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EQUATIONS OF MAGNETOHYDRODYNAMICS
OF COMPRESSIBLE FLUID: PERIODIC SOLUTIONS

MIiLAN STEDRY, OTTO VEJVODA

(Received December 22, 1983)

1. INTRODUCTION

An initial boundary value problem for a system of equations of magnetohydro-
dynamics of incompressible, electrically conducting and viscous fluid was treated
in [5]. The existence of time periodic solutions of a slightly more general system
was dealt with in [4]. In [6] A. Valli proved the global existence and exponential
stability of solutions to the initial-boundary value problem for the Navier-Stokes
equations for the flow of compressible and barotropic fluid assuming that both the
initial velocity and the external force are small and the initial density is not far from
a constant. As a consequence it has been shown that small time periodic external
forces give rise to periodic solutions of the problem in question.

The aim of this paper is to show that the methods of [6] can be applied when an
initial-boundary value problem for a model of magnetohydrodynamics is studied.
The model treated below consists of a standard system of equations, see [7], and [3]
as far as the boundary conditions are concerned, in which the displacement current
in the Maxwell equations and the Lorenz electric force in the momentum equation
are allowed for. Unfortunately, Ohm’s law is adopted in its simplest form neglecting
both Hall’s effect and the convective current.

By Q we shall denote a region with a smooth boundary dQ and homeomorphic
to a ball. For T > 0 we set

Qr=0.T)x Q, 2 =(0,T) x 0Q.
In Qr we shall take the following system of equations:
(L.1) oo, + (v.V)v) =nAv + (L +n/3)Vdive — Vp + gE + j x B + ¢b,
(1.2) 0, + div(ev) =0,
(1.3) B, +10tE =0,
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(1.4) divB =0,

1.5 ¢E, +j— u 'rotB=0,
(1.6) q=c¢divE,
(1.7) j =+%E+ v x B).

Moreover, the functions v, ¢, B, E are to satisfy the boundary conditions on Z:

(1.8) v =0,
(1.9) B, =0,
(1.10) E. =0,

and the initial conditions on Q:

(1.11) (0, *) = v,,
(1.12) e(0,°) = o>
(1.13) B(0, *) = By,
(1.14) E@,*)=E,.

In these equations we denote by

the velocity of the fluid,

the density,

the given external mass force,

the pressure (the barotropic case),
the magnetic field,

the electric field,

the electric current,

the net charge.
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The constants #, {, &, © and x are supposed to be positive. The subscripts n and
denote the normal and tangential components of a vector, i.e., if n denotes the unit
outward normal to 0Q at a point x € 82 and “*” the scalar product in R3, then we set

B, = B.n — the normal component of B at x,
E, = E — (E.n)n — the tangential component of E at x.

As far as the notation is concerned we shall combine those of [6], [5] and [2]. The
domain Q remains fixed and therefore the symbol Q in the notations of spaces will

be suppressed. .
We shall denote by H* the space of real functions on Q which along with their
generalized derivatives up to order k belong to I*(Q). For u € H* we set

Jof? = (3 Ioeld),
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where

] = J w(x) dx.
2
The scalar product in H® = [*(Q) is
{u, vyy = f u(x) v(x) dx.
Q2

By H} we denote the closure of Cy(R)in H'. For 0 < T < 4 o0, X a Banach space
and j a non-negative integer, Cj([O, T];X) denotes the space of functions whose
derivatives up to order j are continuous from [0, T] into X. Similarly, Ci(R", X)
denotes the functions from R* into X whose derivatives up to order k are continuous
and bounded on R*.

The norms in I#(0, T; H*)and L#(0, T, L(R2)) will be denotet by [ ], . 7 and [{|[ 4.,z
respectively.

In what follows we shall not make any difference in the notation of scalar and vector
functions on @ and Q.

A vector v = (v, v,, v3) is called solenoidal if dive = 0. Following [2], we
denote

°J the closure in L*(2) of solenoidal vectors from Cg(Q),
J the closure in I*(Q) of solenoidal vectors from C'(Q),
and for an integer I, [ = 1 we shall use the notations
J'={ueH' divu =0 in Q},
°Ji={uel'; u,=0 on 0Q},
°Jy={ueJ' u, =0 on dQ},
and for | =0
=T, °Jy="°J.
Following the notation of [5] we set

J ={B = (By, B,, B;); Be J*, B, = 0 and (rot B), = 0 on 9Q} .

By Theorem 7.1 from [2], rot is a homeomorphism of °J! onto °J!™'. The inverse
mapping we denote by Z, i.e., if Be °J.™!, we denote by ZB the function we H*
satisfying divw = 0, rot w = B in  and w, = 0 on Q.

We shall use an auxiliary operator V defined as follows: for a € H*, a scalar function,
we set Va = grad ¢, where ¢ satisfies Ap = ain Q and ¢ = 0 on 0Q. Hence, for every
positive integer k, V is a linear bounded operator from H*~! into H*. Moreover,
(Va), = 0 on 9Q. We start the investigation of the system (1.1)—(1.14) by reducing
it to an equivalent system. If we denote

a(r) = div E(1),
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then, by (1.3), we have rot E = — B, and, by the definition of ¥, rot (E — Va) = —B,.
Since div(E — Va) = 0 in Q and (E — Va), = 0 on (0, T) x 0Q we immediately
obtain

E=Va—ZB,.

When j from (1.7) is inserted into (1.5) and div applied to the resulting relation, an
equation for a is obtained. Further, (1.3), (1.5) and (1.7) yield a second order equation
satisfied by B. Throughout the paper we shall suppose

0<mz=gy(x) <M on Q.
Setting

0 =J 00(x) dx/meas (Q)
we denote ’
og=0—0
Thus the following system of equations for v, ¢, B and a corresponds to (1.1)—(1.14):
(1.15) (@+o)(v,+@.V)v) =nAv+ ({+n3)Vdive —

— Vp(@ + o) + ea(Va — ZB,) +
+x(Va —ZB, +vx B) x B+ (2 +0)b in Qr,

(1.16) 6, +v.Vo +odive + gdive =0 in Qr,
(1.17) euB,, + xuB, + rotrot B = xprot(v x B) in Qp,
(1.18) divB=0 in Qy, 7

(1.19) ex 'a, + a = —div(v x B) in Qr,

(1.20) v=0 on Zp,

(1.21) B,=0 on ZX,,

(1.22) rot, B=0 on X,

(1.23) w0, *) =0, in Q,

(1.24) 0(0,*) =0, in Q,

(1.25) B(0,*) =B, in Q,

(1.26) B(0,*) =B, in Q,

(1.27) a(0,+) =a, in Q,
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where
0o = Qo — Q>
B, = —rotE, and a, = divE,.
In (1.22) we have used rot, B to denote (rot B).. From now on we shall keep to this
simplified notation.
We shall use results and methods of [6] when investigating the problem given by

(1.15)—(1.27). 1t is easy to prove that from a solution of (1.15)—(1.27) one can get
a solution of the original system (1.1)—(1.14).

2. LINEARIZED EQUATIONS

In this section we give some auxiliary assertions on existence of solutions of
linearized problems. The first two are taken over from [6].
First we shall deal with the problem

(2.1) ov,+ Av =F in Qn,
v=0 on X,
v(0) =v, in Q,

where
A = —nA — ({ + n/3) grad div

and @, F and v, are given functions. By Lemma 2.2 from [6], we have

Lemma 2.1. Let 0 < m[2 £ §(t,x) < 2M a.e. in Qr, 0 <m < 9(0,x) < M a.e.
in Q, Vg e L0, T; L°(Q)), é,€ I*(0, T; 1}(RQ)), Fe 10, T; H'), F,e (0, T; H™ ')
and vye H> 0 Hy. Then the solution v of (2.1) is such that ve I0,T; H*) N
n C([0, T]; H?),

v, € X0, T; H') n L*(0, T; H°)
and
(22) [D]Zo,z,r + [0]5,31 + [Ut]i,o,r + [Ut]g,l,T s
SA[Fl 0+ [Floor + ([Flo -1 + ”00”5 +
+ [FO)5) (1 + [[VellZ.r + Nl@c13.5.0) exp (cfled]3.s.0)} -
Here H™! denotes the dual of Hj. Further we shall need a solution to
(2.3) 6,+7.Vo +odivi +gdivi =0 in Qp,
| o(0) = o, in Q.

By [6], Lemma 2.3, we have
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Lemma 2.2. Let 5 € L'(0, T, H®), § . n = 0 on Xy, and 64 € H* with [, 0, dx =0.
Then there exists a unique solution ¢ of (2.3) such that ¢ e C°([0, TT; H?),
Joo(t, x)dx = 0 for each te [0, T] and

(24 [e]w,2r = e(Joolla + 1) exp (c[T]1,5,7) -
If, in addition, 5 € C°([0, T], H?), then ¢, e C°([0, T]; H') and
(2:5) [ow,i.r = e8] ,2,2(]lo0]2 + 1) exp (c[2]s 37)-

Further, we shall deal with the following system:

(2.6) euB, + »uB, + rotrot B =G in Qy
B, =0, rot,B=0 on X,
B(0) = B,, B(0)=B, in Q.

We give the following two existence results concerning (2.6).

Lemma 2.3. Let Ge L*(0, T;°J}), Bye J and B, € “J,.
(i) Then there exists a unique Be L*(0, T; J), B, e L*(0, T; °J,), B, € L*(0, T; °J)
satisfying (2.6).
(ii) Moreover, B satisfies
. ©,2,T tlo,1,7 = €\||Pofl2 11 0,1,T) >
(2.7) (B2 + [Bloor = o([|Bo]z + By} + T[GL 1 1)
[Biloo.r = el]|Boz + Bl + T[GLZ 1 x + [G15 0,1} -

Lemma 2.4. Let Ge C([0, T]; °J}), Bye J, By e°J..

(i) Then there exists aunique B e C([0, T]; J) n C'([0, T]; °J;) n C([0, T]; °J)
satisfying (2.6).

(ii) There exist positive constants dy,d, such that, for every 0 <t <1t < T,
the following inequality holds:

28) W(B) (1) - ¥(B)(2) + d, f ([rot rot B3, *)[2 + [rot B9, -)[2) dé <
= s [ (ot 600, )i + 6. )95,
where V) is defined by

(2.9) W(B) (1) = |[rot rot B(¢)||§ + exlrot By(r, *)||2 +
+ Trpdrot B(t), rot B(t)yo + »*u(4e)™" [rot B(1)] -
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Remark. It is easy to show that
e Y(1) < Bt )T + ||B(t, N3 = e ()

with positive constants ¢; and ¢, which are independent of B.

We shall sketch the proofs of these two lemmas using the method of [5] Let
{ak},‘j’:l be the system of all functions from J satisfying

rotrot oy = Ly (4 > 0),
s 040 = 5’;

with 4, nondecreasing. {o,};%, is a complete orthonormal system in J. For a func-
tion ¢, let ¢, = {@, & >o. Then

0

(i) ¢ €°J if and only if ) ¢p < +o0,

k=1

(ii) ¢ e°Jy if and only if ) AeF < + o,
k=1
(iii) @ € J if and only if Y ZZ¢; < + co.
k=1
Moreover,

0

[ols =20k for peJ,
0
[rot o] = ¥ g for ge°Jy,
k=1
[rot rot o3 =kzli,f(p,f for pelJ.

Let us also recall that

(2.10) ool = [roto]s = es]lo]i for gecuy,
and
(2.11) o lo]3 £ |rotroto|§ < ¢y]@]3 for g@elJ.

If a, be H' and a, = 0 on 0, then

J‘rota.sz‘a‘rotb.
0 0

Denoting M, = lin {o};-, and B"(t) = Y by(t) o, with b, satisfying
k=1

(2.12) e by(t) + %p by(t) + A bi(t) = <G(1), %> ,
bk(O) = {(Bo, 40 bk(o) = By, %o ,
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we find that B" satisfy

(2.13) (e Bi(t) + »u Bi(t) + rotrot B'(t), who = {G(t), w)o, weM,.
Taking w = rot rot B}, we obtain

d

% {eu]rot By(1)[§ + [rot rot B'(1)[|3} + xu| rot Bi(t)||3 < ()~ " [[rot G(1)]3 -
Using this inequality and proceeding along the standard lines, we complete the proof

of Lemma 2.3.
Substituting w = rot rot B" into (2.13), we get the inequality

—;—it- {2eudrot B'(), rot By(1)>o + x| rot B'(1)]5} —
~ 2urot BY(@)]3 + rotrot B = [G(O)]3
which multiplied by »/(4¢) and added to the preceding one yields
1) S ) (O] + x(ae) rot ot O + ot B3 =
< (on) " [rot G} + (of4e) [G(0)]3 -
If Ge C([0, T]; °J;), then the series
6(1) =k§1(G(t), 50 %

converges in C([0, T]; °J,). By direct computation, this implies that

ps

bi(t) oy convergesin C([0, T]; J),
1

-~
n

D8

by(t) o, convergesin C([0, T]; °J})

=~
I
-

and .
Y bt) %, convergesin C([0, T]; °J).
k=1

This gives part (i) of Lemma 2.4. Integrating (2.14) on [7, ], we have (2.8) for
B = B". Letting n — oo, we complete the proof.

The last lemma in this section deals with the equation obtained by linearizing
(1.19). We are looking for a function a satisfying

(2.15) ex 'a,+a=h, 0<t<T, ‘a(()):ao_

The proof of the following lemma is straightforward.
Lemma 2.5. Let he L*(0, T; H*) and a, € H*.
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(i) There is a unique ae C(0, T; H*) with a,e L*(0, T; H*) satisfying (2.14)-
Moreover,

(2.16) [al% . = c(Jao)i + T[hL% 1)
[at]go,k,T C(Uao]lf + [h]i,k,'r)-

(i) If he C([0, T]; H*), then a € C'([0, T]; H*) and for every t,1,0 <t <t < T,
we have

@17 @) - Ja@]? + ds j Ta(®)]2 09 = . j I1(9)

IIA

IIA

2 d9g

with positive constants dy and d, independent of h.

3. LOCAL EXISTENCE

We set
X; ={v;0eL*(0, T; H*) n I*(0, T; H?),
v, € L*(0, T; H°) n I2(0, T; HY)} ,
Yy ={0;0€L*0, T;H?, 6, L*(0, T,H")} ,
By = {B; Be L*(0, T; J), B,e L(0, T; °J;), B, e L*(0, T;°J)} ,
oAy =1{a;ael”0,T;H"), a,e L*(0, T; H')} .
The space X is equipped with the norm

"””Xr = max {[v]e 2.1 [0]2535m [0c]w0.ms [0e]asior) -

The norms in Yy, 81 and &/ are defined in an obvious manner ensuring the complete-
ness of the spaces involved.

Let T, K,, K, be positive constants. Following [6] we introduce
Ry ={(v,0,B,a); veXy, 6€ Yy, Be By, ac sy,

lollxr < Ky 0(0) = vo,
[0]w2r S Ki, [0]wir=Ks, 0(0) =00 — 0,
0<im=<g+o(t,x) £2M ae in Qr,
[Blo2r + [Blw.ir S K1y [Bilwor = K,
B(0) = B,, B,(0)= B,
[a]w1r SKi, [a]ewi1,r =Kz, a(0) =a,}.
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For any (¥, ¢, B, 4) € Ry we denote by (v, o, B, a) the functions given by

(i) v is a solution of (2.1) with
6= 0+ G,
F F + ¢b, A
F=—-g@®.v)8 - p'(6)Vé + ed(Va — ZB,) +

+ «(Va— ZB, + © x B) x B,

(ii) o is a solution of (2.3) with 6, = ¢, — @,

(iii) B is a solution of (2.6) with G = xurot (¥ x B),

(iv) a is a solution of (2.15) with h = —div (¥ x B).

Using
IVellser + l@dl2s,r = e(Ki, Ka) T,

[F1%.0.0 = {|FO]S + TLF1Z0.r + [6]%.0.7}
and Lemma 2.1, we get
[ol%. < {[FI3,00 + [Fl2-i0 + T[F L0 +
+ ool + [FO)5 + [61% 0,0 + [0613,0,r +
+ [(80).15. -1 1} (1 + Te(Ky, K,)) exp (Te(K , K,)) -
It is not difficult to show that
1F©@)]5 = P([vo2» |
where P is a polynomial, and
[F]g,l,'l‘ = c(_Kl’KZ) T,
(3.1) [F 11 = oK, Ky) T,
(3'2) [Fz]g,o,r = O(Kls -Kz) .

This is analogous to [6] since F appearing there is extended here only by a part F
which comes from the electrodynamical forces, i.e.,

ByJlos flaol 1)

o |

o] 1» [ Bo

F =ca(Va — ZB,) + «(Va — ZB, + v x B) x B.
But for F we even have
[F(0)]5 < e(K,,K,) forall ¢,
which implies (3.1) and (3.2). Thus the function v satisfies
loll%, = {e(Ke Ko) T+ e(Ky, Ko) ([613 1 + [b.]3,-1,0) +
+ eP([vo]2> lools> [Bolls> [Billo [lao]ls) +
+ c[b]% 0.0} (1 + ¢(Ky, K,) T)exp (o(Ky, K,) T) .
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The function ¢ defined in (ii) is estimated as in [6]. The function B defined in (iii)
is estimated with the help of (2.7). As G = xurot (¥ x B), we have

[GO]F < o(K,) forae t, 0<t<T.
Using Lemma 2.3 we obtain the estimates

[Bl% .20 + [Bdoir < e(Ki) T+ (|| Bo]3 + [|B4]7)
and

[th]zo,O,T = C(Kl)(1 + T) + C(HBOM + HBIIH) .

Further, by Lemma 2.5 with k = 1, we get for a defined in (iv)

[a]2 7 S (K, T+ 0”%”1 )
[at]i,l,T C(Kl) (1 + T) + C”"O“l :
The estimates of v, o, B and a show that there are positive K, K, and T such that
Ry # 0 and (v, 0, B,a)e Ry for any (7,6, B, @ e Ry. The correspondence
(¢, 6, B, ) - (v, 0, B, a) thus defined will be denoted by @.
Further we introduce the space 2 by

A 1IIA

% ={(v,0,B,a); ve L”(0, T; H'), 6 € L*(0, T; H"),
Be L*(0, T; H'), B,e L”(0, T, H°), a € L*(0, T; H°)} ,
with a norm defined as the maximum of the corresponding norms of v, o, B and a.
The mapping @ maps Ry into itself and, as it is not difficult to show, it is continuous
in the norm of #. By Schauder’s theorem, there is a fixed point (v, o, B, a) of @,
i.e. a local solution of (1.15)—(1.27). This solution is unique, as one can show proceed-
ing along the lines of [6].
The first component v of the solution satisfies
ve C[0, T]; H?) and |[[v] g, < K .

We shall look for a solution B e C°([0, T]; J) n CY([0, T]; °J}) 0 C*([0, TT; °J) of
(3.3) euB,, + uuB, + rotrot B = xprot(v x B) in Qr,

divB=0 in Qg,

B,=t10t,B=0 on ZXp,

B(0)=B,, B(0)=B, in Q.

We put @y = ([0, T]; J) n C'([0, T]; °J2)

and by ¥ we denote the operator assigning, according to Lemma 2.4 (i), to Ge
e C([0, T]; °J;) the function B satisfying (2.6). Since

oot (0) x B3 < el [BOE. 0T,
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the mapping ¥(xurot (v x B)) is a mapping of & into itself, and moreover, its
fixed point is a solution to (3.3). By (2.7) we find that for T sufficiently small, B —
— Y(xurot (v x B))is a contraction on . The fixed point of this contraction is
a solution of (3.3). Obviously, also B, e C°([0, T]; °J). But B and B coincide, there-
fore

Be C°[0, T]; J) n C([0, T]; °J}) n C*([0, T]; °J)

and B satisfies the estimate (2.8) with G = xu rot (v x B). Similarly, a e C'([0,T]; H")

and satisfies (2.17) with h = —div (v x B). Hence, the following theorem is proved.

Theorem 3.1. Let be L] (R*;H'), b,e L], (R*;H™"), peC® with p" > 0.
Further let voe H* n H), go€ H%, 0 < m < go(x) £ M in Q, ByeJ, Eqe H?,
(Eo). = 0 on 0Q. Then there is (a suffioiently small) T > 0 and functions

v € 120, T; H?) n C°([0, TT; H?) with

v, e X0, T, H') n C°([0, T]; H°),

0 €C[0, T]; H?) with ¢,e C°([0, T]; H') and
o(t,x)>0 on Qr,

BeC([0, T]; J) n C([0, T]; °J}) n C([0, T]; °J),

EeC'([0, T]; H?)

such that (v, o, B, E) satisfy (1.1)—(1.14).

4. GLOBAL AND PERIODIC SOLUTIONS

Let ¢ be defined by (4.47) of [6], i.e.,
o(t) = Jp()|[T + |o(I[3 + ea]v(D]s + 54% le®]5 + es[o(0)]3

where [+], is the sum of I*-norms of interior and tangential derivatives of orders
less or equal to 2 and ]|*|[, is a norm equivalent to | [ ,. Denoting

& = o2 + ol + ol + o

we have, by integrating (4.48) in [6] over (7,7),0 <t <t < T,

(1) ﬂg—¢a+quwg

T

< < [1060) (09) + #10) + /O + @) + B®) 49,

where 1

ft=

" {ea(Va — ZB,) + (Va — ZB, + v x B) x B}
o+o
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and
B(t) = [b(@)]t + [b(0)]2 -

In what follows we drop B from y(B) (¢) defined in (2.9), writing y(¢) = ¥(B) (1).

Using this  we set
1) = o(t) + ¥(e) + [a(r)[ .
Further we denote
¥(t) = d,(|rot rot B(t)||5 + |rot B.(1)]3)
and
1(t) = (1) + ¥(1) + [la()]} -
Using (4.1), estimates (2.8) and (2.16) we get, for 0 S t <t < T,

(4.2) x(t) — x(v) +J

T

t

nwm9§ofqm@my+ww»w+

T

+cthW%+1uw10ds+cj1wmcmz+uem>m;+

t t
+cj”M®Md9+cfﬁ@ym,
where
G = xurot (v x B),
h =div(v x B).
Given positive o, and o, we set

2
1>

X(1) = 2 11(1) + o | Bl + oa]lad

- X(0) = [0z + Jul? + ol + o + duJrot rot BJ3 +
+ dyJrot B3 + oy Bl + al} + el
A direct computation shows that
D7 + 142+ [rot Gl + [6J3 + 1Al < e X(z + 7).

Using this inequality and estimating |B,/]|s and |a,| with the help of (1.17) and
(1.19), we see that «, and , can be chosen in such a way that the following inequality
holds 0 £t <t T:

@3) Ag-ﬂ@+]&@ﬂ9§cj}@xﬂ®+x%®m9+zfm@d&

T T T

As the function x(t) is continuous on [0, T] and

x(t) £ ¢ X(t) forae. te(0,7),
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one easily proves that there are two constants § and A such that the following im-
plication holds: If (0) < A4 and B(t) < 6 for a.e. te(0, T), then x(t) < A for all
te [0, T]. This proves the following theorem on global existence:

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied. Moreover, let

looll2 + lleo = @]z + [|Boll> + [|Eo]l2 and [blw,1,0 + [Be)e,—1,0 be sufficiently
small. Then there exist unique

veli,(R*; H) n Cy(R*; H?) with v, e L]
0 € Cy(R*; H?) with ¢,e Cj(R*; H'),

Be Cy(R*; J) n Ci(R*;°J3) n CH(R*;°J),
E € Cy(R*; H?)

suoh that (v, ¢, B, E) satisfy (1.1)—(1.14) on R*.

loc

(R*; HY) n C3(R*; H),

If (v;, 04, B;, @;), i = 1, 2 are solutions of (1.15)—(1.22) with the initial conditions

(vio» 010> Bio» Biy, ai), we denote
W=0v —0,, Wy =109 — Usg-
W =0y =02, Ho = 010 — 020> _
D=B, -B,, Dy=Byy— B,y, D, =B, — By,
d =a, —a,, dy =a;0 — ay-

Proceeding as in [6] we find that there are positive 4, ¢, 6 such that

(4.4) Iw@lo + In@lo + [2®)]: + [P0 + )]0 =

< e ([walo + oo + Bl + [Bilo + Jalo). 1< R* ., provided

[violl2 + lowoll2 + [Bulls + [ai]s <6 for i=1,2.

Using (4.4) we can follow the approach of [6] and prove the existence of periodic
solutions.

Theorem 4.2, Let be L*(R*; H'), b,e L(R™; H™ ') be T-periodic in t and pe C?,
p, > 0.

If [Blwa,w + [bdew.—1,0 is sufficiently small, then there exists a T-periodic
solution of (1.1)—(1.14).
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Souhrn

PERIODICKA RESENI ROVNIC MAGNETOHYDRODYNAMIKY
STLACITELNYCH TEKUTIN

MiLAN STEDRY, OTTO VEIVODA

Je dokdzdna globdlni existence a exponencidlni stabilita feSeni daného systému
rovnic v piipadg, Ze pocédteni rychlosti a vné&jsi sily jsou malé a poédteéni hustota
se piili§ neli$i od konstantni. Jsou-li kromé& toho vné&jsi sily periodické, existuje
feSeni periodické se stejnou periodou. Systém uvaZovanych rovnic se trochu lisi

od obvykle uvaZovaného systému; napfiklad posuvny proud neni zanedbdn.
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