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INTRODUCTION

In this paper we deal with the study of flows in blade rows, which is one of the most
important subjects in the theory of blade machines (i.e. turbines, compressors,
pumps etc.). Fig. 1 gives a simplified view of a part of a blade machine. It consists
of a certain number of blades, periodically spaced round an axis of symmetry. These
blades form the so-called blade row which is inserted into an axially symmetric
channel.
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Very complicated (three-dimensional, non-stationary, rotational, turbulent) flows
in blade rows are studied with the use of simplified boundary value problems. We can
mention the widely used model of plane, irrotational, incompressible, non-viscous
flows through cascades of profiles, represented e.g. by the well-known Martensen
method ([22]). Significant results were also obtained by Poldsek, Vldsek and other
authors ([25, 33, 15, 16]). This model can be successfully applied if the walls of the
channel, into which the blades are inserted, do not differ too much from con-
centric cylindrical surfaces.

Here we shall present new results concerning the more complex model of flows
through cascades of profiles in a layer of variable thickness. This model takes account
of the three-dimensional character of the stream field in a better way and can be used
for the study of flows in blade rows inserted into channels with walls considerably
differing from cylindrical surfaces.

A series of papers ([1,4, 14, 17, 21, 26, 27, 30, 34]) is devoted to the study of
irrotational, incompressible, non-viscous flows through cascades of profiles in a layer
of variable thickness. The authors tried to apply the singularity method and the
method of integral equations (used successfully by Martensen in [22] for the solution
of plane flows) via a convenient iterative process.

In this paper we investigate general incompressible and also subsonic compressible,
irrotational, non-viscous flows through cascades of profiles in a layer of variable
thickness under complex boundary conditions. We introduce the stream function
formulation of several boundary value problems that represent adequate two-
dimensional models of stream fields in blade rows, and present a detailed analysis
of their solvability.

1. FORMULATION OF FLOWS THROUGH CASCADES OF PROFILES

1.1. Geometry of the blade row and the cascade of profiles

Let us denote by R,, an m-dimensional Euclidean space. If 4 = R,,, then 4 and
0A denote the closure and the boundary of the set A, respectively. In the space R,
we shall use cylindrical coordinates z, r, & (z-axial, r-radial, e-angular coordinates,
zeRy, re{0, +®), eeR,). If A = R, is an open set and k = 0 is an integer,
then C¥(4) (C¥(A)) is the space of all functions that have continuous k-th order
derivatives in A (in A).

Let Q,, = R, be a bounded domain lying in the upper half-plane (z, r), r > 0.
The boundary 09,, consists of arcs L, L,, I'y, Iy, as is drawn in Fig. 2. By rotating
the domain Q,, round the axis z we get a three-dimensional axially symmetric channel.
We denote it by Q5. The rotation of L; (i = 1,2), I'; and I'y, round the axis z gives
the walls of the channel Q,, the inlet (through which the fluid enters the channel)
and the outlet (through which the fluid flows out from the channel), respectively.

Let us consider a blade row inserted into the channel Q;, formed by N blades
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periodically spaced in the direction ¢ (see Fig. 1). Our aim is to approximate compli-
cated three-dimensional stream fields in this blade row by a simplified model of flows
past the blades in the space between two axially symmetric surfaces.
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Fig. 2.

We start from the assumption that we have already calculated an axially sym-
metric flow in the channel Q, (without blades) and have obtained a family of axially
symmetric stream surfaces. Let us consider two close surfaces &, &, from this
family, represented in the meridional cross-section ,, by the curves S; and S,
(see Fig. 2). The space between these surfaces is called a layer of variable thickness.
Its geometry is determined by two quantities: h — the distance of points lying on &,
from &, measured in the direction normal to &, and r — the distance of these
points from the axis of symmetry z. In a special case, when r = const. on &, and
hence &, is a cylindrical surface, h is the so-called axial-velocity-ratio (abbr. AVR)
factor (cf. [34]).

It is obvious that h and r can be considered as functions dependent on the length s
of the arc measured on the curve S; from its intersection with I'; to the point in con-
sideration lying on S,. Under the assumption that r = r(s) is continuous and r > 0
let us introduce a coordinate system x;, x, on the surface &, defined by the relations

(1.1) X, = ;’(O)JS %, x, =r(0)e

(rieddsy, dy=0, dy= ;'(O)jlr“(é)dc”,
0

s; = length of S}, x, € Ry) and express h and r as functions of x;: h = h(x,), r =
= r(x])a xq €<dy, dy).
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If we transform the surface &, and its intersections with the blades into the (.\‘1, X2)-
plane, we get a two-dimensional domain Q (shown in Fig. 3). The boundary éQ of Q
is formed by two straight lines

(1.2) K= {(xp,x2);x; =dp,x,€Ry}, i=1,2

., L0

par

S

T
Co ule
/ Q outlet
X
inlet K.l : (-l \
Fig. 3.
and by an infinite number of disjoint Jordan curves C,, k = 0, +1, +2, ..., periodi-

cally spaced in the direction x, with the periodt = 2 r(0)/N. The curves C, are given
by the intersections of the blades with the surface &; and form the so-called cascade
of profiles. The lines K; and K, are called the inlet and the outlet of the cascade,
since they represent the intersections of the surface &; with the inlet and outlet
of the channel Q;, respectively.

The profile Cy is obtained by moving C, in the direction x, by krt:

(1.3) Cp = {(x1. X2 + k1) 5 (x4, X,) € Co}
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Hence, the domain Q is periodic in the direction x, with the period 7. It means that
(1.4) (x5, x2)€Q < (x4, x, + 7)€ Q.
We shall consider the following assumption concerning the profiles Cy:

Assumption (Al). The profile C, (and hence C;, k = +1, £2,...) is a piece-
wise smooth Jordan curve and the angles between neighbouring smooth parts of C,
lie in the open interval (0, 2n). L

1.2. Equations describing the flows in a layer of variable thickness

In order to obtain a simplified two-dimensional model approximating the flows
in the space between the surfaces &, &,, we assume:

1) The surfaces &;, &, are impermeable.

2) &1, &, are “close enough” so that wecan assume that the quantities describing
the flow in the layer between &, and &, are constant in the direction normal to ;.

3) The blade row is not moving, blades are fixed and the flow is stationary.

4) The fluid is non-viscous.

5) The flow is irrotational.

6) Outer volume forces are neglected.

7) If the fluid is compressible, then the flow is subsonic and isentropic.

The system of equations describing the flow considered under the above assump-
tions consists of the equation of continuity, condition of the irrotational flow and
the equation for density:

(13 5= o) ) o) o) = 0,

i=

15 00r(xa) () _ o) 0a)) _
axz axl
(1.7) a) eo(x) = 0o,
if the fluid is incompressible,

b) ofx) = eo <1 _x = 1oi(x) + v%(x)>1/(x—l)’

2 ag

if the fluid is compressible.

Here, we consider x = (xy, x,) € Q and use the following notation: ¢ — density
of the fluid, v; — velocity component in the direction x; (i = 1,2), v = (v;, v,) —
velocity vector, |v| — absolute value of v, a = a(e/eo)*”" — speed of sound,
M = |v|/a — Mach number, g, > 0, ag > 0, ¥ > 1 — given constants. The equa-
tions (1.5)—(1.7) were derived e.g. in [21, 32] for incompressible flows and in [11]
or [12] also in the case of compressible flows. They can be obtained from the general
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laws of fluid dynamics written in the integral form by neglecting the terms of higher
orders in h.
In what follows we assume that

(1.8) r,heC'({dy,dy), hyr>0 in {dy,dy).

With respect to the periodicity of the domain Q we shall assume that the functions
vy, U,, 0 are periodic in the direction x, with the period t:

(1.9) vixp, X, + 1) = vxp, x,), i=1,2,

Q(xl’ Xz + T) = Q(xu xz),
(x1,x2)€Q.

1.3. Stream function

It is convenient to introduce the so-called stream function ¥ : @ — R, that satis-
fies the relations

(1.10) g—;/—ll (x) = —=r(xy) h(xy) o(x) v5(x) ,

2 (5) = () W) ) )
Vx e(x;,x;)€Q.

The existence of the stream function can be proved on the basis of the equation
(1.5) and the assumption that the blades are impermeable and fixed. From the perio-
dicity conditions (1.9) it follows that

(1.11) Y(xg, x, + 1) = P(x1, %) + Q V(xq4,x,)eQ.

The constant Q is given by the total mass flux per second through the space bounded
by the surfaces &, &, and two neighbouring blades.
If we substitute the relations (1.10) into (1.6), we get the equation

20 (1 0y .
1.12 —(——)=0 in Q.
(1-12) izl axi<hg 6xi>

For an incompressible fluid we have ¢ = g, = const and the equation (1.12) is
linear and elliptic.

If the fluid is compressible, the situation is more complicated. From (1.10) and
(1.7)b) we get

(1'13) A 0 = 0, (1 o« ;— 1 (aorhg)vz(m/,y)l/(xﬁ)’

where Vi = (0y/[0x,, 0y[0x,).
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We see that the density is an implicit function dependent on x and n = (Vi)?.
The equation (1.13) is solvable with respect to ¢ for values of y from a bounded
interval only and for these # there exist two solutions — one corresponding to sub-
sonic and the other to supersonic flows.

These difficulties can be avoided, if we confine our considerations to subsonic
flows with Mach number M < M*, where M* (0, 1) can be chosen arbitrarily
close to one. Following the results from [5, 6, 10] we can construct the equation
of the form

(1.14) 5 é (b(x, (W)Z)gf—) —0 inQ,

i=1

with “good” mathematical properties, which describes stream fields with M < M*.
(The details are contained in [11, 12].)

1.3.1. The function b is defined in the following way:

1 A
(1.15) a) ;;:Ll(>0), a,,,=< /'A>, 9 = - ! Okr's
¥ —

A+ 1 A+

%2 -2
b) o (M n 1) € (G 1),
yl
9% = g% — 0*(1+1//'-)€(0’ Skr) ;
c) if 9e€<0,9%), then a(9)e(o* 1D

is a (unique) solution of the equation

9\
ad)=({1—-———=);
- (1- )

d) :<0, + ) — <ay, 1) (a0 € (0, 05,>)

1s a function with the following properties:

(i) 6 has a Lipschitz continuous k-th order derivative in €0, + o) (k = 1),
(i) 6]<0,9% =0,
(i) & <0 in <0, +),
(iv) there exists a constant § = 9,, such that () = o, V9 = 3;

€)  b(x,n) = (g0 h(x1))™" [6(2(a0go r(x:) h(x1)) " m)] ™

Vx = (x,x,)€Q, VYn20. L

1.3.2. Remark. A simple example of the extension of the function ¢ from the
interval <0, $*) onto <0, + oo), convenient for the numerical solution of the problem,
can be found e.g. in [6]. =
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If the fluid is incompressible, we put
1

h(xl) Qo

and the equation (1.12) can also be written in the form (1.14).

(1.16) b = b(x) =

In the study of boundary value problems for the stream function we shall use
the following properties of the function b:

1.3.3. Lemma 1) The function b is continuous in @ x (0, + ).
2) There exist constants ¢y, ¢, > 0 such that
(1.17) ¢ Sb=c, in 0Qx<0,+00).

3) The function b has continuous derivatives 0blon and 0blox; (i = 1,2)in
Q x <0, + o).
4) There exists fj > O such that

(1.18) 2—b(x,n)=0 VxeQ, Vnz1.
"

(If the fluid is incompressible, then of course db[on = 0in @ x 0, +0).)

5) There exist constants cs, ¢q > 0 such that

(1.19) Oég—bgc3 in @ x 0, +o0),
n
(1.20) g—lz(x,éz)f, gk(x,fl)fz <ec, *VYxeQ, VéeR,.
n n

6) If oy € Ry, x €Q, then the function b(x,a} + &*) & of the variable ¢ is in-
creasing in R;.
7) b(xy, x5 + 7, 0) = b(xy, x5,1) V(xq,x,)eQand Vn 2 0.

Proof follows from the relations (1.15) ¢) or (1.16), the assumptions (1.8) and the
properties (1.15) d) of the function 6. m

1.3.4. Remark. On the basis of the detailed analysis ([11]) we can clarify the rela-
tion between the system (1.5)—(1.7) and the equation (1.14):

1) If y: @ - R, is a solution of the equation (1.14), where the function b is defined
by (1.16) or (1.15) for incompressible or subsonic compressible flows, respectively,
then the functions g, v, v, given by the relations

(121) @) o(x) = 00 = [h(x) BT~ or o(x) = [h(x,) b(x, (V) ()]~
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in the cases of incompressibility or compressibility, respectively,

) L

b) v(x) r(x,) h(x;) o(x) Oxz( )

c) vy(x) = i ¥

) ) = ) e o
xeQ,

form a solution of the equations (1.5), (1.6). If the condition (1.11) is fulfilled, then
0, vy, v, satisfy the periodicity conditions (1.9). In the case of incompressible flows,
(1.7) a) is equivalent to (1.21) a). If the fluid is compressible and

(1.22) (VY)? (x) < Maogo r(x1) h(x,)]* 9* Vxe @,

then the equation (1.7) b) holds and M < M* in Q.

2) If ¢, vy, v, form a solution of (1.5)—(1.7) and if M < M* in Q in the case
of compressibility, then there exists a stream function y satisfying the relations (1.10).
This  is a solution of the equation (1.14) in Q.

1.4. Boundary conditions

There exists a series of various boundary conditions that can be added to the
equation (1.14) in order to characterize the behaviour of the stream fields on the
boundary.

We shall denote by n = (ny, n,) the unit outer normal to dQ and by d/on the
derivative in the direction n.

1.4.1. Conditions on profiles. Since the blades are fixed and impermeable, we have
(1.23) V| Co=qo+kQ, k=0,+1, +2,...,
where Q is the given constant from (1.11). The constant g, may be unknown. =

1.4.2. Conditions on the inlet or outlet. Here we have more possibilities.

a) If the quantity rhov, ’ K; is equal to a given function ¢;, then we consider the
condition of the form

(]24) ',//(d,', xz) = 'P,'(XZ) +4q:;, X2€Ry.

The functions @; are t-periodic in R;. ¥;(x,) are given by

(1.25) ¥ixz) = J‘xz‘Pi(f) d¢, x;€Ry, i=1,2

0

431



and satisfy the conditions
(1.26) Px, + 1) = ¥(xy) + Q Vx,eRy, i=1,2
with

(1.27) 0- j ;wl(ﬁ)dé - j ;@Z(f) ac.

The constants g; may be unknown.

b) If the tangential component of the velocity v, ] K; is given, then

(1.28) [b(-,(Vn//)Z) z_ﬂ (dox2) = —uxs), x3€Ry,

i=1 or i=2,
where yg; : Ry — Ry is a given t-periodic function.

c) Sometimes we do not know the distribution of the tangential component
of the velocity on K;, but we can determine its average value. In this case we have

the condition
1

(1.29) ! f”’[h(-,(w)ﬂ"—]-(dbf)dé=—ﬁ.» %2Ry,

- on
i=1 or i=2,
with a given constant ji; € Ry.

d) The constant Q is determined either by (1.27) or from the given total mass
flux per second through the space bounded by the surfaces &, &, and two neigh-
bouring blades. [ ]

1.4.3. Complementary conditions. a) If the circulation of the velocity round the
blades is known, then we consider the following conditions with the line integrals
along the curves Cy:

(1.30) [ b, () Y ds = =y, k=0, £1, £2, ...
on

v Cx

y € Ry is a given constant.

b) Usually, the circulation of the velocity is not known and then we consider
the so-called trailing conditions which are more suitable from the physical point
of view (cf. e.g. [7]):

ENE Z—l//(zk)z-(), k=0, 41, 42, ...
n

Here, z, = z, + (0, kt) € C, are given trailing points. =
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1.5. Classical formulation of the problem

By a convenient choice of the above boundary conditions added to the equation
(1.14) we get various boundary value problems describing the flows through cascades
of profiles. We introduce here only several possibilities which seem to be the most
convenient ones for technical practice.

1) Let t-periodic functions ¢y, ¢,: Ry — Ry satisfying (1.27) be given. Let
the constant Q and functions ¥, ¥, be given by (1.27) and (1.25), respectively.
Then ¥, ¥, and Q satisfy (1.26).

Problem (PSI. 1.1). Given constants fi;, fi, € Ry, find € C*(Q) and constants
q1» 42 € R, satisfying the equation (1.14) in Q and the conditions a) (1.11), b) (1.23)
with qo = 0, ¢) (1.24) and (1.29) for i = 1, 2.

Problem (PSI 1.2). Given constants iy, y € Ry, find € C*(Q) and constants
qo- 41 satisfying (1.14) in Q and the conditions a)(1.11), b) (1.23) (with qo unknown),
¢) (1.24) for i = 1,2 with q, unknown and q, = 0, d) (1.29) for i = 1 and e) (1.30).

Problem (PSI. 1.3). Given a constant fi; € R, and trailing points z; = z, +
+ (0, k1) € C,. Find y € C*(Q) and constants q,, q, satisfying the equation (1.14)
and the conditions a) (1.11), b) (1.23) (with g, unknown), c) (1.24) for i = 1,2
with q, unknown and q, = 0, d) (1.29) for i = 1 and e) (1.31). m

II) Given a constant Q € R, and t-periodic functions uy, i, : Ry = Ry.

Problem (PSI 2.1). Find y € C*(Q) satisfying the equation (1.14) in Q and the
conditions a) (1.11), b) (1.23) with g = 0 and c) (1.28) for i = 1,2. u

2. SOLVABILITY OF THE PROBLEM (PSI. 1.1)

Let Q, < Q be a curved strip of the width 7 in the x,-direction cut from the domain
Q. Its boundary 02, consists of two components — the inner component formed
by the profile C, and the outer component, which is the union I', U I, UT~ U I'*.
Here, I'; = {(d;, x,); x;€{e;, e; + 1)} = K; is a segment of the length 7, I'" is
a piecewise linear arc and I'" = {(x,, x, + 1); (x4, x,) € I "}. See Fig. 4.

The initial points (dy, e;), (dy, e; + ) of the arcs I'", I'* belong to K;, their
terminal points (d,, e;), (d, e, + 7)€ K, and all the other points of these arcs
are elements of the domain Q. In view of the assumption (A 1) from Section 1.1,
the boundary 02, is Lipschitz-continuous and it is possible to define the one-dimen-
sional Lebesgue measure on 09, (see [18] or [24]). Let Q¥ de the bounded domain
with 0Q* =, ur,ur-ur-.

Let y € C*(Q) be a solution of the equation (1.14). Let us multiply this equation
by any function ve C°°(f'2,) and integrate over the domain Q,. By the application
of Green’s theorem we get

(21) o= i ( lp) .X——J‘ b%vds—J bVy.Vodx.
1 0X; o9, Q.

i= ox on

Q.
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Hence,

(22) f anp.Vvdx=J b s
Q. Coul'yulul ~ul'+ on

By a suitable choice of functions v e C”(Q,) we get variational formulations of the
particular problems for the stream function.

4
r+
o
(dyepD) O (dj,e4)
r, L r,
e &
(dy,ey) (d2,e2)
Fig. 4.

2.1. Variational formulation of the problem (PSI. 1.1)

If x = (x4, X,) €R,, then we shall use the simplified notation for the point
(x5, x5 + 1)
(2.3) x'=(xg,x, + 7).
Let us define
(24) . ={peC?(@);v|Co=0,v|I; = constfor i = 1,2, v(x) =

=v(x) VxeI'}.

If ve ¥7,, then we denote by vy, the constant value v I I,

Let the function ¥ and constants g4, g, form a solution of the prcblem (PSI. 1.1).

In (2.2) we shall consider the functions ve ¥",. If we take into account (1.29), (2.4)
and

@s) Y= -2,
b, (V9)° () = bl (V) (¥) xe T~
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(obtained from (1.11) and the assertion 7) of Lemma 1.3.3), then for any ve ¥,
we get

(2.6) a) [ b(zlkvds=0,

Je, On

b) b%vds=v|1",~ ba—'pds=—fﬁivr,,
0 r, on

Jr; on
c) bW oas=— [ s pus.
Jr- on r+ on
By (2.2) and (2.6) we find out that
2
(2.7) j bV .Vodx = —t) iy, Wwe?,.
o, i=1

Moreover, ¥ satisfies the conditions

(28) a) yeC* ), b)y|Co =0,

c) Y(x)=y(x)+0Q Vxel~,

d) ‘/’lri= Yi+4q;, g;=const, i=1,2.
((2-8)d) means that y(d;, x,) = ¥(x;) + g, for (d;, x,) € I';.)

The conditions (2.7) and (2.8) a)—d) (with the given constant Q and functions
¥,, ¥, satisfying (1.26)) form the so-called variational formulation of the problem
(PSL. 1.1).

Now, let us assume that ¥ : @, — R, and constants q,, g, form a solution of (2.7),

(2.8) a)—d). In the following we shall show that with the help of ¥ it is possible to
construct a solution of the problem (PSI. 1.1):

a) By a suitable choice of ve ¥, such that v ] 0Q, = 0 and by the application
of Green’s theorem we find out that  is a solution of the equation (1.14) in ..

b) In virtue of (2.8) ¢),
" (29) %l/t/(x’) = %p(x) VxelI™ — {x',...,x"},

where 9y/[dt denotes the derivative of y with respect to the arc I'” and x%, ..., x°
are all points where I'” is not smooth. Now let us consider any v e ¥, for which
v|I'; U T, = 0. Then on the basis of (2.1), (2.2) and (2.7) we find out that (2.6) c)
holds for these v, which implies the relation

e (s (2] + () ) 0o -
= —b (x, (‘g (x))2 + <Z—f—(x)>2>g% (x) vxel™ —{x%...,x}.
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From (2.9), (2.10) and the assertions 6), 7) of Lemma 1.3.3 we get
(2.11) Wix)y= =P () vxer= - {x',.... %
on on

Hence, since y € C*(2,),
(2.12) Vi (x) = V(x) Vxel™ .
The last two identities imply that (2.6) ¢) is valid for each ve ¥,

If we extend the function y from @, onto the set & so that the condition (1.11) is
satisfied, we get a function which belongs to the space CI(S—?). Let us denote it by /.

¢) Let us consider any v € ¥", such that v [ I'y=1andv \ ', = 0. If we substitute
this function into (2.7), use (2.1), (2.2) and (2.6) c), then we have

J b%ds= —Tiy ,
r, on

which implies that the extended function i/ satisfies the condition (1.29), i=1.
Similarly, we prove also (1.29), i = 2.

d) In order to show that ¥ (together with gy, g,) is a solution of the problem
(PSI. 1.1), we have to prove that y € C*(Q).

In view of the assumption ¥ € C*(2°), of (2.9) and (2.11),

Py O
(2.13) (x7) = o (x),

o

PY o PP
o) " oma™ = ™ ™

Vxel™ — {x'..,x%}.

If we express the equation (1.14) at any xeI'- UTI'* — {x!, (x'), ..., x%, (x°)}
with the use of the derivatives in the normal and tangential directions to I'” U I'",
we get

(2.14) 0= ay(x, V() gfniz’ (x) + 2ay5(x, V(x) ;:;/n (x) +

T ana(x, V() %ztif (%) + aoo(x, Vi(x))

with a;; > 0. Moreover, a;;(x, Vy(x%)) = (—1)"* a;;(x, Vi(x)) for i,j=0,1,2
and x € I'". This relation, (2.13) and (2.14) immediately give the equality

az_l// t:@ - _ 1 s
@19 ) -TH0) weerm - {5,

which together with the above results already implies that ¥ € C*(Q).
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Thus we have proved:

2.1.1 Theorem. The problem (PSL 1.1) is equivalent to (2.7) and (2.8) a)—d)
in the following sense: If \, 4y, g, form a solution of the problem (PSI. 1.1), then
1 I Q., q1, q, satisfy (2.7) and (2.8) a)—d). On the other hand, on the basis of
Y : Q. > Ry and qy, q, that solve the problem (2.7), (2.8) a)—d), we can construct
a solution Y : @ — Ry of the problem (PSI. 1.1) such that Y [ Q. =y u

2.1.2. Remark. If the solution of (2.7), (2.8) a)—d) is unique, then the solution ¥/
does not depend on the choice of the strip Q.. To prove this, let us consider two
strips Q,, Q. and the corresponding variational problems with unique solutions
Y :Q, - R, and ¥’ : Q. - R,, respectively. From y and i/’ we construct solutions
Y and }; of the problem (PSI. 1.1). In view of Theorem 2.1.1, Y/}, | 2, is also a solu-
tion of the problem (2.7), (2.8) a)—d), considered in the domain .. As a consequence
of the supposed unique solvability of this problem we have l Q. =, which
implies that y; = Y. =

2.2. Weak solutions

The preceding considerations lead us to the concept of generalized weak solutions
to our stream function problem.

First, we introduce some functional spaces. We denote by L,(£,) the space of all
(equivalent classes of) measurable functions square integrable over Q. H'(£,) is
the well-known Sobolev space formed by all v € L,(,) whose first order distribution
derivatives belong also to L,(Q,). Ly(®,) and H'(&,) are Hilbert spaces with scalar
products

(2.16) (u, v)y00, = f uvdx, u,veLy(RQ,)
2.
and
(2.17) (u,v)y = f (uv + Vu . Vv)dx,u,ve H(Q,),
Q.
* which induce the normes
. Va0 = (0 V)50, in La(€
(2.18) el (o )zl Ly(Q)
and
(2.19) [o]w = (@ 0)§* in HY(Q),
respectively.

Since 09, is Lipschitz-continuous, it is possible to define the space L,(Q,) of all
(equivalent classes of) measurable functions on 09, square integrable over 0€.:

~

j v¥ds < +oo for veL,(0Q,).
9.
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L,(09,) is equipped with the scalar product

(2.20) (u, V) 1,00, = J uvds, u,veL,(0Q,)

Q¢
and the norm

(2:21) [9] oo = (0 0)ilisan » v € La(020)-

If o, B € Ry, a < B, then of course L,((a, B)) is the space of all (equivalent classes of)
measurable functions square integrable over the interval («, f).

2(Q,) denotes the set formed by all functions v € C*(&,) with compact supports
supp v < Q.. By Ho(R,) we denote the closure of 9(€,) in the topology of the space
H'(Q,).

We shall often use the important theorem on traces:

2.2.1. Theorem. There exists a continuous linear mapping 6 : H'(Q,) - L,(02,)
such that Ou = u | 0Q, for every u e C*(&,). Hence,

(2.21) 16] Loo0n < Kolu|u VueH'(Q)

with a constant ky independent of u. L]

In the following we shall write u = u | 0Q, for ue H'(RQ,). The space H(€Q,)
can be characterized as

(2.22) HYQ,) = {ue H'(Q); u | 02, = 0} .
(Cf. 13, 18,24])
2.2.2. Lemma. Let the functions ¢;, i = 1,2, from 1.4.2. a) be t-periodic in Ry,

satisfy the condition (1.27) and let ¢ [ (0, ) € Ly((0, 7)) Then there exists y* e
€ H'(Q,) with the following properties:

(223) a) y*(x") =y*(x)+ Q, xeI”,
by y*|I; = ¥,, i=12,
¢) ¥* | Co

where ¥, and Q are defined by (1.25) and (1.27), respectively.

0,

Proof. The function ¥, (i = 1, 2) can be written in the form ¥(x,) = (Q/7) x, +
+ gi(x,) (x2 € R;), where g, is t-periodic in R;. Moreover, g; is an indefinite integral
of the function B; = ¢; — Qt: Ry = Ry, Bi | (0, 7) € Ly((0,7)). Let us consider
the infinitely differentiable transformation

(2.24) (x1, X3) = (%y, %5) = F(x1,x5) = (F1i(x1, x2), Fa(xq, x5)) =
= (exp (27x, ) c0s (27x,7), exp (27x4[7) sin (2nx,[7)),
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t-periodic in the direction x,, which maps the strip 2 = {(x,, xz); dy < xy <dj,
x;€R;} onto the domain F(2)= {(%y, X,); exp (2nd,[7) < JE 4+ R3) <

< exp (2nd,[t)}. The boundary 0F(2) is infinitely differentiable, since it is formed
by the disjoint circle lines K; = F(K),i = 1, 2(K; are straight lines defined by (1.2)).

The inverse F_; = ((F_);, (F_;),) to F can be considered as an infinitely valued
analytic function. Let us put §; = g;°((F-,), | K;) : K, > R, (i = 1,2). From the
properties of g; and F it follows that §; is a single-valued function which can be
written as an indefinite integral along K; of a function f;e L,(K,). If we define
g : 0F(?) > R, by therelations § | K; = §;, i = 1,2, then according to [23] there
exists & € H'(F(2)) such that & | 0F(#) = §. Hence, & | K, = §;, i = 1,2.

Now let us put & = & o F. We see that & is t-periodic in the direction x, and
&(d;, x;) = gix,), x, € Ry, i = 1,2. Since F | Q¥ is a one-to-one mapping of the
domain QF onto @ = F(?) — F(I'"), F e C*(Q}) and the Jacobian determinant
|(DF|Dx) (x)| % Ofor all x € @, the restriction F | Q¥ and its inverse are Lipschitz-
continuous. It is evident that & € H'(3). By the direct application of results from
[24] (Ch. 2, § 3, page 66) we find out that & | @, € H'(R,).

Further, it is easy to see that there exists $ € C*(Q,) such that 8 = 1 in a neigh-
bourhood of the outer component of 0Q,, formed by the union I'y U, U™ U I'Y,
and § = 0in a neighbourhood of C,. If we put

(2.25) YH(xy, x,) = (% x, + 6(xy, x2)> 9(xy, xz), (x5.%2)€Q;,

then y* is the sought function with the properties (2.23) a)—c). n

2.2.3. Remark. We can prove even a stronger result. In virtue of the properties
of §, we have § € W;(0F(2)) (cf. e.g. [18] or [24]). This and the results from [18],
Ch. 8 imply the existence of

& e Wy (F(2)) (< H'(F(2)) N C(F(2)))

such that & | 0F(#) = §. Now it is possible to show that & = & . F e W}*"/2(Q¥)
* and thus, the function y* defined in @, by (2.25) satisfies the conditions (2.23) a)—c)
and y* € W3 /3(Q,). (For the complete proof, see Appendix.) ]

Next, in H'(Q,) we define a subspace V(2,) by
(2.26) V(Q) = {ve H'(Q);v|T; = const,i = 1,2,v|Co = 0, v(x") = v(x)
for almost every xeI™}.

(The concept “almost every x € '™ is considered here in the sense of the one-
dimensional Lebesgue measure on 6Qr.)

2.2.4. Lemma. 1) ¥, = V(Q,). 2) V(Q,) is a closed subspace of H(Q).
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Proof. 1) Assertion 1) is evident. 2) We want to prove that the closure V(Q,)
of the space V(2,) in the topology of H'(%,) is V(Q,). If ve V(RQ,), then there exist
v,€ V(Q), n = 1,2,..., such that v, - v in H'(2,), if n > +o00. Let us prove that
ve V(Q,).

From Theorem 2.2.1 on traces we get

(2.27) lim J o, — v]*ds =0
092+

n—+o

and thus,

j 10,,-vi2ds—>0, jlvn—vlzdsao for n— 4+o0.
Co I;

This and the definition of the space V(Q,) imply that v|C, = 0 and v | T, =
= const = lim v,r, (here v,r, = v, | I'; = const), i = 1, 2. Next, by (2.27) we have

n—++ow

0< < f ) = o ds>”2 _ < f ) = )+ ) = o ds)llz <

< ( j ) = w P ds>‘“ t ( f 19 = g ds>”2 _
([ o) et

172
§2<'[ ‘v,,——vlzds) >0 for n— +w.
29,

This yields v(x*) = v(x) for almost every x e I'". If we summarize our results, we
see that ve V(Q,). . =

For u € H'(Q,) we put

(2.28) lufy = < L (Vu? dx)m .

2.2.5. Lemma. The function HHV is a norm in the space V(Q,), equivalent to the
norm H . !!H It means that there exist constant cs, cg > 0 such that

esfuly = Juln = coluly vuev(Q).

Proof. Since the one-dimensional measure of C, (deﬁned on 9Q,) is positive and
v I C, = 0Oforeachve V(Q,), this lemma is a consequence of the well-known Frid-
richs inequality. (Cf. [18, 24, 28].) n

By V*(Q,) we denote the dual to the space V(£2,) (i.e. the space of all centinuous
linear functionals defined on V(2,)). If fe V*(Q,), ve V(2,), then <f, v) denotes
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the value of the functional f at the point v. The norm of f in V*(Q,) is defined by the
relation

(229) /1

ye = sup |(f,0)].
veV (2:)
llellvy=1

2.2.6. Lemma. V(Q,) is a Hilbert space, whose norm is induced by the scalar
product

(2.30) (u, v)y = J. Vu.Vodx, u,veV(Q,).
2
If f €V*(R,), then there exists exactly one ¢ € V(Q,) such that
(2.31) vy = (p,v)y YoeV(Q).
(Cf. e.g. [13,20].) "

Let us remark that the functions “u, v — (u, v)”,, and“u — Huny” are also defined
for u, ve H'(Q,). However, |||y is only a seminorm on H'(Q,). In the following
considerations it will be more convenient to work with the norm H . .E v in the space
V(2,) instead of the norm | | ;.

Now, let us define the form a: H'(Q,) x H'(Q,) > R;:

(2.32) a(y, v)=.[ b(-, (V¥)?) Vn,b..Vvdx, Y, ve H(Q,)

Q-

and the function . : ¥(Q,) = R;:

(2.33) p) = -1

el

Bor,, veV(Q).

From the continuity and boundedness of the function b (see Lemma 1.3.3) it follows
that for any y, v e H'(Q,) the finite integral in (2.32) exists.

Main properties of @ and u:

2.2.7. Theorem. 1) If € H'(Q,), then the mapping “ve V(Q,) — a(y, v)e R,”
represents a continuous linear functional defined on V(Q,). It means that we can
Wwrite

(2-34) a(y,v) = <L), vy, YeH(Q), veV(Q,),
where () € V¥(Q,). Hence, of : H'(Q,) » V¥(Q,).
2) The mapping p:V(Q,) — Ry is a continuous linear functional on V(Q,):
2
(2.35) vy = p(v) = =ty gor,, veV(Q,).
i=1
3) There exists a constant o > O such that

(236) (A1) = S(2) V1 = V2> Z oYy — Vap VWi, e HY(Q),
lﬁl - 'ﬁz € V(Q') .
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4) There exists a constant K > 0 such that
(237) K1) — L), | < K[y = oy oy Vi, ¥ e H(Q),
Yoe V(Q,).

5) Let us put T(u) = S (Y* + u) for ue V(Q,), where y* e H(Q,) is a function
with the properties (2.23) a)—c). Then T: V(Q,) - V*(Q,) and

(2.38) {T(uy) — T(uy), uy — uy) = oc”u1 - uZH‘Z, Vuy, uy € V(Q,)
(T is strongly monotone in V(2,)),
(2.39) [KT(us) = T(uz), 03| = Kfjuy — ually [0y

Vuy, uy, ve V(RQ,).
Thus, in view of (2.29),

(2.40) [ T(ws) — T(ws)

(T is Lipschitz-continuous in V(L,)).
6) There exists exactly one mapping # : V(Q,) - V(Q,) defined by the relation

(2.41) (T(u), vy = (#(u),v), Vu,veV(Q,).

e < K“ul - uz”v Yuy, u, € V(Q,)

Next, there exists a uniquely determined i € V(R,) such that

(242) Cmovy = (B o)y VweV(Q).

The following inequalities hold:

(2.43) (H(uy) — H(uz), uy — uy)y = ofuy — wyl|f Vuy, uy € V()

(o is strongly monotone),

(2.44) [ #(us) = #(ua)|y < Klus = wafly Vuy, uz € V() ¢
(o is Lipschitz-continuous).

Proof. 1) If yy e H'(Q,) and v e V(&,), then (1.17) and the Cauchy inequality yield

dx <

|a(y v)| =

e ([ o)™ ([ o)™ = caluy ol = Kl

Moreover, it is evident that d(l//, v) is linear with respect to v, which proves the
assertion 1).

< J |b6(+, (V)?) Vi . v

f b(+, (Vy)* Vi . Vdx

lIA
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2) It is easy to see that the function p is linear. Let us prove its boundedness.
If ve V(R,), then

2 2
Iﬂ(v)l = ITZI ﬁiUr,-| = Tzllﬁif Ivr,| :
i= i=

Due to the relations
1

[vr.-l - meas (I';)

(meas (I';) denotes the one-dimensional Lebesgue measure (defined on 0€2,) of the set
F,-), to Theorem 2.2.1, Lemma 2.2.5 and the Cauchy inequality, we get the estimates

) = 317 [ s =l + [ [ ffas = .

w14 ([,

= (| + |2]) (meas (62))" o] 1200 =

f o] ds, meas(I';) =<
r;

< (|| + |i2]) (meas (0Q,))'7 koco 0]y = k,|oly VYveV(Q,).
Hence, e V¥(Q,).
3) Let&, &, 9eRy, h =& — E,xeQ, teR,.
If we denote
(2.45) g(t) = b(x, (& + th)?*) (¢ + th). 9,
then
(2.46) g(1) — g(0) = [b(x, &%) & — b(x, E)&]. 9.

From the properties of the function b (see Lemma 1.3.3) it follows that in the interval
{0, 1) the derivative ‘
(2.47) g'(t) = b(x, (& + th*)h.9 +
+ 2% (& + ) [(E + ) K] [(E + th) . 9]
on

exists and is finite.

a) Let us put 9 = h. Then in view of (1.17) and (1.19), we have

g' (1) = eyh? Vie0,1).

By the Mean Value Theorem, g(1) — g(0) = [3 g'(t)dt = ¢,h? and thus,

(2.48) [b(x, &) & = b(x, &%) &] - (E = &) 2 es(E - €.
Now, if Y, Y, € H(Q,) (V1 — ¥, € V(R,)), then from (2.48) we get the inequality
(2.49) [B(0x, (V1) (x)) Vs (x) = B(x, (Vir)* (x)) Vipa(x)] -

(Va(x) = Vipa(x)) 2 (Vi (x) — Vipa(x))?,
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which holds for almost every x € Q.. (2.49) immediately yields
<=Q¢(l//1) - d(‘ﬁz)’ l//1 - lﬁ2> =
= [ Il ) Vo = 0 () 51 (T = V) 05 2
- Qe

2
1 4

= CIJ. [V(¢1 - l//z)]2 dx = C1“'11/1 - Wzl

which is (2.36) with « = ¢;.
b) Let us go back to (2.45)—(2.47), which give

b, &%) & = b, ¢) &1 - 8] = [o(1) - 9(0)} =
gjllg'(t)ldt gr b(x, (& + th)?) |h] |9] dr +

i2 j 1 Z—:(x, (¢ + thY?) (& + th)? ] 3] de =

< (ca + 2¢4) [H] [3] = K|n[[9] = K|Z — ¢[ |9]-
Hence we already derive the estimate (2.37): If y/,, Y, € H'(Q,), v e V(Q,), then for
almost every x € Q,
|[bCx, (V1)? (x)) Vs (x) = b(x, (V2)? (%)) Va(x)] - Volx)| <
< K|V (x) = Vira(x)] [Vo(x)]

so that

<t (1) = A(2), v)| =
J. [b('= (V’pl)z) Vi, — b(-, (Vl/lz)z) Vl//z] . Vv dx

<

IIA

< Kf |V, — Vipo| |Vo| dx

sk ([ o - )" ( [, @ )" = Kl = valy el

This completes the proof of (2.37).

4) The rest of Theorem 2.2.7 is an easy consequence of the assertions 1)—4)
we have already proved and of Riesz’s theorem on the representation of a linear
functional defined on a Hilbert space (see Lemma 2.2.6). L

Now, we can introduce the following

2.2.8. Definition of the weak solution. A function \ : Q. — R, is called a weak
solution of the problem (PSI. 1.1), if
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(2.50) a) yeH'(2,), b)y —y*reV(Q),
c) (W), vy = (u,v) YveV(Q),
where y* € H'(Q,) is a function satisfying the conditions (2.23) a)—c). L]

(2.50) a)—c) is a generalized analogue of the variational formulation (2.7), (2.8) a)
— d). The condition (2.50) a) represents the generalization of the assumption (2.8) a),
(2.50) b) expresses the conditions (2.8) b)—d) and (2.50) ) is a weak form of (2.7).

2.2.9. Remark. The problem (2.50) a)—c) is formally equivalent to the problem
(PSI. 1.1) in the following sense: If y € C*(,) is a solution of the problem (2.50)
a)—c), then (since 7", = V(€,)),  obviously satisfies (2.7), (2.8) a)—d) with some
g1, q, and in view of 2.1.1, it induces the solution Y, 41, ¢, of the problem (PSI. 1.1).
On the other hand, if € C*(Q), g4, ¢, € R, form a solution of the problem (PSL. 1.1),
then, as we have already proved, ¥ | Q, satisfies (2.7), (2.8) a)—d). In order to show
that this function is also a solution of (2.50) a)—c), it is necessary to prove that the
set ¥7, is dense in V(Q,). This property is also important for the numerical solution
of our problem by the finite element method ([8, 9]). Therefore, we shall prove
the following:

2.2.10. Theorem. The set ¥", is dense in the space V(2Q,).

Proof of this theorem is based on the partition of unity and on regularization.
Let us denote by Qp the domain whose closure Qy is the extension of 2, obtained

by adding the sets Eo, Ey, Ey, E~, E* to @, as is shown in Fig. 5; E, = Int Co¥),
E™ = {(xy,x; — 8); (x1. x2) € I, €0, 8>},
E* = {(xy,x; + 8); (x1, x5) eI, 5€<0,8)},
E; = {(dsx;) — Sk x, € {e; — 8, e; + v + 8),5€<0,8)},

Iy ={(dyx,) — Skyyx,€<e; — e, + 1+ 8, i=1,2.

* Here, k; is a unit vector parallel to I'” and I'" near I'; and pointing into @, (i.c.,
k;.n < 0 on T';, n being the unit outer normal to 9Q,). 8 > 0 is sufficiently small
so that @3z N C, = 0 for k = +1, +2,.... We can write 0Q; = I, UL, U~ U
U I'*, as is shown in Fig. 5.

Further, let B;, i = 0,1, 2,3, be open sets such that E; < B; for i =0,1, 2,
3

B.NBy=0fori=1,2,By< Q UE, Q@ = UB;. The sets 0B; N Q (i = 1, 2)
i=0

nad 0B, N @ — B, are straight lines parallel to the axis x, and intersecting the

arcs I'", I'* near I';, where I'"", I'* have the direction k;. § > 0 and B, are chosen

in such a way that dist (0B, I' ") and dist (0By, I'") > 5. We shall consider a parti-

*) Int Cy is the bounded component of R, — Cj,.
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tion {®;}7-, of unity corresponding to the covering {B;};_, of the set 2, (see [24],
Ch. 1, §2.4). It means that ¢;e C*(R,),0 < ¢; < 1, the support supp ¢; < B,
3

and ), (p;(x) = 1 for every x € Q. Choosing the sets B; in the above way and follow-
i=0

ing the proof concerning the existence of a partition of unity contained in [24],
we can assume that @,(x”) = @,(x) for all x = (xy, x,), x* = (xy, x, + 7 such that
x, x*€ Qg and for i = 0,..., 3.

gl
S

\

\

Fig. 5. ————— 98y, 98,98,

Now, let us consider an arbitrary v € V(.Q,). In order to prove the assertion of the
theorem we need to show that
(2.51) Ve>0 e, |o— oy <e.

We shall proceed in the following way: We denote by vy the extension of v to the
set Qp, defined by

(2.52) vp| R =v, vg|Eg=0, vg|E; =0y, i=12;
ve(x1, x5) = vp(xy, x5 + 1), (X4, x,)€ E”
ve(xq, x5) = vg(xy, x; — 1), (%, %) €E".
(vis extended onto Eq, Ey, E, by constants, and “periodically” onto E~, E*.) Accord-

ing to (2.52), vy e HY(Qg). -
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Now, we put v; = vg0; in Q. It is easy to see that
(2.53) a) v/(x*) = v{x) for x,x"eQg,

b) UE=
i

Vi,

e

3
) v=13 |9,
0

d) v;e HY(Qg),
¢) v;| 2 eV(Q).

From (2.53) ¢) it follows that the verification of the condition (2.51) can be converted
to the proof of the assertion

(2.54) Ve >0 e,

o:] Q. = o]y <% (i=0,..3).

a) Let us begin with i = 0. Since v, | 2, € H)(Q,) = V(Q,), there exists a sequence
{v5}=5 v € 2(Q,) (=¥",) such that v — v, in Hi(Q,) (and thus, in V(,)), which
proves (2.54), i = 0.

b) Now, we consider i = 1 ori = 2. Let us define the function v; 5(x) = v(x + k)

"for all x + 6k; e Qp. It is evident that if &€(0, 8;), where &; > 0 is sufficiently
small, v; , is defined for (almost) every x from a certain neighbourhood U of @,
v; 5 = vr, in a neighbourhood of the arc I';, v; 4(x7) = v; 5(x) if x, x € U, v; 5 =0
in neighbourhoods of C, and I'; if j=#i. Moreover, vi,(,l Ue H'(U), v, 5| U—> v,-l

50+
W in H'(U), which implies that v; ; | 2, € V(R,) and v; ;|Q5—57>v:| Q. in V(Q,). Let
us choose and fix & > 0 so small that
(2.55) @5 — v | 2y < %

Next, we apply the regularization process. Let w, be a mollifier,i.e., h > 0,

w,(x) = exp —]—IZ——— for [x[ <h,

X
\xl2 —n?

w(x) =0 for |x|=h (xeR,),
% = f wy(x) dx .
|x| <1
For h > 0 sufficiently small we define

(2.56) visn(x) = u‘lh“ZJ w(x = y)vis(y)dy, xeQ,.

Ix=ylsh
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From the properties of v; s mentioned above it follows that v; 5 , € C*(@2,),v; .4 | Co =
=0, vy | Ti=vrp Vg | T =0 0f j i, v5,(x) = vi,,(x) for all xel".
Thus, v;;, € ¥ According to the results in [24, 29], v 5, — v;; | @ in V(Q,) if
h — 0+. If we choose h > 0 so small that

<&
y <=
8

ivi‘a,h — Vis I Q.

and put v§ = v; 5, then (2.55)implies |vf — v;| Q.| < &[4, which we wanted to prove.
c) Finally, let i = 3. In this case we can define directly
(2.57) V3 = %“1h*2J. w(x — y)vs(y)dy, xeQ .
lx=y|<h

It is easy to verify that for sufficiently small k > 0 we have v, , € C*(@,), v, | 'y U
UL, =0, v3,|Co =0 and v;,(x%) = v;,(x) for all xeI'", so that v;,e7 .
Moreover, v3 , — v in V(Q,) if h - 0+. It means that we have verified (2.54) for
i = 3, and this completes the proof of Theorem 2.2.10. =

2.2.11. Remark. Let us notice that from the proof of Theorem 2.2.10 it follows
that an arbitrary ve V(Q,) can be approximated with a given accuracy € > 0 by an
element v, € ¥, that is equal to zero in a neighbourhood of C, and equal to v,
in a neighbourhood of I';. We can also remark that the assertion 2) of Lemma 2.2.4
is a consequence of Theorem 2.2.10. L

Now, we come to the study of the solvability of the problem (2.50) a)—c). Let us
notice that the solution of this problem can be sought in the form ¥ = y* + u,
where u € V(Q,). With respect to Theorem 2.2.7 we get the following equivalent
formulations of this problem:

(2.50%) CA(Y* + u), vy = {u, vy YveV(Q),
(2.50%*) (T(u), vy =<, vy VYve V(Q,) s
(2.50%*x) (#(u), v)y = (A, v)y YveV(Q)

for an unknown function u € V(€,). The last equation can be written as the operator
equation

(2.50%***) H(u) = fi
in the space V(2,) for an unknown u € V(Q,).
2.3. Existence and uniqueness of the weak solution

2.3.1. Theorem. Let the following assumptions be satisfied: 1) ¢;, i = 1,2, are
t-periodic functions in Ry, ¢; I (0, 7) € L,((0, 1))
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2) The functions ¥, i = 1,2, and the constant Q are defined by (1.25) and (1.27),
respectively (and satisfy (1.26)).

3) iy, i, € Ry are given constants. Then there exists exactly one weak solution y
of the problem (PSL 1.1). This solution does not depend on the choice of the func-
tion y* € H'(Q,) satisfying the conditions (2.23) a)—c).

Proof 1) The solvability can be proved on the basis of the monotone operator
theory ([2], [19]. [31]). However, it is not necessary to apply this powerful method.
If we take into consideration the Hilbert structure of the space V(,), then the proof
of the solvability of the equation (2.50****) becomes quite elementary. For the sake
of completeness of our theory we reproduce here this well-known approach (cf. e.g.

[3, 13]).

For v > 0 let us put
(2.58) Ffu) =u—v(#(u) — @), ueV(Q,).

It is evident that the equation (2.50%****) has a solution u € ¥(2,) if and only if
(2:59) u=F(u),

i.e. if and only if u is a fixed point of the mapping F, : V(Q,) - V(Q,). To prove
the existence and uniqueness of the solution of the equation (2.50%***), it is suffi-
cient to verify that F| is contractive for some v.

Let u, v e V(Q,). Then, using (2.43) and (2.44), we get

IF.(u) = )7 = (Fy(u) = FJ(v). F(u) = Fy(0))y =

= [u — ofj — 20(s#(u) — #(v),u — v), + V| # () — #(v)|7 £
< (1 = 2va + vK?) ﬂu — v“f,

and thus,

(2.60) y

F,(u) — F,(v)v < q|u — v|y Vu,veV(Q)

“with g = (1 = 2va + v?K2)"2. 1t is easy to find out that 0 < ¢ < 1if0 < v < 2a/K>

and F, is contractive.

2) We have just proved that the equation (2.50****) has a unique solution u €
€ V(Q,), from which we get a solution § = y* + u of the problem (2.50) a)—c).
However, since the operator # depends on the function ¥*, we have to prove the
uniqueness of this solution y.

Let Y5, Y5 e H'(Q,) be two functions satisfying the conditions (2.23) a)—c).
Then Y — Y3 € V(Q,). Let u; e V(Q,) be the (unique) solution of the problem

(2.61); CAYTF + uy), vy = vy VoeV(Q,).

Then y; = Y + u;, i = 1,2, are weak solutions of the problem (PSIL 1.1). Let us

449



substract the equation (2.61), from (2.62),, substitute v = Y, — Y, = Y — ¢35 +
+ u; — uy € V(Q,) and apply (2.36). Then

0= <=9¢('l/1) - ﬂ(‘//z)ﬂh — Yz a]"//l - l//2“12/ s

so that Hl//1 — 5|y = 0. Since Y, — ¥, € V(Q,), we get y; = yr,. This completes
the proof of Theorem 2.3.1. ]

3. VARIATIONAL FORMULATION AND SOLUTION OF THE PROBLEMS
(PSI. 1.2) AND (PSI. 2.1)

Now, we shall proceed more briefly, since the situation is quite analogous as in
the preceding sections.

3.1. Problem (PSI. 1.2)
Let us put
(2.4%) “V,:{veC"’(Q);v]I‘Z:O,vlF, = const ,
v|Co = const, v(x) = v(x) Vxel }.

Then the problem (PSI. 1.2) is equivalent to the problem of determining a function i
and constants gy, q; satisfying the following conditions:

(2.7%) J‘ b(, (VW)*) Vi . Vodx = —yvl Co — Ty l r, Ywe?v,,
Q¢

(2.8%) a) Yy e CHQ,),
b) V| Co = g0,
o) Y(x)=yY(x)+Q, xel,
d)y|Iy=%|T;+q,,
e) 1//‘1"2=‘I/2]F2.

Let y* € H'(R,) be a function with the properties (2.23) a)—c), whose existence
is ensured by Lemma 2.2.2. We define

(2.26%) V(Q) = {veH'(Q);v|I', = 0,v| I’y = const,

v ] Co = const, v(x,) = v(x) for almost every xe I'"} .

3.1.1. Lemma. 1) ¥, < V(Q,). 2) V(Q,) is a closed subspace of H'(Q,). 3) ¥,
is dense in V(Q.)- 4) V(Q,) is a Hilbert space with the norm defined by (2.28). 5) The
mapping “ve V(Qt) - —9yv l Co — iy v I I'y” is a linear continuous functional
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defined on the space V(RQ,). Let us denote it by u, so that
(2.35%) vy = —yv|Co — iy v| Iy, veV(Q).

Proof of the assertions 1), 2), 4), 5) can be carried out by modifying the proofs
of the corresponding analogous assertions from Section 2.2.

Let us prove the assertion 3). If ve V(R,), then v|I'y = vyy = const, v| Cy =
:vco:constandv|F2=0.Letusputw=v-vCo.Thenw|C0=0,w r,=
= v, — Vg, = const, w | I'; = —uvg, = const. Of course, w(x*) = w(x) for almost
every x € I'". Hence, we see that w is an element of the space V(,) defined by
(2.26) in the preceding section. It means that there exists a sequence {w,},=; with
clements that belong to the space ¥, defined by (2.4) such that !w,, - w“V - 0.

n—+ o

Moreover, in view of Remark 2.2.11, we can assume that w, | I, = w | I, = — vg,

Therefore, the functions v, = w, + v¢, n = 1,2,...,satisfy the conditions v, e

e C*(@Q,), v,|Co = const, v,|I'y = const, v,|I, =0, v,(x%) = v,(x) for every

x € I'". This means that v, € ¥, (7", defined by (2.4*)) and I!v,, - v“v — 0. Hence,
n—+ oo

the set ¥, is dense in V(L,). Moreover, from the above considerations and Remark
2.2.11 it follows that v e V(Q,) can be approximated with a given accuracy & > 0
by v, € ¥, that is equal to v, in a neighbourhood of C,. L]

If we define the form a again by (2.32), then the assertions 1), 3)—6) of Theorem
2.2.7 remain valid. Under the above notation, the problem (PSL 1.2) is formally
equivalent to the problem written in the form (2.50) a)—c).

The solvability results proved in the same way as in 2.3 can be formulated as
follows:

3.1.2. Theorem. Let us assume that the assumptions 1)—2) of Theorem 2.3.1 are
satisfied. Moreover, let i;, y € Ry be given constants. Then there exists exactly one
weak solution Y of the problem (PSI. 1.2). This solution is independent of the choice
of the function y* € H'(Q,) with the properties (2.23) a)—c).

3.1.3. Remark. Using Green’s theorem we can easily prove that the classical
problem (PSI. 1.2) can be transformed to the problerm (PSI. 1.1), if we put

(3'1) By = —}y — 2-
T

However, if we know nothing about the regularity of the weak solutions of these
problems, we cannot assert the equivalence of their weak formulations. Therefore,
if we define the numerical solution of our problems by approximating the spaces
H'(Q,) and V(Q,) in the weak formulation (2.50) a)—c), we do not recommend to
solve numerically the problem (PSI. 1.1) (with i, given by (3.1)) instead of the
problem (PSI. 1.2). This is the reason why we study the solvability of each problem
separately. L]
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3.1.4. Remark. If we consider trailing conditions instead of a given velocity
circulation round the profiles C,, we get the problem (PSI. 1.3), which from the
physical point of view describes the flows round the profiles C, probably better than
the problem (PSI. 1.2). On the other hand, the mathematical study of the problem
(PSIL 1.3) is more difficult. Because of the discrete trailing conditions, the problem
(PSIL. 1.3) has not a variational formulation in a usual sense and it is necessary
to consider directly the classical solutions. Some results concerning plane incom-
pressible (generally rotational) flows were obtained in [7] on the basis of appro-
priate a priori estimates and the strong maximum principle. ]

3.2. Problem (PSI. 2.1.)

We assume that t-periodic functions py, 4, : Ry = Ry and a constant Q € R,
are given. Let us denote

(2.4%%) ¥V, = {reC®(Q);v| Co = 0,v(x;) = v(x) VxeI}.
The (classical) problem (PSI. 2.1) is equivalent to the following variational formula-

tion: To find  : @, —» R, such that

(2.7%%) J b(+, (VY)*) Vi . Vodx = — i pvds VYoe v,

i=1)r,
(2.8*%) a) yeCHQ,),

b) Y| Co=0,

o) Y(x°) =vy(x)+ Q, xel”

Let y* € H'(2,) be a function satisfying the conditions

(2.23*%) a) y*|Co =0,

b) ¥*(x*) = y*(x) + Q for almost every xel .
The existence of this y/* is obvious.

We define
(2.26%*) V(Q)={veH'(Q); v|Co =0,

v(x*) = v(x) for almost every xeI'"} .

3.2.1. Lemma. 1) ¥, < V(Q,). 2) V(%,) is a closed subspace of H'(L,). 3) ¥, is
dense in V(). 4) V() is a Hilbert space with the norm defined by (2.28). 5) Let
1: (0, 7) € Ly((0, 7)), i = 1,2. Then the mapping

e;+

2 2 T
“veV(Q)-> - | pods= ) p(x2) v(dy, x,) dx,”

i=1 r; i=1Je,
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is a linear continuous functional defined on the space V(R.). If we denote it by I,
then

2
(2.35%) uoy ==Y | uvds, veV(Q,).

i=1 r;
Proof. All assertions of this lemma can be verified similarly as in Section 2.2 =

Under the above notation we can define the weak solution of the problem (PSL. 2.1)
by (2.50) a)—c). On the basis of Theorem 2.2.7, Lemma 3.2.1 and by the same
argument as in the proof of Theorem 2.3.1, we can prove the solvability also in this
case:

3.2.2. Theorem. Let u;:R; — Ry be given t-periodic functions, u; [ (o, 7)€
€ L,((0,7)) (i = 1,2) and let Q € R, be a given constant. Then there exists exactly
one weak solution \y of the problem (PSI. 2.1). This solution does not depend on the
choice of the function y* € H'(Q,) with the properties (2.23%*) a), b). L

4. CONCLUDING REMARKS

The paper partially solves one of the problems formulated by E. Meister and J.
Polések at the conference “Mathematical Methods in Fluid Mechanics™ held in 1981
at Oberwolfach: the study of flows through cascades of blades with variable inlet
and oulet velocity distributions.

The theory presented here can be generalized to the problem of flows through
a group of cascades (e.g. a cascade of profiles with a tandem cascade)and also through
moving cascades.

In another paper to appear, special attention will be devoted to flows through
cascades of profiles with given trailing conditions (i.e. to the problem (PSL 1.3)).
Survey of the results concerning the numerical solution of the problem by the finite
element method can be found in [8, 9].

In order to complete the solution of the problem formulated by E. Meister and
J. Poldsek, the results of this paper can be generalized to rotational flows. For brief
information see [8].

5. APPENDIX

Here we show that the function y* constructed in the proof of Lemma 2.2.2 is an
element of the space W3 *'/*(Q,).

onto

Let us use the symbolF _; to denote the inverse to F | Q. Both F | QF : Qf — &

ontn
and F_, : @ — QF are one-to-one mappings, infinitely differentiable, with bounded
partial derivatives of all orders. Hence, F, F_, and their derivatives are Lipschitz
continuous.
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In view of the results from 2.2.2 and 2.2.3, it will do to prove that & | Q¥ e W3 '/%(Q})
=&.F, e ()), which consists in verifying the condition
& = & F, & e Wit1*(Q)), which f h d

1) 1=

o6 o0& z
=)
: ‘ : dx|dy < 4o0,i=1,2.

3
Qo \ 0+ X = )’l

If we use the substitution X = F(x), § = F(y), so that x = F_,(X), y = F_(§) and

08 2 06 .\ OF, N
(52) Y=y LoEE ). i=12,
0x; j=10%;  ~0x;
we get
2 [d& ,_, OF; o 08 , . OF; 1P
Y s B (F®) - —— () (F-a()
(53) I= =1 0%; ~ 0x; 0%; " 0x; «
a)a [F-4(%) = Fo ()P
y lDF_l(JE) DF_l(jz)‘ azds.
Dx Dx
In view of the relations (a; + a,)* < 2(af + a3) and
(5.4) DF_—‘(X) < const forall %e@, .
Dx
it holds
2
(5.5 I <const) I;,
j=1
where
08 , . OF; . o8 , . OF,; [
o I = 0T
o %; X; 0%; =~ 0x; Y in
(5.6) I; 0 dx dy.
5 a |F-1(%) = F-y(3)]
Further, since the mapping F is Lipschitz-continuos, which means that
(5.7) l~x — yl — = IF(x) — F(y)l < const V% je@,
|F-1(%) = F-1(7)| lx = ¥
we have
o0& . OF; . o0& . OF; w2
: Py (%) g’ (F-1(%)) - Py ) P (F-1(%))
(58) I, < const : ! : dxdy.

a)a Ix - 3°
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If we use the inequality
(5.9) lab — cd|* < (|la — ¢| |b] + || |b — d|)* <
< Ala = ef* [B* + |e* [b - d[?)

and take into consideration that the mapping F_; and the derivatives 0F;/dx; are

Lipschitz-continuous and bounded, we can derive the following estimates:

(5-10) I; < const (IT + IT),
o&
_'J (F l(x))l
(5-11) I = o y <
PRE Ix - yI
< const dX dy =< const ||a§"[|f,,21+1,z(5) < 4+w;
3]s |x - yI
o )\ ) @) - ))l
(5.12)  If* = — dxdy <
K] |x - YI
o8 , _\|?
g()’)
< const L —-dx dy
3l |F—7
Finally, we shall estimate the integral
o€ ... |?
az, )
(5-13) I = ’ff L dxdy =

AR LS

Let 8 > 0 be arbitrary and fixed. If § € &, then

(5.14) .[ ~di~§f ~dg~+J‘ ~di~’
818 =3 Jaone X =3 Juw ¥ -7
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Il

where By(¥) = {%; |[¥ — J| < &}. For x e @ — B,() we have % - 5| 2 & so that

dg

~so |% = 7|

(5.15) < ~meas (0).

bl

SRR

The integral
(5.16) I,= J X
5 X = 7

can be calculated by introducing the polar coordinates R, ¢ with the origine at j.
We get

(5.17) I, = Jj (F dR)d(p )

and then, in virtue of (5.14)—(5.17),

(5.18) j 9 %meas (@) + 275

alx -3~

Now let us go back to the integral I*** from (5.13). With respect to (5.18),
*kokok (%"7 ~ iz ~ =12 @2
(5.19) I** < k,,j~ = y)‘ 4y < k|87 = ksl Eaein@ < +o0.
3 |0X;

From (5.5), (5.10)—(5.13) and (5.19) it finally follows that I < +co, which we
wanted to prove.

Acknowledgement. The author is grateful to Professor J. Necas for his helpful
advice concerning the density of the set ¥, in the space V(2,).
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Souhrn
NEVIRIVE PROUDENI PROFILOVYMI MRIiZEMI
VE VRSTVE PROMENNE TLOUSTKY

MiLOSLAV FEISTAUER

Cldnek se zabyv4 studiem nevazkého, nevifivého, podzvukového proudéni v lo-
patkovych mfizich na osové symetrické proudoplose ve vrstvé proménné tloustky.
Na rozdil od fady jinych praci vénovanych této problematice a pouZzivajicich metodu
singularit a integrdlnich rovnic zde zavddime proudovou funkci a formulujeme
nékolik okrajovych uloh, které predstavuji adekvdtni dvourozmérné modely prou-
dovych poli v lopatkovych kolech. V ¢ldnku je zaveden pojem slabého feSeni a je
provedeno podrobné vySetieni feSitelnosti uvazovanych problémi. Na vysledky
obsazené v této prdaci navdZou Cldnky vénované numerickému feSeni proudéni
lopatkovymi mfizemi metodou konecnych prvku.
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Malostranské nam. 25, 118 00 Praha 1.
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