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Let # be a real or complex Hilbert space with the inner product (-, +) and the

norm ||| = (v, -)"/%. Let T be a normal bounded linear operator mapping # into
A, of the following structure:

1) T= /)P, + AP, + S,

where Py, P, are symmetric, S is normal and

(2) PP, =P,P, =0=PS=SP;,, j=12,
(3) P%=P15 P§=P2’
4) Ay > 2| > #(S) = sup {|4] : Ae a(S)},

where o(S) denotes the spectrum of S.
We set P, = P and P, = Q and take x, € # such that

(5) Pxo#0 Qxo#0.
Define sequences
(6) Xpvr = Txyg
and
sy = i Xo)
(-xk— 1> xo)

(Xlu xk)l/z

O = 5
* (xk—-hxk—])uz ’
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w(l) =1 = ,
| — L
Qr—1
oL) = 0, = ﬁ:TL k=1,2,...,
| —
Ok-1

where L is a real parameter.
The quantities x, and 1, are called the Schwarz and Temple quotients, respectively,
while g are the Kellogg quotients and g, the corresponding Kellogg-Temple quotients.
Under appropriate hypotheses the sequences {x,}, {¢;}, {t.} and {g,} are conver-

gent (see [3], [2]): moreover ([1], [2]),

(7 Ky <My < eee KA < e KA < KT < e < Ty < T4,
(®) limx, = limt, = A,
k— o0 k= o0

and also [3]

9) 01 <03 < oor €O < -vr < Ay,
(10) limo, = 4, .
k=

The second part of the monotonicity result (7) has been shown just recently in [1]
and re-proved in [2] under identical hypotheses. Although the methods of proof
in [1] and [2] are completely different, the results are essentially the same. In our
note we offer another approach (naturally different from the previous ones). The
idea is very simple and goes back to [3, p. 260—261]. In comparison with the papers
mentioned our method has the following features. The monotonicity result is slightly
weaker in the sense that we guarantee the monotonicity only asymptotically. On the
other hand our approach is much simpler and more transparent; the latter property
is used to analysing the interval of admissible L’s and it is shown that this interval
can be larger than that currently used.

Similarly as in [2] one can generalize our method to much more complex situation.
For the sake of simplicity and transparency of the proof we restrict ourselves to the
class of operators T having a dominant discrete part of their spectrum. Also the appli-
cation of our result to the generalized eigenvalue problem of the type Au = ABu
with generally unbounded self-adjoint operators A and B is rather standard.

Lemma 1. Let T have the form (1) with A, = 1, and let (2)—(5) be fulfilled.
Then there is an integer k, such that the following asymptotic expansion holds:

(1) S ‘(ii?——(‘:’cx;’ Xo) A1 4 o(2%)
0> 0
for k > k.
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Proof. It is well known that [4., p. 346]
(12) x, = T'xg = Pxq + 250x0 + S*xo, k=1,2,....
It follows that

_ (Pxo + 250x0 + S*xq, Xo)
(Pxo + 2571 Qxo + S*"'xq, Xo)

=1+7Ik+Z,

where
(1 = 25) (@0, Xo) je-1
(Px05 xO)
(S Xo» Xo) — (Sk X0, xo) "k(lk_l 0xo + S 'x,, xo) )
(Pxo + 2571 Ox¢ + S* x4, xo)

M = —

It is evident that

We conclude that

(1 = 23) (00, Xo) pLas
(PXO: xO)
This shows the validity of formula (11).

0 =1-— +o(A)=1—a.25" + o(4).

Lemma 2. Let T have the form (1) with 2, = 1 and 1, > 0, and let (2)—(5) be
fulfilled. Then there is a positive integer kg such that

(13) e < Uppr < 1 for k>k,.
Proof. From (11) we derive that

Kirr = % = Ao = n—1) + 0(45)
and

Ay — Ap—1 = a . (1 —_ }.2) . 2,’;-—2 + 0(),’;—2) .

» This implies that the sequence {x,} is asymptotically monotonic. Since %, < 1 for

k > ko (ko from Lemma 1), 3, —» A, = 1, we deduce that (13) holds and this comple-
tes the proof.

Lemma 3. Let T have the form (1) with 4, = 1 and 2, > 0, and let (2)—(5) be
fulfilled. Then there is an integer k > ko (ko from Lemma 2) such that the follow-
ing expansion holds:

— (L )'2) (1 - /12) (QXOa Xo) k-2 k
(14) Wl (1 = L) (Pxos xo) AT ol)
fork > k,,

where Lis a real parameter, Le (A,, %x,)-
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Proof. From (12) it follows that

(Pxo + 250x, + S*xo, Xo) — L(Pxo + 257 '0x¢ + S* xq, Xo)
(Pxo + 2577 Qx¢ 4+ S* 'x0, x0) — L(Pxo + 2572Qxo + S*"2xq, xo)

Tk=

=147 + o(25),
where
(L )“2) (1 - /12) (on, Xo) /lk 2
(1 = L) (Pxo, xo)

Yk =

We deduce that

(L ’12) (1 - '12) (on’ xo) k-2
(1 — L) (Pxo, x0)

This shows the validity of formula (14).

=1+ + o(A5) = 1 + b5 + o(25) .

Theorem 1. Let T have the form (1) with Ay = 1 and 4, > 0, and let (2)—(5) be
fulfilled; further, let Le (5, %) (ko from Lemma 2). Then there exists a positive
integer ky > ky such that

(15) W < Mg <1 =24 < Tyy <7

holds for k > k;.

Proof. Lemma 2 implies the validity of the left part of (15). It remains to prove
that

Ay < Tpyy <71 for k> ky,
From (14) we derive that

T — Toar = Aa(Toer — ) + o(75)
and

o= T =b. (1 —4). 2577 + o(2%

This implies that the sequence {rk} is asymptotically monotonic. Since 7, > 1 for
k > ky (k, from Lemma 3), 7, — 2,, we deduce that (15) holds and this completes
the proof.

Lemma 4. Let the hypotheses of Lemma 1 be fulfilled. Then there is a positive
integer ko such that the following asymptotic expansion holds:

1 (1 - lg) (on, on) (2k-2) 2k=2
16 . =1- 25 A
( ) - Ok 2 (Pxo, Pxo) + 0( )

for k > k.
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Proof. Using (12) we deduce that

g = —UPxol® + B3 0xo|” + [, [?
[Pxol + 23*7% 0xo|* + [ 87 7o "

and hence,
2 (1 - Az) on 2k— 2k
or =1 — A2 4 0(23Y) .
' |1Pxol?
It follows that

_1( —/12) on

N TN E

24 0(33) = 1 = d23? + o(23Y)

and this completeé the proof.

Before we show the monotonicity of the sequences {g,}, {g;} we prove the validity
of the following auxiliary assertion (see [3]):

Lemma 5. There exists a sequence {g,}, g, € #, such that

(17) Xi = Q0 -+ Qi »
where gy = HXOH and
(18) loe =1, k=1,2,....

Proof. Let g, =

Xp = Q001 Oudi = “ka g, k=1,2,...

Theorem 2. Let T have the form (1) with 4, =1 and let (2)—(5) be fulﬁ”ed Then
for every Le (lz, 01) there exists a positive integer ko such that either.

(19) 01 < oon <O < Q1 < 1 < 04yy <oy
for k> ko,
or
(20) o =..=q=1=0=...=0 for k=2,3,....

Proof. First, we show the monotonicity of the sequence {¢,}, k = 1,2, .... From
(17) and (18) we derive that

Ql% = Q- Qk+1(gk+1a gk—l) .

Since ||| = 1 this implies that
O = Qk+1(gk+1> gk—I) S ey for k=1,2,....
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Let us suppose ¢, < gx+1 for k = 1,2, ..., otherwise g = ¢; = ... = g, = 1. We

compute the difference
e = Bl es ] = £

sl = Ll o = L]

0 = 0 = Ok41 =

Using (17) and (18) we deduce that
1

" = L D (e[ = Ha

where
Y= “xk-ln “xk—Zn [L(Qk — 1) (o — L) — olew-1 — L) (oks1 — o] -

Using (16) we obtain
Qk+1 — Ok = lg(@k — Q-1) + O(Agk)

for k > k, (ko from Lemma 4) and
Qur1 — 0 = d(1 = 23) 2377 + 0(43) -
For k sufficiently large, we see that
¥ = [xe-o] -2 (e = @u-1) [Llex = L) = 23 eulex—1 — L)] + 0(33).
Therefore, since ¢, > ¢,_; and g, > Lwe get}
¥ 2 [|x] ooz (o = @e-1) (k-1 — L) (L= 23) + o(43%).

It means that y > 0 for sufficiently large k and for L > A3, and this completes the
proof of (19). As concerns formula (20), one can see that

=g, forall k=1,2,....

CONCLUDING REMARKS

1. It is quite evident that the assumption A, = 1 is in no way a restriction. By
using it the analysis is technically simplified.
2. If T is positively semidefinite, then

we=1—-06, 6,20, &, =6, forall k=12,....

3. Let
o= B X) gy
(xk, xk)
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We see that
B = %as1, k=0,1,...

and hence the sequence {y,} is increasing and

limp, = 21 .
k—

For practical computations this subsequence is preferable, because

2k
l#k—}‘d‘:()( )

)'_zk
A

1

b
2

in comparison with
l%k - lll = 0(

while the computational complexity and the computer memory needed are the same
for the both suquences.

For the Temple sequence

corresponding to p, we have a statement fully analogous to Theorem 1. From the
computational point of view, again, v, is more advantageous than ;.

4. The restriction L < x;,, or L < ¢ is made in order to avoid vanishing of the
denominator of the corresponding quotients.

5. If A, < 0,then 1% = (—1)" l/lzl
and hence
Hop > A‘l and Hop+1 < A]
while, assuming L > 1,, we have
Toe > Ay and Ty < A4
for k > ki > k.

6. If we have a more detailed knowledge of T, say, if moreover,

S=A4P;+ ...+ APy + Z
where 4; % 0 for j = 3,...,N, |43] = |44

v

... 2 |Ay|, P; are symmetric and
PP, = P\P; =6,P;, jk=3,..,N,
PZ=27P; =0,
and if x, € o is such that Px, = 0, Qx, = 0, Wx, =+ 0; where
W=P;,, 2=

o
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with
jo=min{j: P;xq +0,j > 2},
then

_ (1- 2) (Wx,,

xo) k-1 2k
1, = 1 A + o(4
, (Pxo, xo) *)

and
(L—2)(1 = Z) (Wx,,
(1 = L) (Pxo, xo)

=1+ Xo) -2 + o(7¥).

We see that the sequence {7, } is decreasing as soon as Le (2, %), 4 > 0 and alternat-
ingif 1 < 0.

7. Let Thave the form
1) T=MP+ 2,0+ R+ S,

where P, Q, R arc symmetric and S normal,

(2) P.Q=Q.P=P.R=R.P=Q.R=R.Q=0,
P.S=S.P=Q.S=S.0=R.S=S.R=0,

(3) P2P=P, Q*=Q, R*=R,

(4) L=0>2>r(S), pp=0.ly, |of=1.

We take x, € # such that

(5" Pxo +0, Oxo+ Rxqg+0, QOxo— Rxo=*0.
For a symmetric T, only two cases are possible: « = 1 or &« = —1. If « = 1 then
Uy = A, and

T=P+ A0+ S where Q= Q + R.
For this T, (2)—(5) are fulfilled. We have already discussed this case.

Let now a = —1. Then p, = —4,,

T=P+1,(0—-R)+S.
In this case
(12) X =P +20 + (—1)"/1’§R + Sk,
=1 —n + o(2y),
where

e = (1 = 45) (Qx0, Xo) + (=1 ' (1 + 4,) (Rxo, Xo) 2k
‘ (Pan xO) : ’
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or else

_ (=)@l = (14 23) [Rol? 5o,

HPxo|l2
Nak+1 = (1 - }'2) ”QxOHZ + (1 + )2) “RXOHZ "\
| Pxo?
One can easily show that ;
(i) woe < 1o (1 = 4p) [ Qxo[* ~ (1 + ) |Rxo[* > 0,

Hak+1) — Kok = }-2(%2k — Hak- 1)) + 0( )
and x,, — 1 for k — co.
Thus, either |Qx,|* > [(1 + 4,)/(1 — A;)] |Rx,|? and then for sufficiently large k
Hok < Hagerry < 1 =4y,
or
Hok > Hagery > 1= 4q .

(ii) For k sufficiently large, %,,,.,; < 1. Moreover,

2 2%
Hager 141 — Kakr1 = Al %ake1 — Xag—1y+1] + 0(A39)

and x%,;..4 = 1 for k — 0.
Thus, x4 -1y+1 < %2141 < 1 = Ay for k sufficiently large. For the sequence
{u) (for gy = —1), (12') yields
T = 1+ Xk + 0(}.1;),

where
A (1 - ’12) (L }“2) (on, Xo) + ( 1)k (L + AZ) (L+ ’12/ L
(1 = L)(Pxo, xo)
),k 2
(1 - L) (Pxo, xo)
with

Ee=(1 =) (L= 25) | @xo]* + (=172 (L + 4) (L + 4y) | Rxo|?
or, in more detail,
b = (1 - '12) (L“ lz) H on||2
Eaerr = (1= 20) (L= 22) | @xo]* = (1 + 25) (L + 25) [ Rxo|? -
One can show that ‘
(i) for k sufficiently large (L > 4,), 75, > 1. Moreover,

Tak+1) — T2k = lg(Tzk - Tz(k—l)) + 0(’3")

and 15, — 1 for k - co.
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Thus ©,, > Tag+1) > 1 = 41 for k sufficiently large.

J AL+ Ay, [Rxo|?

(ii) Torr > 1 “Q"OHZ (1= 2)(L— %)

Tok+1)+1 — T2k+1 = lg(TzkH - Tz(k—1)+1) + o(}é"),
Tox+1 — 1 for k — oo.
Thus, either
s > (4202 ol
— 42) (L= 1)

and then (for k sufficiently large)

Tyt > Taxtr > 1= A,
or

Tagrys1 < Taprr <1 =4y .
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Souhrn
JESTE JEDNOU O MONOTONII TEMPLOVYCH KVOCIENTU
DRAHOSLAVA JANOVSKA, IvO MAREK

Je poddn novy ditkaz monotonie Templovych kvocientil pro vypocet dominantniho
vlastniho ¢isla ohraniGeného linedrniho operdtoru. Vyklad se provddi pro ptipad
normdlniho operdtoru, vysledky vsak lze zobecnit na daleko S§irsi tfidu linedrnich
operdtorii. Oproti zndmym dikaziim podanym J. Albrechtem a F. Goerischem
v [1] a K. Rektorysem v [2] je v této prdci pfedloZeny dikaz znagn€ jednodussi a
metoda vySetfovdni obecnéjsi. Navic je ukdzdno, Ze pro piipad Kelloggovych-
Templeovych kvocientll je interval piipustnych posuvii obecné vEtsi neZ ve vyse

uvedenych pracech.
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