Aplikace matematiky

Milan Štědrý; Otto Vejvoda

Equations of magnetohydrodynamics of compressible fluid: Periodic solutions

Aplikace matematiky, Vol. 30 (1985), No. 2, 77-91
Persistent URL: http://dml.cz/dmlcz/104130

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

EQUATIONS OF MAGNETOHYDRODYNAMICS OF COMPRESSIBLE FLUID: PERIODIC SOLUTIONS

Milan Štědrý, Otto Vejvoda

(Received December 22, 1983)

1. INTRODUCTION

An initial boundary value problem for a system of equations of magnetohydrodynamics of incompressible, electrically conducting and viscous fluid was treated in [5]. The existence of time periodic solutions of a slightly more general system was dealt with in [4]. In [6] A. Valli proved the global existence and exponential stability of solutions to the initial-boundary value problem for the Navier-Stokes equations for the flow of compressible and barotropic fluid assuming that both the initial velocity and the external force are small and the initial density is not far from a constant. As a consequence it has been shown that small time periodic external forces give rise to periodic solutions of the problem in question.

The aim of this paper is to show that the methods of [6] can be applied when an initial-boundary value problem for a model of magnetohydrodynamics is studied. The model treated below consists of a standard system of equations, see [7], and [3] as far as the boundary conditions are concerned, in which the displacement current in the Maxwell equations and the Lorenz electric force in the momentum equation are allowed for. Unfortunately, Ohm's law is adopted in its simplest form neglecting both Hall's effect and the convective current.

By Ω we shall denote a region with a smooth boundary $\partial \Omega$ and homeomorphic to a ball. For $T>0$ we set

$$
Q_{T}=(0, T) \times \Omega, \quad \Sigma_{T}=(0, T) \times \partial \Omega .
$$

In Q_{T} we shall take the following system of equations:
(1.1) $\varrho\left(v_{t}+(v . \nabla) v\right)=\eta \Delta v+(\zeta+\eta / 3) \nabla \operatorname{div} v-\nabla p+q E+j \times B+\varrho b$,

$$
\begin{equation*}
\varrho_{t}+\operatorname{div}(\varrho v)=0, \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
B_{t}+\operatorname{rot} E=0 \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{div} B=0, \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon E_{t}+j-\mu^{-1} \operatorname{rot} B=0, \tag{1.5}
\end{equation*}
$$ $q=\varepsilon \operatorname{div} E$,

$$
\begin{equation*}
j=x(E+v \times B) . \tag{1.6}
\end{equation*}
$$

Moreover, the functions v, ϱ, B, E are to satisfy the boundary conditions on Σ_{T} :

$$
\begin{align*}
& v=0, \tag{1.8}\\
& B_{n}=0, \tag{1.9}\\
& E_{i}=0, \tag{1.10}
\end{align*}
$$

and the initial conditions on Ω :

$$
\begin{align*}
& v(0, \cdot)=v_{0}, \tag{1.11}\\
& \varrho(0, \cdot)=\varrho_{0} \tag{1.12}\\
& B(0, \cdot)=B_{0}, \tag{1.13}\\
& E(0, \cdot)=E_{0} . \tag{1.14}
\end{align*}
$$

In these equations we denote by

v	the velocity of the fluid,
ϱ	the density,
b	the given external mass force,
$p=p(\varrho)$	the pressure (the barotropic case),
B	the magnetic field,
E	the electric field,
j	the electric current,
q	the net charge.

The constants $\eta, \zeta, \varepsilon, \mu$ and χ are supposed to be positive. The subscripts n and τ denote the normal and tangential components of a vector, i.e., if n denotes the unit outward normal to $\partial \Omega$ at a point $x \in \partial \Omega$ and " "" the scalar product in R^{3}, then we set
$B_{n}=B . n$ - the normal component of B at x,
$E_{\tau}=E-(E . n) n$ - the tangential component of E at x.
As far as the notation is concerned we shall combine those of [6], [5] and [2]. The domain Ω remains fixed and therefore the symbol Ω in the notations of spaces will be suppressed.

We shall denote by H^{k} the space of real functions on Ω which along with their generalized derivatives up to order k belong to $L^{2}(\Omega)$. For $u \in H^{k}$ we set

$$
\|u\|_{k}^{2}=\left(\sum_{|\alpha| \leqq k}\left\|D^{\alpha} u\right\|_{0}^{2}\right)^{1 / 2}
$$

where

$$
\|u\|_{o}^{2}=\int_{\Omega} u^{2}(x) \mathrm{d} x .
$$

The scalar product in $H^{0}=L^{2}(\Omega)$ is

$$
\langle u, v\rangle_{0}=\int_{\Omega} u(x) v(x) \mathrm{d} x .
$$

By H_{0}^{1} we denote the closure of $C_{0}^{\infty}(\Omega)$ in H^{1}. For $0<T<+\infty, X$ a Banach space and j a non-negative integer, $C^{j}([0, T] ; X)$ denotes the space of functions whose derivatives up to order j are continuous from $[0, T]$ into X. Similarly, $C_{B}^{j}\left(R^{+}, X\right)$ denotes the functions from R^{+}into X whose derivatives up to order k are continuous and bounded on R^{+}.

The norms in $L^{q}\left(0, T ; H^{k}\right)$ and $L^{q}\left(0, T, L^{s}(\Omega)\right)$ will be denotet by $[\cdot]_{q, k, T}$ and $\|\cdot\|_{q, s, T}$, respectively.

In what follows we shall not make any difference in the notation of scalar and vector functions on Ω and Q_{T}.

A vector $v=\left(v_{1}, v_{2}, v_{3}\right)$ is called solenoidal if $\operatorname{div} v=0$. Following [2], we denote
${ }^{\circ} J$ the closure in $L^{2}(\Omega)$ of solenoidal vectors from $C_{0}^{\infty}(\Omega)$,
J the closure in $L^{2}(\Omega)$ of solenoidal vectors from $C^{1}(\Omega)$,
and for an integer $l, l \geqq 1$ we shall use the notations

$$
\begin{aligned}
J^{l} & =\left\{u \in H^{l} ; \operatorname{div} u=0 \text { in } \Omega\right\}, \\
J_{\tau}^{l} & =\left\{u \in J^{l} ; u_{\tau}=0 \text { on } \partial \Omega\right\}, \\
{ }^{\circ} J_{n}^{l} & =\left\{u \in J^{l} ; u_{n}=0 \text { on } \partial \Omega\right\},
\end{aligned}
$$

and for $l=0$

$$
{ }^{\circ} J_{\tau}^{0}=J, \quad{ }^{\circ} J_{n}^{0}={ }^{\circ} J .
$$

Following the notation of [5] we set

$$
\hat{J}=\left\{B=\left(B_{1}, B_{2}, B_{3}\right) ; B \in J^{2}, B_{n}=0 \text { and }(\operatorname{rot} B)_{\tau}=0 \text { on } \partial \Omega\right\} .
$$

By Theorem 7.1 from [2], rot is a homeomorphism of ${ }^{\circ} J_{\tau}^{l}$ onto ${ }^{\circ} J_{n}^{l-1}$. The inverse mapping we denote by Z, i.e., if $B \in{ }^{\circ} J_{n}^{l-1}$, we denote by $Z B$ the function $w \in H^{l}$ satisfying $\operatorname{div} w=0$, rot $w=B$ in Ω and $w_{\tau}=0$ on $\partial \Omega$.

We shall use an auxiliary operator V defined as follows: for $a \in H^{k}$, a scalar function, we set $V a=\operatorname{grad} \varphi$, where φ satisfies $\Delta \varphi=a$ in Ω and $\varphi=0$ on $\partial \Omega$. Hence, for every positive integer k, V is a linear bounded operator from H^{k-1} into H^{k}. Moreover, $(V a)_{\tau}=0$ on $\partial \Omega$. We start the investigation of the system (1.1)-(1.14) by reducing it to an equivalent system. If we denote

$$
a(t)=\operatorname{div} E(t),
$$

then, by (1.3), we have rot $E=-B_{t}$ and, by the definition of $V, \operatorname{rot}(E-V a)=-B_{t}$. Since $\operatorname{div}(E-V a)=0$ in Q and $(E-V a)_{\tau}=0$ on $(0, T) \times \partial \Omega$ we immediately obtain

$$
E=V a-Z B_{t} .
$$

When j from (1.7) is inserted into (1.5) and div applied to the resulting relation, an equation for a is obtained. Further, (1.3), (1.5) and (1.7) yield a second order equation satisfied by B. Throughout the paper we shall suppose

$$
0<m \leqq \varrho_{0}(x) \leqq M \quad \text { on } \quad \Omega .
$$

Setting

$$
\bar{\varrho}=\int_{\Omega} \varrho_{0}(x) \mathrm{d} x / \operatorname{meas}(\Omega)
$$

we denote

$$
\sigma=\varrho-\varrho
$$

Thus the following system of equations for v, σ, B and a corresponds to (1.1)-(1.14):

$$
\begin{align*}
& (\bar{\varrho}+\sigma)\left(v_{t}+(v \cdot \nabla) v\right)=\eta \Delta v+(\zeta+\eta / 3) \nabla \operatorname{div} v- \tag{1.15}\\
& -\nabla p(\varrho+\sigma)+\varepsilon a\left(V a-Z B_{t}\right)+ \\
& +\chi\left(V a-Z B_{t}+v \times B\right) \times B+(\bar{\varrho}+\sigma) b \text { in } Q_{T}, \tag{1.16}
\end{align*}
$$

$$
\begin{equation*}
v=0 \quad \text { on } \quad \Sigma_{T}, \tag{1.19}
\end{equation*}
$$

$$
\begin{equation*}
B_{n}=0 \quad \text { on } \quad \Sigma_{T}, \tag{1.20}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rot}_{\tau} B=0 \quad \text { on } \quad \Sigma_{T}, \tag{1.21}
\end{equation*}
$$

$$
\begin{equation*}
\sigma(0, \cdot)=\sigma_{0} \quad \text { in } \Omega, \tag{1.23}
\end{equation*}
$$

$$
\begin{equation*}
B(0, \cdot)=B_{0} \quad \text { in } \Omega, \tag{1.24}
\end{equation*}
$$

$$
\begin{equation*}
v(0, \cdot)=v_{0} \quad \text { in } \Omega, \tag{1.22}
\end{equation*}
$$

$$
\begin{equation*}
B_{t}(0, \cdot)=B_{1} \quad \text { in } \quad \Omega, \tag{1.25}
\end{equation*}
$$

$$
\begin{equation*}
a(0, \cdot)=a_{0} \quad \text { in } \Omega \tag{1.26}
\end{equation*}
$$

where

$$
\begin{gathered}
\sigma_{0}=\varrho_{0}-\bar{\varrho} \\
B_{1}=-\operatorname{rot} E_{0} \quad \text { and } \quad a_{0}=\operatorname{div} E_{0} .
\end{gathered}
$$

In (1.22) we have used $\operatorname{rot}_{\tau} B$ to denote $(\operatorname{rot} B)_{\tau}$. From now on we shall keep to this simplified notation.

We shall use results and methods of [6] when investigating the problem given by (1.15)-(1.27). It is easy to prove that from a solution of (1.15)-(1.27) one can get a solution of the original system (1.1)-(1.14).

2. LINEARIZED EQUATIONS

In this section we give some auxiliary assertions on existence of solutions of linearized problems. The first two are taken over from [6].

First we shall deal with the problem

$$
\begin{gather*}
\tilde{\varrho} v_{t}+A v=F \quad \text { in } \quad Q_{T}, \tag{2.1}\\
v=0 \quad \text { on } \quad \Sigma_{T}, \\
v(0)=v_{0} \quad \text { in } \Omega
\end{gather*}
$$

where

$$
A=-\eta \Delta-(\zeta+\eta / 3) \operatorname{grad} \operatorname{div}
$$

and ϱ, F and v_{0} are given functions. By Lemma 2.2 from [6], we have
Lemma 2.1. Let $0<m / 2 \leqq \tilde{\varrho}(t, x) \leqq 2 M$ a.e. in $Q_{T}, 0<m \leqq \tilde{\varrho}(0, x) \leqq M$ a.e. in $\Omega, \nabla \tilde{\varrho} \in L^{4}\left(0, T ; L^{6}(\Omega)\right), \tilde{\varrho}_{t} \in L^{2}\left(0, T ; L^{3}(\Omega)\right), F \in L^{2}\left(0, T ; H^{1}\right), F_{t} \in L^{2}\left(0, T ; H^{-1}\right)$ and $v_{0} \in H^{2} \cap H_{0}^{1}$. Then the solution v of (2.1) is such that $v \in L^{2}\left(0, T ; H^{3}\right) \cap$ $\cap C^{0}\left([0, T] ; H^{2}\right)$,

$$
v_{t} \in L^{2}\left(0, T ; H^{1}\right) \cap L^{\infty}\left(0, T ; H^{0}\right)
$$

and

$$
\begin{gather*}
{[v]_{\infty, 2, T}^{2}+[v]_{2,3, T}^{2}+\left[v_{t}\right]_{\infty, 0, T}^{2}+\left[v_{t}\right]_{2,1, T}^{2} \leqq} \tag{2.2}\\
\leqq c\left\{[F]_{2,1, T}^{2}+[F]_{\infty, 0, T}^{2}+\left(\left[F_{t}\right]_{2,-1, T}^{2}+\left\|v_{0}\right\|_{2}^{2}+\right.\right. \\
\left.\left.+\|F(0)\|_{0}^{2}\right)\left(1+\|\nabla \tilde{\varrho}\|_{4,6, T}^{4}+\| \| \tilde{\varrho}_{t} \|_{2,3, T}^{2}\right) \exp \left(c\left\|\tilde{\varrho}_{t}\right\|_{2,3, T}^{2}\right)\right\} .
\end{gather*}
$$

Here H^{-1} denotes the dual of H_{0}^{1}. Further we shall need a solution to

$$
\begin{gather*}
\sigma_{t}+\tilde{v} \cdot \nabla \sigma+\sigma \operatorname{div} \tilde{v}+\bar{\varrho} \operatorname{div} \tilde{v}=0 \text { in } Q_{T}, \tag{2.3}\\
\sigma(0)=\sigma_{0} \text { in } \Omega
\end{gather*}
$$

By [6], Lemma 2.3, we have

Lemma 2.2. Let $\tilde{v} \in L^{1}\left(0, T, H^{3}\right), \tilde{v} . n=0$ on Σ_{T}, and $\sigma_{0} \in H^{2}$ with $\int_{\Omega} \sigma_{0} \mathrm{~d} x=0$. Then there exists a unique solution σ of (2.3) such that $\sigma \in C^{0}\left([0, T] ; H^{2}\right)$, $\int_{\Omega} \sigma(t, x) \mathrm{d} x=0$ for each $t \in[0, T]$ and

$$
\begin{equation*}
[\sigma]_{\infty, 2, T} \leqq c\left(\left\|\sigma_{0}\right\|_{2}+1\right) \exp \left(c[\tilde{v}]_{1,3, T}\right) \tag{2.4}
\end{equation*}
$$

If, in addition, $\tilde{v} \in C^{0}\left([0, T], H^{2}\right)$, then $\sigma_{t} \in C^{0}\left([0, T] ; H^{1}\right)$ and

$$
\begin{equation*}
\left[\sigma_{t}\right]_{\infty, 1, T} \leqq c[\tilde{v}]_{\infty, 2, T}\left(\left\|\sigma_{0}\right\|_{2}+1\right) \exp \left(c[\tilde{v}]_{1,3, T}\right) \tag{2.5}
\end{equation*}
$$

Further, we shall deal with the following system:

$$
\begin{align*}
& \varepsilon \mu B_{t t}+\varkappa \mu B_{t}+\operatorname{rot} \operatorname{rot} B=G \text { in } Q_{T} \tag{2.6}\\
& B_{n}=0, \quad \operatorname{rot}_{\tau} B=0 \text { on } \Sigma_{T}, \\
& B(0)=B_{0}, \quad B_{t}(0)=B_{1} \text { in } \Omega .
\end{align*}
$$

We give the following two existence results concerning (2.6).
Lemma 2.3. Let $G \in L^{\infty}\left(0, T ;{ }^{\circ} J_{n}^{1}\right), B_{0} \in \hat{J}$ and $B_{1} \in{ }^{\circ} J_{n}^{1}$.
(i) Then there exists a unique $B \in L^{\infty}(0, T ; \hat{J}), B_{t} \in L^{\infty}\left(0, T ;{ }^{\circ} J_{n}^{1}\right), B_{t t} \in L^{\infty}\left(0, T ;{ }^{\circ} J\right)$ satisfying (2.6).
(ii) Moreover, B satisfies

$$
\begin{align*}
& {[B]_{\infty, 2, T}^{2}+\left[B_{t}\right]_{\infty, 1, T}^{2} \leqq c\left(\left\|B_{0}\right\|_{2}^{2}+\left\|B_{1}\right\|_{1}^{2}+T[G]_{\infty, 1, T}^{2}\right),} \tag{2.7}\\
& {\left[B_{t t}\right]_{\infty, 0, T}^{2} \leqq c\left\{\left\|B_{0}\right\|_{2}^{2}+\left\|B_{1}\right\|_{1}^{2}+T[G]_{\infty, 1, T}^{2}+[G]_{\infty, 0, T}^{2}\right\}}
\end{align*}
$$

Lemma 2.4. Let $G \in C\left([0, T] ;{ }^{\circ} J_{n}^{1}\right), B_{0} \in \hat{J}, B_{1} \in{ }^{\circ} J_{n}^{1}$.
(i) Then there exists a unique $B \in C([0, T] ; \hat{J}) \cap C^{1}\left([0, T] ;{ }^{\circ} J_{n}^{1}\right) \cap C^{2}\left([0, T] ;{ }^{\circ} J\right)$ satisfying (2.6).
(ii) There exist positive constants d_{1}, d_{2} such that, for every $0 \leqq \tau<t \leqq T$, the following inequality holds:

$$
\begin{gather*}
\psi(B)(t)-\psi(B)(\tau)+d_{1} \int_{\tau}^{t}\left(\|\operatorname{rot} \operatorname{rot} B(\vartheta, \cdot)\|_{0}^{2}+\left\|\operatorname{rot} B_{t}(\vartheta, \cdot)\right\|_{0}^{2}\right) \mathrm{d} \vartheta \leqq \tag{2.8}\\
\leqq d_{2} \int_{\tau}^{t}\left(\|\operatorname{rot} G(\vartheta, \cdot)\|_{0}^{2}+\|G(\vartheta, \cdot)\|_{0}^{2}\right) \mathrm{d} \vartheta
\end{gather*}
$$

where ψ is defined by

$$
\begin{gather*}
\psi(B)(t)=\|\operatorname{rot} \operatorname{rot} B(t)\|_{0}^{2}+\varepsilon \mu\left\|\operatorname{rot} B_{t}(t, \cdot)\right\|_{0}^{2}+ \tag{2.9}\\
+\frac{1}{2} \varkappa \mu\left\langle\operatorname{rot} B(t), \operatorname{rot} B_{t}(t)\right\rangle_{0}+\chi^{2} \mu(4 \varepsilon)^{-1}\|\operatorname{rot} B(t)\|_{0}^{2}
\end{gather*}
$$

Remark. It is easy to show that

$$
c_{1} \psi(t) \leqq\left\|B_{t}(t, \cdot)\right\|_{1}^{2}+\|B(t, \cdot)\|_{2}^{2} \leqq c_{2} \psi(t)
$$

with positive constants c_{1} and c_{2} which are independent of B.
We shall sketch the proofs of these two lemmas using the method of [5]. Let $\left\{\alpha_{k}\right\}_{k=1}^{\infty}$ be the system of all functions from \hat{J} satisfying

$$
\begin{gathered}
\operatorname{rot} \operatorname{rot} \alpha_{k}=\lambda_{k} \alpha_{k} \quad\left(\lambda_{k}>0\right), \\
\left\langle\alpha_{k}, \alpha_{l}\right\rangle_{0}=\delta_{l}^{k}
\end{gathered}
$$

with λ_{k} nondecreasing. $\left\{\alpha_{k}\right\}_{k=1}^{\infty}$ is a complete orthonormal system in $\stackrel{\circ}{ }$. For a function φ, let $\varphi_{k}=\left\langle\varphi, \alpha_{k}\right\rangle_{0}$. Then
(i) $\varphi \in{ }^{\circ} J$ if and only if $\sum_{k=1}^{\infty} \varphi_{k}^{2}<+\infty$,
(ii) $\varphi \in{ }^{\circ} J_{n}^{1}$ if and only if $\sum_{k=1}^{\infty} \lambda_{k} \varphi_{k}^{2}<+\infty$,
(iii) $\varphi \in \hat{J}$ if and only if $\sum_{k=1}^{\infty} \lambda_{k}^{2} \varphi_{k}^{2}<+\infty$.

Moreover,

$$
\begin{gathered}
\|\varphi\|_{0}^{2}=\sum_{k=1}^{\infty} \varphi_{k}^{2} \text { for } \varphi \in^{\circ} J, \\
\|\operatorname{rot} \varphi\|_{0}^{2}=\sum_{k=1}^{\infty} \lambda_{k} \varphi_{k}^{2} \text { for } \varphi \in^{\circ} J_{n}^{1}, \\
\|\operatorname{rot} \operatorname{rot} \varphi\|_{0}^{2}=\sum_{k=1}^{\infty} \lambda_{k}^{2} \varphi_{k}^{2} \quad \text { for } \varphi \in \hat{J} .
\end{gathered}
$$

Let us also recall that

$$
\begin{equation*}
o_{1}\|\varphi\|_{1}^{2} \leqq\|\operatorname{rot} \varphi\|_{0}^{2} \leqq c_{2}\|\varphi\|_{1}^{2} \quad \text { for } \quad \varphi \in^{\circ} J_{n}^{1} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
o_{1}\|\varphi\|_{2}^{2} \leqq\|\operatorname{rot} \operatorname{rot} \varphi\|_{0}^{2} \leqq c_{2}\|\varphi\|_{2}^{2} \quad \text { for } \quad \varphi \in \hat{J} \tag{2.11}
\end{equation*}
$$

If $a, b \in H^{1}$ and $a_{\tau}=0$ on $\partial \Omega$, then

$$
\int_{\Omega} \operatorname{rot} a \cdot b=\int_{\Omega} a \cdot \operatorname{rot} b .
$$

Denoting $M_{n}=\operatorname{lin}\left\{\alpha_{k}\right\}_{k=1}^{n}$ and $B^{n}(t)=\sum_{k=1}^{n} b_{k}(t) \alpha_{k}$, with b_{k} satisfying

$$
\begin{align*}
& \varepsilon \mu \ddot{b}_{k}(t)+x \mu \ddot{b}_{k}(t)+\lambda_{k} b_{k}(t)=\left\langle G(t), \alpha_{k}\right\rangle_{0}, \tag{2.12}\\
& b_{k}(0)=\left\langle B_{0}, \alpha_{k}\right\rangle_{0}, \quad \dot{b}_{k}(0)=\left\langle B_{1}, \alpha_{k}\right\rangle_{0},
\end{align*}
$$

we find that B^{n} satisfy

$$
\begin{equation*}
\left\langle\varepsilon \mu B_{t t}^{n}(t)+x \mu B_{t}^{n}(t)+\operatorname{rot} \operatorname{rot} B^{n}(t), w\right\rangle_{0}=\langle G(t), w\rangle_{0}, \quad w \in M_{n} . \tag{2.13}
\end{equation*}
$$

Taking $w=\operatorname{rot} \operatorname{rot} B_{t}^{n}$, we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\varepsilon \mu\left\|\operatorname{rot} B_{t}^{n}(t)\right\|_{0}^{2}+\left\|\operatorname{rot} \operatorname{rot} B^{n}(t)\right\|_{0}^{2}\right\}+\varkappa \mu\left\|\operatorname{rot} B_{t}^{n}(t)\right\|_{0}^{2} \leqq(\varkappa \mu)^{-1}\|\operatorname{rot} G(t)\|_{0}^{2}
$$

Using this inequality and proceeding along the standard lines, we complete the proof of Lemma 2.3.

Substituting $w=\operatorname{rot} \operatorname{rot} B^{n}$ into (2.13), we get the inequality

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{2 \varepsilon \mu\left\langle\operatorname{rot} B^{n}(t), \operatorname{rot} B_{t}^{n}(t)\right\rangle_{0}+\varkappa \mu\left\|\operatorname{rot} B^{n}(t)\right\|_{0}^{2}\right\}- \\
& \quad-2 \varepsilon \mu\left\|\operatorname{rot} B_{t}^{n}(t)\right\|_{0}^{2}+\left\|\operatorname{rot} \operatorname{rot} B^{n}(t)\right\|_{0}^{2} \leqq\|G(t)\|_{0}^{2},
\end{aligned}
$$

which multiplied by $x /(4 \varepsilon)$ and added to the preceding one yields

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\psi\left(B^{n}\right)(t)\right]+\chi(4 \varepsilon)^{-1}\left\|\operatorname{rot} \operatorname{rot} B^{n}(t)\right\|_{0}^{2}+\frac{1}{2} x \mu\left\|\operatorname{rot} B_{t}^{n}(t)\right\|_{0}^{2} \leqq \tag{2.14}\\
\leqq(\sigma \mu)^{-1}\|\operatorname{rot} G(t)\|_{0}^{2}+(\sigma / 4 \varepsilon)\|G(t)\|_{0}^{2} .
\end{gather*}
$$

If $G \in C\left([0, T] ;{ }^{\circ} J_{n}^{1}\right)$, then the series

$$
G(t)=\sum_{k=1}^{\infty}\left\langle G(t), \alpha_{k}\right\rangle_{0} \alpha_{k}
$$

converges in $C\left([0, T] ;{ }^{\circ} J_{n}^{1}\right)$. By direct computation, this implies that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} b_{k}(t) \alpha_{k} \text { converges in } C([0, T] ; \hat{J}), \\
& \sum_{k=1}^{\infty} \dot{b}_{k}(t) \alpha_{k} \text { converges in } C\left([0, T] ;{ }^{\circ} J_{n}^{1}\right)
\end{aligned}
$$

and

$$
\sum_{k=1}^{\infty} \ddot{b}_{k}(t) \alpha_{k} \text { converges in } C\left([0, T] ;{ }^{\circ} J\right) .
$$

This gives part (i) of Lemma 2.4. Integrating (2.14) on [τ, t], we have (2.8) for $B=B^{n}$. Letting $n \rightarrow \infty$, we complete the proof.

The last lemma in this section deals with the equation obtained by linearizing (1.19). We are looking for a function a satisfying

$$
\begin{equation*}
\varepsilon \chi^{-1} a_{t}+a=h, \quad 0 \leqq t \leqq T, \quad a(0)=a_{0} . \tag{2.15}
\end{equation*}
$$

The proof of the following lemma is straightforward.
Lemma 2.5. Let $h \in L^{\infty}\left(0, T ; H^{k}\right)$ and $a_{0} \in H^{k}$.
(i) There is a unique $a \in C\left(0, T ; H^{k}\right)$ with $a_{t} \in L^{\infty}\left(0, T ; H^{k}\right)$ satisfying (2.14). Moreover,

$$
\begin{align*}
& {[a]_{\infty, k, T}^{2} \leqq c\left(\left\|a_{0}\right\|_{k}^{2}+T[h]_{\infty, k, T}^{2}\right),} \tag{2.16}\\
& {\left[a_{t}\right]_{\infty, k, T}^{2} \leqq c\left(\left\|a_{0}\right\|_{k}^{2}+[h]_{\infty, k, T}^{2}\right) .}
\end{align*}
$$

(ii) If $h \in C\left([0, T] ; H^{k}\right)$, then $a \in C^{1}\left([0, T] ; H^{k}\right)$ and for every $\tau, t, 0 \leqq \tau<t \leqq \mathcal{T}$, we have

$$
\begin{equation*}
\|a(t)\|_{k}^{2}-\|a(\tau)\|_{k}^{2}+d_{3} \int_{\tau}^{t}\|a(\vartheta)\|_{k}^{2} \mathrm{~d} \vartheta \leqq d_{4} \int_{\tau}^{t}\|h(\vartheta)\|_{k}^{2} \mathrm{~d} \vartheta \tag{2.17}
\end{equation*}
$$

with positive oonstants d_{3} and d_{4} independent of h.

3. LOCAL EXISTENCE

We set

$$
\begin{aligned}
X_{T}= & \left\{v ; v \in L^{\infty}\left(0, T ; H^{2}\right) \cap L^{2}\left(0, T ; H^{3}\right),\right. \\
& \left.v_{t} \in L^{\infty}\left(0, T ; H^{0}\right) \cap L^{2}\left(0, T ; H^{1}\right)\right\}, \\
Y_{T}= & \left\{\sigma ; \sigma \in L^{\infty}\left(0, T ; H^{2}\right), \sigma_{t} \in L^{\infty}\left(0, T, H^{1}\right)\right\}, \\
\mathscr{B}_{T}= & \left\{B ; B \in L^{\infty}(0, T ; \hat{J}), B_{t} \in L^{\infty}\left(0, T ;{ }^{\circ} J_{n}^{1}\right), B_{t t} \in L^{\infty}\left(0, T ;{ }^{\circ} J\right)\right\}, \\
\mathscr{A}_{T}= & \left\{a ; a \in L^{\infty}\left(0, T ; H^{1}\right), a_{t} \in L^{\infty}\left(0, T ; H^{1}\right)\right\} .
\end{aligned}
$$

The space $X_{\boldsymbol{T}}$ is equipped with the norm

$$
\|v\|_{X_{T}}=\max \left\{[v]_{\infty, 2, T},[v]_{2,3, T},\left[v_{t}\right]_{\infty, 0, T},\left[v_{t}\right]_{2,1, T}\right\} .
$$

The norms in Y_{T}, \mathscr{B}_{T} and \mathscr{A}_{T} are defined in an obvious manner ensuring the completeness of the spaces involved.

Let T, K_{1}, K_{2} be positive constants. Following [6] we introduce

$$
\begin{aligned}
R_{T}= & \left\{(v, \sigma, B, a) ; v \in X_{T}, \sigma \in Y_{T}, B \in \mathscr{B}_{T}, a \in \mathscr{A}_{T},\right. \\
& \|v\|_{X_{T}} \leqq K_{1}, \quad v(0)=v_{0}, \\
& {[\sigma]_{\infty, 2, T} \leqq K_{1}, \quad\left[\sigma_{t}\right]_{\infty, 1, T} \leqq K_{2}, \quad \sigma(0)=\varrho_{0}-\bar{\varrho}, } \\
& 0<\frac{1}{2} m \leqq \bar{\varrho}+\sigma(t, x) \leqq 2 M \quad \text { a.e. in } \quad Q_{T}, \\
& {[B]_{\infty, 2, T}+\left[B_{t}\right]_{\infty, 1, T} \leqq K_{1}, \quad\left[B_{t t}\right]_{\infty, 0, T} \leqq K_{2} } \\
& B(0)=B_{0}, \quad B_{t}(0)=B_{1}, \\
& {\left.[a]_{\infty, 1, T} \leqq K_{1}, \quad\left[a_{t}\right]_{\infty, 1, T} \leqq K_{2}, \quad a(0)=a_{0}\right\} . }
\end{aligned}
$$

For any $(\tilde{v}, \tilde{\sigma}, \tilde{B}, \tilde{a}) \in R_{T}$ we denote by (v, σ, B, a) the functions given by
(i) v is a solution of (2.1) with

$$
\begin{aligned}
\tilde{\varrho}= & \bar{\varrho}+\tilde{\sigma}, \\
F= & \tilde{F}+\tilde{\varrho} b, \\
\tilde{F}= & -\tilde{\varrho}(\tilde{v} \cdot \nabla) \tilde{v}-p^{\prime}(\tilde{\varrho}) \nabla \tilde{\sigma}+\varepsilon \tilde{a}\left(V \tilde{a}-Z \widetilde{B}_{t}\right)+ \\
& +\chi\left(V \tilde{a}-Z \widetilde{B}_{t}+\tilde{v} \times \widetilde{B}\right) \times \widetilde{B},
\end{aligned}
$$

(ii) σ is a solution of (2.3) with $\sigma_{0}=\varrho_{0}-\bar{\varrho}$,
(iii) B is a solution of (2.6) with $G=\chi \mu \operatorname{rot}(\tilde{v} \times \tilde{B})$,
(iv) a is a solution of (2.15) with $h=-\operatorname{div}(\tilde{v} \times \widetilde{B})$.

Using

$$
\begin{gathered}
\left\|\|\nabla \tilde{\varrho}\|_{4,6, T}^{4}+\right\| \tilde{\varrho}_{t} \|_{2,3, T}^{2} \leqq c\left(K_{1}, K_{2}\right) T, \\
{[F]_{\infty, 0, T}^{2} \leqq c\left\{\|\tilde{F}(0)\|_{0}^{2}+T\left[\tilde{F}_{t}\right]_{2,0, T}^{2}+[b]_{\infty, 0, T}^{2}\right\}}
\end{gathered}
$$

and Lemma 2.1, we get

$$
\begin{aligned}
\|v\|_{X_{T}}^{2} \leqq & c\left\{[\tilde{F}]_{2,1, T}^{2}+\left[\tilde{F}_{t}\right]_{2,-1, T}^{2}+T\left[\tilde{F}_{t}\right]_{2,0, T}^{2}+\right. \\
& +\left\|v_{0}\right\|_{2}^{2}+\|\tilde{F}(0)\|_{0}^{2}+[b]_{\infty, 0, T}^{2}+[\tilde{\varrho} b]_{2,1, T}^{2}+ \\
& \left.+\left[(\tilde{\varrho} b)_{t}\right]_{2,-1, T}^{2}\right\}\left(1+T c\left(K_{1}, K_{2}\right)\right) \exp \left(T c\left(K_{1}, K_{2}\right)\right) .
\end{aligned}
$$

It is not difficult to show that

$$
\|\widetilde{F}(0)\|_{0}^{2} \leqq P\left(\left\|v_{0}\right\|_{2},\left\|\sigma_{0}\right\|_{1},\left\|B_{0}\right\|_{1},\left\|B_{1}\right\|_{0},\left\|a_{0}\right\|_{1}\right)
$$

where P is a polynomial, and

$$
\begin{align*}
& {[\tilde{F}]_{2,1, T}^{2} \leqq c\left(K_{1}, K_{2}\right) T,} \\
& {\left[\widetilde{F}_{t}\right]_{2,-1, T}^{2} \leqq c\left(K_{1}, K_{2}\right) T,} \tag{3.1}\\
& {\left[\widetilde{F}_{t}\right]_{2,0, T}^{2} \leqq c\left(K_{1}, K_{2}\right) .} \tag{3.2}
\end{align*}
$$

This is analogous to [6] since F appearing there is extended here only by a part \bar{F} which comes from the electrodynamical forces, i.e.,

$$
\bar{F}=\varepsilon a\left(V a-Z B_{t}\right)+\chi\left(V a-Z B_{t}+v \times B\right) \times B .
$$

But for \bar{F} we even have

$$
\left\|\bar{F}_{t}(t)\right\|_{0}^{2} \leqq c\left(K_{1}, K_{2}\right) \quad \text { for all } t
$$

which implies (3.1) and (3.2). Thus the function v satisfies

$$
\begin{aligned}
\|v\|_{X_{T}}^{2} \leqq & \left\{c\left(K_{1}, K_{2}\right) T+c\left(K_{1}, K_{2}\right)\left([b]_{2,1, T}^{2 i}+\left[b_{t}\right]_{2,-1, T}^{2}\right)+\right. \\
& +c P\left(\left\|v_{0}\right\|_{2},\left\|\sigma_{0}\right\|_{1},\left\|B_{0}\right\|_{1},\left\|B_{1}\right\|_{0},\left\|a_{0}\right\|_{1}\right)+ \\
& \left.+c[b]_{\infty, 0, T}^{2}\right\}\left(1+c\left(K_{1}, K_{2}\right) T\right) \exp \left(c\left(K_{1}, K_{2}\right) T\right) .
\end{aligned}
$$

The function σ defined in (ii) is estimated as in [6]. The function B defined in (iii) is estimated with the help of (2.7). As $G=\varkappa \mu \operatorname{rot}(\tilde{v} \times \widetilde{B})$, we have

$$
\|G(t)\|_{1}^{2} \leqq c\left(K_{1}\right) \quad \text { for a.e. } t, \quad 0<t<T .
$$

Using Lemma 2.3 we obtain the estimates

$$
[B]_{\infty, 2, T}^{2}+\left[B_{t}\right]_{\infty, 1, T}^{2} \leqq c\left(K_{1}\right) T+c\left(\left\|B_{0}\right\|_{2}^{2}+\left\|B_{1}\right\|_{1}^{2}\right)
$$

and

$$
\left[B_{t t}\right]_{\infty, 0, T}^{2} \leqq c\left(K_{1}\right)(1+T)+c\left(\left\|B_{0}\right\|_{2}^{2}+\left\|B_{1}\right\|_{1}^{2}\right)
$$

Further, by Lemma 2.5 with $k=1$, we get for a defined in (iv)

$$
\begin{aligned}
& {[a]_{\infty, 1, T}^{2} \leqq c\left(K_{1}\right) T+c\left\|a_{0}\right\|_{1},} \\
& {\left[a_{t}\right]_{\infty, 1, T}^{2} \leqq c\left(K_{1}\right)(1+T)+c\left\|a_{0}\right\|_{1} .}
\end{aligned}
$$

The estimates of v, σ, B and a show that there are positive K_{1}, K_{2} and T such that $R_{T} \neq \emptyset$ and $(v, \sigma, B, a) \in R_{T}$ for any $(\tilde{v}, \tilde{\sigma}, \tilde{B}, \tilde{a}) \in R_{T}$. The correspondence $(\tilde{v}, \tilde{\sigma}, \widetilde{B}, \tilde{a}) \rightarrow(v, \sigma, B, a)$ thus defined will be denoted by Φ.

Further we introduce the space \mathscr{X} by

$$
\begin{aligned}
\mathscr{X}= & \left\{(v, \sigma, B, a) ; v \in L^{\infty}\left(0, T ; H^{1}\right), \sigma \in L^{\infty}\left(0, T ; H^{1}\right),\right. \\
& \left.B \in L^{\infty}\left(0, T ; H^{1}\right), B_{t} \in L^{\infty}\left(0, T, H^{0}\right), a \in L^{\infty}\left(0, T ; H^{0}\right)\right\},
\end{aligned}
$$

with a norm defined as the maximum of the corresponding norms of v, σ, B and a. The mapping Φ maps R_{T} into itself and, as it is not difficult to show, it is continuous in the norm of \mathscr{X}. By Schauder's theorem, there is a fixed point (v, σ, B, a) of Φ, i.e. a local solution of $(1.15)-(1.27)$. This solution is unique, as one can show proceeding along the lines of [6].

The first component v of the solution satisfies

$$
v \in C^{0}\left([0, T] ; H^{2}\right) \quad \text { and } \quad\|v\|_{\infty, 2, T} \leqq K_{1} .
$$

We shall look for a solution $\bar{B} \in C^{0}([0, T] ; \hat{J}) \cap C^{1}\left([0, T] ;{ }^{\circ} J_{n}^{1}\right) \cap C^{2}\left([0, T] ;{ }^{\circ} J\right)$ of

$$
\begin{align*}
& \varepsilon \mu \bar{B}_{t t}+x \mu \bar{B}_{t}+\operatorname{rot} \operatorname{rot} \bar{B}=x \mu \operatorname{rot}(v \times \bar{B}) \text { in } Q_{T}, \tag{3.3}\\
& \operatorname{div} \bar{B}=0 \text { in } Q_{T}, \\
& \bar{B}_{n}=\operatorname{rot}_{\tau} \bar{B}=0 \text { on } \Sigma_{T}, \\
& \bar{B}(0)=B_{0}, \quad \bar{B}_{t}(0)=B_{1} \text { in } \Omega .
\end{align*}
$$

We put

$$
\mathscr{Y}_{T}=C^{0}([0, T] ; \hat{J}) \cap C^{1}\left([0, T] ;{ }^{\circ} J_{n}^{1}\right)
$$

and by Ψ we denote the operator assigning, according to Lemma 2.4 (i), to $G \in$ $\in C\left([0, T] ;{ }^{\circ} J_{n}^{1}\right)$ the function B satisfying (2.6). Since

$$
\|x \mu \operatorname{rot}(v(t) \times \bar{B}(t))\|_{H^{1}}^{2} \leqq c\|v(t)\|_{2}^{2}\|\bar{B}(t)\|_{2}^{2}, \quad 0 \leqq t \leqq T,
$$

the mapping $\Psi(\varkappa \mu \operatorname{rot}(v \times \bar{B}))$ is a mapping of \mathscr{Y}_{T} into itself, and moreover, its fixed point is a solution to (3.3). By (2.7) we find that for T sufficiently small, $\bar{B} \rightarrow$ $\rightarrow \Psi(\varkappa \mu \operatorname{rot}(v \times \bar{B}))$ is a contraction on \mathscr{Y}_{T}. The fixed point of this contraction is a solution of (3.3). Obviously, also $\bar{B}_{t t} \in C^{0}\left([0, T] ;{ }^{\circ} J\right)$. But B and \bar{B} coincide, therefore

$$
B \in C^{0}([0, T] ; \hat{J}) \cap C^{1}\left([0, T] ;{ }^{\circ} J_{n}^{1}\right) \cap C^{2}\left([0, T] ;{ }^{\circ} J\right)
$$

and B satisfies the estimate (2.8) with $G=x \mu \operatorname{rot}(v \times B)$. Similarly, $a \in C^{1}\left([0, T] ; H^{1}\right)$ and satisfies (2.17) with $h=-\operatorname{div}(v \times B)$. Hence, the following theorem is proved.

Theorem 3.1. Let $b \in L_{l o c}^{2}\left(R^{+} ; H^{1}\right), \quad b_{t} \in L_{l o c}^{2}\left(R^{+} ; H^{-1}\right), \quad p \in C^{3}$ with $p^{\prime}>0$. Further let $v_{0} \in H^{2} \cap H_{0}^{1}, \varrho_{0} \in H^{2}, 0<m \leqq \varrho_{0}(x) \leqq M$ in $\Omega, B_{0} \in \hat{J}, E_{0} \in H^{2}$, $\left(E_{0}\right)_{\tau}=0$ on $\partial \Omega$. Then there is (a suffioiently small) $T>0$ and funotions

$$
\begin{aligned}
& v \in L^{2}\left(0, T ; H^{3}\right) \cap C^{0}\left([0, T] ; H^{2}\right) \text { with } \\
& v_{t} \in L^{2}\left(0, T ; H^{1}\right) \cap C^{0}\left([0, T] ; H^{0}\right), \\
& \varrho \in C^{0}\left([0, T] ; H^{2}\right) \text { with } \varrho_{t} \in C^{0}\left([0, T] ; H^{1}\right) \text { and } \\
& \quad \varrho(t, x)>0 \text { on } Q_{T}, \\
& B \in C^{0}([0, T] ; \hat{J}) \cap C^{1}\left([0, T] ;{ }^{\circ} J_{n}^{1}\right) \cap C^{2}\left([0, T] ;{ }^{\circ} J\right), \\
& E \in C^{1}\left([0, T] ; H^{2}\right)
\end{aligned}
$$

such that (v, ϱ, B, E) satisfy (1.1)-(1.14).

4. GLOBAL AND PERIODIC SOLUTIONS

Let φ be defined by (4.47) of [6], i.e.,

$$
\varphi(t)=]|v(t)|\left[2_{1}^{2}+\right]|\sigma(t)|\left[2_{2}^{2}+c_{4}\left\|v_{t}(t)\right\|_{0}^{2}+\bar{c}_{4} \frac{p_{1}}{\varrho}\left\|\sigma_{t}(t)\right\|_{0}^{2}+\bar{c}_{5}[v(t)]_{2}^{2}\right.
$$

where $[\cdot]_{2}$ is the sum of L^{2}-norms of interior and tangential derivatives of orders less or equal to 2 and $]|\cdot|\left[k_{k}\right.$ is a norm equivalent to $\|\cdot\|_{k}$. Denoting

$$
\Phi=\|v\|_{3}^{2}+\|\sigma\|_{2}^{2}+\left\|v_{t}\right\|_{1}^{2}+\left\|\sigma_{t}\right\|_{1}^{2}
$$

we have, by integrating (4.48) in [6] over $(\tau, t), 0 \leqq \tau<t \leqq T$,

$$
\begin{gather*}
\varphi(t)-\varphi(\tau)+\int_{\tau}^{t} \Phi(\vartheta) \mathrm{d} \vartheta \leqq \tag{4.1}\\
\leqq c \int_{\tau}^{t}\left\{\Phi(\vartheta)\left(\varphi(\vartheta)+\varphi^{2}(\vartheta)\right)+\left\|f^{1}(\vartheta)\right\|_{1}^{2}+\left\|f_{t}^{1}(\vartheta)\right\|_{-1}^{2}+\beta(\vartheta)\right\} \mathrm{d} \vartheta,
\end{gather*}
$$

where

$$
f^{1}=\frac{1}{\varrho \varrho+\sigma}\left\{\varepsilon a\left(V a-Z B_{t}\right)+\chi\left(V a-Z B_{t}+v \times B\right) \times B\right\}
$$

and

$$
\beta(t)=\|b(t)\|_{1}^{2}+\left\|b_{t}(t)\right\|_{-1}^{2} .
$$

In what follows we drop B from $\psi(B)(t)$ defined in (2.9), writing $\psi(t)=\psi(B)(t)$. Using this ψ we set

$$
\chi(t)=\varphi(t)+\psi(t)+\|a(t)\|_{1}^{2} .
$$

Further we denote

$$
\Psi(t)=d_{1}\left(\|\operatorname{rot} \operatorname{rot} B(t)\|_{0}^{2}+\left\|\operatorname{rot} B_{t}(t)\right\|_{0}^{2}\right)
$$

and

$$
\Pi(t)=\Phi(t)+\Psi(t)+\|a(t)\|_{1}^{2} .
$$

Using (4.1), estimates (2.8) and (2.16) we get, for $0 \leqq \tau<t \leqq T$,

$$
\begin{align*}
\chi(t) & -\chi(\tau)+\int_{\tau}^{t} \Gamma(\vartheta) \mathrm{d} \vartheta \leqq c \int_{\tau}^{t} \Phi(\vartheta)\left(\varphi(\vartheta)+\varphi^{2}(\vartheta)\right) \mathrm{d} \vartheta+ \tag{4.2}\\
& +c \int_{\tau}^{t}\left(\left\|f^{1}\right\|_{1}^{2}+\left\|f_{t}^{1}\right\|_{-1}^{2}\right) \mathrm{d} \vartheta+c \int_{\tau}^{t}\left(\|\operatorname{rot} G\|_{0}^{2}+\|G\|_{0}^{2}\right) \mathrm{d} \vartheta+ \\
& +c \int_{\tau}^{t}\|h(\vartheta)\|_{1}^{2} \mathrm{~d} \vartheta+c \int_{\tau}^{t} \beta(\vartheta) \mathrm{d} \vartheta,
\end{align*}
$$

where

$$
\begin{aligned}
G & =x \mu \operatorname{rot}(v \times B), \\
h & =\operatorname{div}(v \times B) .
\end{aligned}
$$

Given positive α_{1} and α_{2} we set

$$
X(t)=\frac{1}{2} \Pi(t)+\alpha_{1}\left\|B_{t t}\right\|_{0}^{2}+\alpha_{2}\left\|a_{t}\right\|_{1}^{2}
$$

i.e.

$$
\begin{aligned}
X(t)= & \|v\|_{3}^{2}+\left\|v_{t}\right\|_{1}^{2}+\|\sigma\|_{2}^{2}+\left\|\sigma_{t}\right\|_{1}^{2}+d_{1}\|\operatorname{rot} \operatorname{rot} B\|_{0}^{2}+ \\
& +d_{2}\left\|\operatorname{rot} B_{t}\right\|_{0}^{2}+\alpha_{1}\left\|B_{t t}\right\|_{0}^{2}+\|a\|_{1}^{2}+\alpha_{2}\left\|a_{t}\right\|_{1}^{2} .
\end{aligned}
$$

A direct computation shows that

$$
\left\|f^{1}\right\|_{1}^{2}+\left\|f_{t}\right\|_{-1}^{2}+\|\operatorname{rot} G\|_{0}^{2}+\|G\|_{0}^{2}+\|h\|_{1}^{2} \leqq c X\left(\chi+\chi^{3}\right) .
$$

Using this inequality and estimating $\left\|B_{t t}\right\|_{0}^{2}$ and $\left\|a_{t}\right\|_{1}^{2}$ with the help of (1.17) and (1.19), we see that α_{1} and α_{2} can be chosen in such a way that the following inequality holds $0 \leqq \tau<t \leqq T$:

$$
\begin{equation*}
\chi(t)-\chi(\tau)+\int_{\tau}^{t} X(\vartheta) \mathrm{d} \vartheta \leqq c \int_{\tau}^{t} X(\vartheta)\left(\chi(\vartheta)+\chi^{3}(\vartheta)\right) \mathrm{d} \vartheta+\tilde{c} \int_{\tau}^{t} \beta(\vartheta) \mathrm{d} \vartheta \tag{4.3}
\end{equation*}
$$

As the function $\gamma(t)$ is continuous on [$0, T]$ and

$$
\chi(t) \leqq \bar{c} X(t) \quad \text { for a.e. } \quad t \in(0, T)
$$

one easily proves that there are two constants δ and A such that the following implication holds: If $\gamma(0) \leqq A$ and $\beta(t) \leqq \delta$ for a.e. $t \in(0, T)$, then $\gamma(t) \leqq A$ for all $t \in[0, T]$. This proves the following theorem on global existence:

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied. Moreover, let $\left\|v_{0}\right\|_{2}+\left\|\varrho_{0}-\bar{\varrho}\right\|_{2}+\left\|B_{0}\right\|_{2}+\left\|E_{0}\right\|_{2}$ and $[b]_{\infty, 1, \infty}+\left[b_{t}\right]_{\infty,-1, \infty}$ be sufficiently small. Then there exist unique

$$
\begin{aligned}
& v \in L_{l o c}^{2}\left(R^{+} ; H^{3}\right) \cap C_{B}^{0}\left(R^{+} ; H^{2}\right) \text { with } v_{t} \in L_{l o c}^{2}\left(R^{+} ; H^{1}\right) \cap C_{B}^{0}\left(R^{+} ; H^{0}\right), \\
& \varrho \in C_{B}^{0}\left(R^{+} ; H^{2}\right) \text { with } \varrho_{t} \in C_{B}^{0}\left(R^{+} ; H^{1}\right), \\
& B \in C_{B}^{0}\left(R^{+} ; \hat{J}\right) \cap C_{B}^{1}\left(R^{+} ;{ }^{\circ} J_{n}^{1}\right) \cap C_{B}^{2}\left(R^{+} ;{ }^{\circ} J\right), \\
& E \in C_{B}^{1}\left(R^{+} ; H^{2}\right)
\end{aligned}
$$

such that (v, ϱ, B, E) satisfy $(1.1)-(1.14)$ on R^{+}.
If $\left(v_{i}, \sigma_{i}, B_{i}, a_{i}\right), i=1,2$ are solutions of (1.15) $-(1.22)$ with the initial conditions $\left(v_{i 0}, \sigma_{i 0}, B_{i 0}, B_{i 1}, a_{i 0}\right)$, we denote

$$
\begin{aligned}
w & =v_{1}-v_{2}, \\
\eta & w_{0}=v_{10}-v_{20} \\
\eta & \sigma_{1}-\sigma_{2}, \\
D & \eta_{0}=\sigma_{10}-\sigma_{20}, \\
d & =B_{1}-B_{2}, \\
D_{0}=B_{10}-B_{20}, \quad D_{1}=B_{11}, & d_{0}=a_{10}-a_{20}
\end{aligned}
$$

Proceeding as in [6] we find that there are positive A, ε, δ such that

$$
\begin{align*}
& \|w(t)\|_{0}+\|\eta(t)\|_{0}+\|D(t)\|_{1}+\left\|D_{t}(t)\right\|_{0}+\|d(t)\|_{0} \leqq \tag{4.4}\\
& \leqq A \mathrm{e}^{-\varepsilon t}\left(\left\|w_{0}\right\|_{0}+\left\|\eta_{0}\right\|_{0}+\left\|B_{0}\right\|_{1}+\left\|B_{1}\right\|_{0}+\|a\|_{0}\right), \quad t \in R^{+}, \quad \text { provided } \\
& \left\|v_{i 0}\right\|_{2}+\left\|\sigma_{i 0}\right\|_{2}+\left\|B_{i 1}\right\|_{1}+\left\|a_{i}\right\|_{1}<\delta \quad \text { for } \quad i=1,2
\end{align*}
$$

Using (4.4) we can follow the approach of [6] and prove the existence of periodic solutions.

Theorem 4.2. Let $b \in L^{\infty}\left(R^{+} ; H^{1}\right), b_{t} \in L\left(R^{+} ; H^{-1}\right)$ be T-periodic in t and $p \in C^{3}$, $p_{a}>0$.

If $[b]_{\infty, 1, \infty}+\left[b_{t}\right]_{\infty,-1, \infty}$ is sufficiently small, then there exists a T-periodic solution of (1.1)-(1.14).

References

[1] E. B. Byhovskil: A solution of a mixed problem for a system of Maxwell's equations in the case of ideally conducting boundary (Russian). Vestnik Leningradskogo Univ. 1957, No. 13, 50-66.
[2] O. A. Ladyženskaja, V. A. Solonnikov: On the principle of linearization and invariant manifolds in problems of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMI, 38 (1973), 46-93.
[3] J. A. Shercliff: A Textbook of Magnetohydrodynamics. Pergamon, Oxford 1965.
[4] M. Štědrý, O. Vejvoda: Small time-periodic solutions of equations of magnetohydrodynamics as a singularly perturbed problem. Aplikace matematiky 28 (1983), 344-356.
[5] L. Stupjalis: On solvability of an initial-boundary value problem of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMI, 69 (1977), 219-239.
[6] A. Valli: Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Annali Scuola Normale Superiore Pisa, 10 (1983), 607-647.
[7] N. G. Van Kampen, B. U. Felderhof: Theoretical Methods in Plasma Physics. North-Holland Publishing Company - Amsterdam, 1967.

Souhrn

PERIODICKÁ ŘEŠENÍ ROVNIC MAGNETOHYDRODYNAMIKY STLAČITELNÝCH TEKUTIN

Milan Štědrý, Otto Vejvoda

Je dokázána globální existence a exponenciální stabilita řešení daného systému rovnic v případě, že počáteční rychlosti a vnější síly jsou malé a počáteční hustota se přiliš neliší od konstantní. Jsou-li kromě toho vnější síly periodické, existuje řešení periodické se stejnou periodou. Systém uvažovaných rovnic se trochu liší od obvykle uvažovaného systému; například posuvný proud není zanedbán.

Authors' address: RNDr. Milan Štědrý, CSc., Doc. RNDr. Otto Vejvoda, DrSc., Matematický ústav ČSAV, Žitná 25, 11567 Praha 1.

