemma. 1) iTx c V(Qt). 2) 7(G t) is a closed subspace of H\QX\ 3) Tx 

is dense in V(Q<)- 4) V(Ot) is a Hilbert space with the norm defined by (2.28). 5) The 
mapping "v e V(QX) -> —yv J C0 — xjil v | FV is a linear continuous functional 
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defined on the space V(QX). Let us denote it by ft, so that 

(2.35*) <ji, v> = - y v | C0 - T/I! v | F! , v e V(QX). 

Proo f of the assertions 1), 2), 4), 5) can be carried out by modifying the proofs 

of the corresponding analogous assertions from Section 2.2. 

Let us prove the assertion 3). If v e V(QX), then v | Tt — vr- = const, v C0 = 

= vCo = const and v | F2 = 0. Let us put w = v — vCo. Then w | C0 = 0, w [ Fx = 

= vr. — vCo = const, w | F2 = — vCo = const. Of course, w(xx) = w(x) for almost 

every xeT~. Hence, we see that w is an element of the space V(QX) defined by 

(2.26) in the preceding section. It means that there exists a sequence { w j ^ with 

elements that belong to the space ir
x defined by (2.4) such that \\wn — w\\v -> 0. 

n-> + oo 

Moreover, in view of Remark 2.2.11, we can assume that wn | F2 = w | F2 = — vCo. 

Therefore, the functions vn = wn + vCo, n = 1,2, ..., satisfy the conditions vne 

e C 0 0 ^ ) , vn | C 0 = const, vn ] Tx = const, vn j F2 = 0, vn(xz) = vn(x) for every 

x e F". This means that vn e ir
x (^def ined by (2.4*)) and \vn — v\\v -> 0. Hence, 

n-> + oo 

the set ir
x is dense in V(QX). Moreover , from the above considerations and Remark 

2.2.11 it follows that ve V(QX) can be approximated with a given accuracy e > 0 

by ve e ^ T that is equal to vCo in a neighbourhood of C 0 . ss 

If we define the form a again by (2.32), then the assertions 1), 3) —6) of Theorem 

2.2.7 remain valid. Under the above notat ion, the problem (PSI. 1.2) is formally 

equivalent to the problem written in the form (2.50) a) — c). 

The solvability results proved in the same way as in 2.3 can be formulated as 

follows: 

3.L2. Theorem. Let us assume that the assumptions 1) —2) of Theorem 2 .3A are 

satisfied. Moreover, let Jxu y e Rx be given constants. Then there exists exactly one 

weak solution \jj oj the problem (PSI. 1.2). This solution is independent of the choice 

of the function t/y* e Hl(Qx) with the properties (2.23) a) — c). 

3A .3 . Remark. Using Green 's theorem we can easily prove that the classical 

problem (PSI. 1.2) can be transformed to the problem (PSI. I T ) , if we put 

(3.1) j u 2 = - / l ! - 7 - . 

However, if we know nothing about the regularity of the weak solutions of these 

problems, we cannot assert the equivalence of their weak formulations. Therefore, 

if we define the numerical solution of our problems by approximating the spaces 

LI1(QX) and V(QX) in the weak formulat ion (2.50) a) — c), we do not recommend to 

solve numerically the problem (PSI. l . l ) (with / i2 given by (3.1)) instead of the 

problem (PSI. 1.2). This is the reason why we study the solvability of each problem 

separately . • 
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3.1.4. Remark. If we consider trailing conditions instead of a given velocity 

circulation round the profiles Ck9 we get the problem (PSL 1.3), which from the 

physical point of view describes the flows round the profiles Ck probably better than 

the problem (PSL 1.2). On the other hand, the mathematical study of the problem 

(PSL 1.3) is more difficult. Because of the discrete trailing conditions, the problem 

(PSL 1.3) has not a variational formulation in a usual sense and it is necessary 

to consider directly the classical solutions. Some results concerning plane incom­

pressible (generally rotational) flows were obtained in [7] on the basis of appro­

priate a priori estimates and the strong maximum principle. • 

3.2. Problem (PSL 2.1.) 

We assume that T-periodic functions fil9 \x2 : Rx -» Rx and a constant QeRx 

are given. Let us denote 

(2.4**) rx = {ve Cco(Qx); v j C 0 = 0, v(xx) = v(x) Vx e F"} . 

The (classical) problem (PSL 2.1) is equivalent to the following variational formula­

tion: To find \j/ : Qx -> Rx such that 

(2.7**) 
Г 2 Г 

b(-9(Vф)2)Vф . Vvdx = - £ џ^ds ҶveГX9 
Qт

 І = = 1 J Г І 

(2.8**) a) $ e C2(QX), 

b) *A | C 0 = 0 , 

c) \\J(XX) = xjj(x) + Q, xeT~ . 

Let \J/* e H1^) be a function satisfying the conditions 

(2.23**) a) i/y* | C 0 - 0 , 

b) ij/*(xx) = \jj*(x) + Q for almost every x e T~. 

The existence of this \jj* is obvious. 

We define 

(2.26**) V(Qt) = {ve Hl(Qx); v \ C 0 = 0 , 

v(xx) = v(x) for almost every x e F~} . 

3.2.1. Lemma. 1) iTx <=. V(QX). 2) V(QX) is a closed subspace of H^Q,). 3) i r

t is 

dense in V(QX). 4) V(QX) is a Hilbert space with the norm defined by (2.28). 5) Let 

Pi | (0, T) e L2((0, T)), 1 = 1,2. Then the mapping 

2 /* 2 pei + x 

"v e V(QX) -> - Y, \ W d s = ~ Z ^(xi) v(dh x2) d x 2 " 
' - O r , ialJet 
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is a linear continuous functional defined on the space V(QX). If we denote it by P-, 
then 

(2.35**) </x, v> = - X [ liffl ds , v e V(0T). 
*"=1 JTx 

Proof. All assertions of this lemma can be verified similarly as in Section 2.2 m 

Under the above notation we can define the weak solution of the problem (PSL 2.1) 
by (2.50) a) —c). On the basis of Theorem 2.2.7, Lemma 3.2.1 and by the same 
argument as in the proof of Theorem 2.3.1, we can prove the solvability also in this 
case: 

3.2.2. Theorem. Let fii:R1-*Rl be given x-periodic functions, \i{ | (0, T) e 
e L2((0, T)) (i = 1, 2) and let Qe Rx be a given constant. Then there exists exactly 
one weak solution XJJ of the problem (PSI. 2.1). This solution does not depend on the 
choice of the function \jj* e HX(Q^ with the properties (2.23**) a), b). • 

4. CONCLUDING REMARKS 

The paper partially solves one of the problems formulated by E. Meister and J. 
Polasek at the conference "Mathematical Methods in Fluid Mechanics" held in 1981 
at Oberwolfach: the study of flows through cascades of blades with variable inlet 
and oulet velocity distributions. 

The theory presented here can be generalized to the problem of flows through 
a group of cascades (e.g. a cascade of profiles with a tandem cascade) and also through 
moving cascades. 

In another paper to appear, special attention will be devoted to flows through 
cascades of profiles with given trailing conditions (i.e. to the problem (PSL 1.3)). 
Survey of the results concerning the numerical solution of the problem by the finite 
element method can be found in [8, 9] . 

In order to complete the solution of the problem formulated by E. Meister and 
J. Polasek, the results of this paper can be generalized to rotational flows. For brief 
information see [8] . 

5. APPENDIX 

Here we show that the function \j/* constructed in the proof of Lemma 2.2.2 is an 
element of the space Wl

2
 + 1/2(Qr). 

onto 

Let us use the symbolF . j to denote the inverse to F | Q*. Both F\Q* : Q* -> Q 
onf> 

and F_! : Q -» Q* are one-to-one mappings, infinitely differentiable, with bounded 
partial derivatives of all orders. Hence, F, F_] and their derivatives are Lipschitz 
continuous. 
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In view of the results from 2.2.2 and 2.2.3, it will do to prove that £ | &* e W\ +1/2(G*) 
(<_? = S o F, i e Wl + 1/2(Q)), which consists in verifying the condition 

(5.1) I = 
т- (*) - т - W 
ÖX; ÖX ř 

»**\J __.* x - y • 
dx I dy < +oo, i = 1, 2 . 

— (*) = __ — ( V ^ - i W ) . ' = 1,2, 
_Xj j=10Xj oxř 

If we use the substitution x = F(x), y = F(y), so that x = F_lvx), y = F-i(y) and 

(5.2) 

we get 

~di(^dFj(r (~ dS(^8Fj(r (^{\\' 
— (*) - 1 (F_ x(x)) - —- (y) r - 2 (P- i(y)) 

__OXj OX J- OX7- OX,: JI (5.3) Z = 

2 г ; 

I 
У=l | Ғ _ _ ( x ) - Ғ . 

Z>Ғ_!(x) 

Z)x 

ÐF-tÍ ) Z>Ғ_!(x) 

Z)x Dx 
dx åў . 

Dx 

In view of the relations (a t + a2)
2 S %a\ + a2) and 

(5.4) D F ^ ) 

it holds 

(5.5) 

where 

(5.6) Ij = 

< const for all x e Q 

I g const YJ IJ , 
1 = i 

дІ (ЛдFJ(- (ЛЛ

 д^(лÔFJ(i7 (~\\ 

тг W~(ғ-iW) - тг-Wт-̂ -̂iW) 
OXj Oxř 

OXj Ox dx dý , 
|F_x(x) - E__00|3 

Further, since the mapping F is Lipschitz-continuos, which means that 

(5.7) 

we have 

[£_-_-] _ |F(x) - f(y)J 
E__(x) - F__( * - Л 

:g const Vx, y e f l , 

(5.8) Ij g const 

— (*) TT1 ( F - .(*)) - — (y) — - (F_ t(y)) 
OXj C-Xj C7X_ OX; 

* - л 
dx dу 
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If we use the inequality 

(5.9) \ab - cd\2 ^ (|a - c\ \b\ + \c\ \b - d\)2 <\ 

g 2(|« - c\2 \b\2 + \c\2 \b - d\2) 

and take into consideration that the mapping F„j and the derivatives dFjdXi are 
Lipschitz-continuous and bounded, we can derive the following estimates: 

(5.10) 

(5.11) 

/ , ^ c o n S t (/; + / ; * ) , 

- 7 -

дŠ , . дІ ґ , 
j г W - z г (У) 
ÕXj ÕXj 

2 дF. 2 

f"(F-i(*)) 
ÕXІ 

|x — Ў 
3 

dx dў ___ 

< const 
~(X)-—(У) 
õxj дxj 

a \x - y\ 
dxdy ^ const | |^ |wv + i/2(ô) < + 0 0 ; 

(5.12) / ; * = 
дxj 

( ) 
dll{F_ÁX))_

dllÍF_liy))\ 
OXi OXi 

x~y 
dxdy g 

S const 

Finally, we shall estimate the integral 

ôx 
00 

Q \x - y 
dx dÿ 

(5.13) li 
\дxj 

(Ӯ) 
dxdy = 

Q \x-y\ 

2 r dx -fl̂ wrfi-̂ -K 
Jo l\dxj I J$\x - y\) 

Let 3 > 0 be arbitrary and fixed. If y e Q, then 

tc *A\ f dx , f dx f dx 

( 5 - 1 4 ) . -—~\ = . - — q + TZ—r, 
Jh \x - y\ JQ-B6(P) \X - y| h*m \x - y| 
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where Bs(y) = {x; \x - y\ g 5}. For x e & - Bs(y) we have |x - y\ k 5 so that 

die . 1 
7 , = - ' (5.15) f j T ^ T i = T m e a s ( S ) • 

J 5 

The integral 

(5.16) / , = r 

can be calculated by introducing the polar coordinates JR, cp with the origine at y. 

We get 

(5.17) J, = f * / T diA dep = 2nd 

and then, in virtue of (5.14) —(5.17), 

(5.18) f — ^ - = fc, -* i meas (fi) + 2TI<5 . 
J f l | ^ - y | $ 

Now let us go back to the integral I*** from (5.13). With respect to (5.18), 

\di 
(5.19) I*** й Һ Г 

Jñ 
„00 dy = fcJl^l^W - M^lk*1*1'2^) < +oo 

From (5.5), (5.10)-(5.13) and (5.19) it finally follows that I< -fee, which we 

wanted to prove. 
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Souhrn 

NEVÍŘIVÉ PROUDĚNÍ PROFILOVÝMI MŘÍŽEMI 
VE VRSTVĚ PROMĚNNÉ TLOUŠŤKY 

MILOSLAV FEISTAUER 

Článek se zabývá studiem nevazkého, nevířivého, podzvukového proudění v lo­
patkových mřížích na osově symetrické proudoploše ve vrstvě proměnné tloušťky. 
Na rozdíl od řady jiných prací věnovaných této problematice a používajících metodu 
singularit a integrálních rovnic zde zavádíme proudovou funkci a formulujeme 
několik okrajových úloh, které představují adekvátní dvourozměrné modely prou­
dových polí v lopatkových kolech. V článku je zaveden pojem slabého řešení a je 
provedeno podrobné vyšetření řešitelnosti uvažovaných problémů. Na výsledky 
obsažené v této práci navážou články věnované numerickému řešení proudění 
lopatkovými mřížemi metodou konečných prvků. 
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