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31<1986) A P L I K A C E M A T E M A T I K Y No. 4,270-281 

VARIATIONAL INEQUALITIES IN PLASTICITY WITH 

STRAIN-HARDENING — EQUILIBRIUM FINITE ELEMENT APPROACH 

ZDENEK KESTRANEK 

(Received April 16, 1985) 

Summary. The incremental finite element method is applied to find the numerical solution 
of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field 
is approximated by equilibrium triangular elements with linear functions. The field of the strain-
hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization 
problem with constraints is solved by the Lagrange multipliers method with additional variables. 
A comparison of the results obtained with an experiment is given. 

1. INTRODUCTION 

The flow theory of plasticity with strain-hardening material has been studied 
recently by Johnson [1] and Hlavacek, Necas [2] from a new point of view, pioneered 
by Nguyen Quoc Son [4] and Halphen-Nguyen Quoc Son [5]. The common idea 
of their existence proofs is to formulate the problem by means of the variational 
inequality of evolution and to use a penalty method. 

In the present paper we propose an incremental finite element method, starting 
from the formulation of the quasi-static problem in terms of stresses and hardening 
parameters only [3]. Whereas in the mixed method of [6], [18], the stresses and 
hardening parameters are approximated by piecewise constant functions and the 
displacements by piecewise linear functions, we employ piecewise linear functions 
for both the stresses and the hardening parameters. The stress approximations consist 
of Watwood-Hartz equilibriated triangular elements [8] . The finite element method 
will produce approximations to the stresses successively at a finite number of time 
levels. At each time level one has to solve a constrained nonlinear optimization 
problem. We also discuss the Lagrange multipliers method with slack variables 
[9], [7], [21] for solving this problem. With a particular choice of finite element 
spaces, the optimization problem is solvable. 

Numerical tests for the method proposed were performed for thin perforated 
strips of the strain-hardening material subjected to the uniform tension. The stress 
applied was increased monotonically from the elastic region of loading to values 
producing an impending plastic flow. The numerical results are in a good agreement 
with the experiment [10]. 
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2. BASIC RELATIONS 

Let Q be a polyhedral bounded domain in R'\ n = 2, 3, x = (x l 5 . . . , x„) a Cartesian 
coordinate system. Denote by I = [0, T] , 0 < T < oo, a fixed interval of time. 
Let Ra be the space of symmetric n x n matrices (stress tensors). A repeated index 
implies summation over the range .1, ..., n. 

Assume that a yield function/: Rff -> R is given, which is convex, continuous in Ra, 

continuously differentiable in Ra — Q, where Q is a subspace of dimension one, 

and 

(2.1) f(Xa) = \X\f(a) , VAeK , VcreR , . 

Note that such function satisfies also the condition 

df (2.2) 
dctj 

< C , i, I = 1, ..., n , C = constant, Vcr e K^ — Q 

For instance, we can employ the von Mises yield function f(o) = (o^o"^)172. 
Let us introduce the following notations: 

S = {T : i2 ->R„ Ty6L2(fi), V / , j } , 

W» = ( f HI*4*)1'2. 
H = S x L2(fl). 

Let 

50 = f„ u Tff , 

T„ n T„ = 0 

where FM and F^ are either empty or open in dQ. 

Assume that a (reference) body force vector F° e [C(.Q)]" and a (reference) surface 
traction vector g° e [l?(rj)]n are given. If Fw = 0, the total equilibrium conditions 
for F°, g° are satisfied. 

Let the actual body forces and surface tractions be 

F(t, x) = y(t) F°(x) in I x Q , 

g(t, x) = y(f) g°(x) on I x Fff . 

Here y: I -> R is a non-negative function from C2(I) such that 

(2.3) 3t! > 0 , y(t) = 0 , Vt e [0, tt] , 

(2.4) 7(O e W^-i)^[0] if y(tn-i) = y(Q, 

y(Oe[v(0>K'«-i)] if y('»)-M'»-i) 
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holds in any subinterval In = [t„_ i, £„] of all time discretizations which will be con
sidered in the following. 

For any t e I we introduce the set of statically admissible stress tensors 

E(t) = E(F(t)9g(t)) = L e s S aijeij(v)dx = f Ft(t) vt dx + f g^v^s, VveVj 

where 

Let us define 

V={ve[H\Q)]\ v = 0 on FH} , 

, , 1 fdví dvA 
eu(v) = - —1~ + —L ) . 

2 \(3xy Obe;/ 

#-(T, a) = / ( T ) - a , 

B = {(T, a) e Ra x R, J^(T, a) g 0} , 

P = {(T, a) G if, (T(X), a(x)) e B a.e. in Q} , 

K(t) = (E(t) x L2(&)) n P , t e I. 

Let the elasticity coefficients i / iHeL°°(jQ) be given ( i , j , fc,/= 1, ..., w) such 
that 

-̂ ijfci = ^j.u = Aw a-e. in .Q 
and 3c0 > 0 such that 

Aijkfiiftki = co8ij8tj ? vs e Ra 

holds a.e. in O. 
Moreover, let positive constants x e R and a0 e R be given. 
We introduce the following bilinear forms for a, f e H, 6 = (cr, a), f = (T, /?): 

<^ , f> = (T0.Tii + aj8, |f| = <f, f > 1 / 2 , 

(d, f)0 = f <*, f> d x , ||*|| = (6% a)y2, 
J«Q 

{a, f} = AijklGtjxkl dx + x\ aj8 dx , 
JiQ Jf l 

and 111 •111 are equivalent. Denote by IЮ,д the norm in Notice that the norms 

L\Q). 

Let Cj(I, S) be the space of continuously differentiable mappings T:I -> S such 

that T(0) = 0. Let if J(f, S) be the closure of Cj(I, S) with respect to the norm 

I I -
o I dí 

2 \ l / 2 

dí 
s 

Similarly, let Hl(I, L2) be the closure of C\l, L2(Q)) with respect to the norm 

(I l|0,ß + 
dß"2 

dí 
dí 

1/2 
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Definition 2.1. A weak solution of the plasticity problem with strain-hardening 
is a pair of functions 

a = (<r, a) e Ho(I, S) x H*(I, L2) 
such that 

a(0) = a0 , a(t) e K(t) 
and 

(2.5) J - ^ - ) , f - <x(t)j = 0 , Vt = (T, a) e K(f) 

holds for a.e. t el. 

Remark 2.L The existence and uniqueness of a weak solution has been discussed 
in [2] for dQ = ra and in [1] for dQ = FM. 

3. FINITE ELEMENT APPROXIMATIONS 

In the present section, we will extend some results of Johnson [11] to the case of 
plasticity with strain-hardening, using also several procedures published in [1] 
and [6] and following the paper [3]. 

We shall use the following approximations of the set E(t): 

(3.1) Eh(t) = x(t) + E°h9 0 < h = h0< a) 

where x e H0(l, S) is a fixed stress field such that x(t) e E(t) a.e. in I and Eh cz E(0, 0) 
is a finite-dimensional subspace of self-equilibriated stress fields. Then Eh(t) cz E(t). 

Let Vh cz l}(Q) be a finite-dimensional subspace, an approximation of l3(Q). 
Assume that Vh contains constant functions. 

Define 
Kh(t) = (Eh(t) xVh)nP 

so that Kh(t) cz K(t). 
We introduce a discretization of the time interval as follows: Let N be a positive 

integer, k = T/N, tn = nk, n « 0, 1, ...,N, /„ = [rw . l 5 f j , «" = f(rn), at" = 
= (t" - t , , _1)/k . 

We define the following approximate problem of (2.5): 

Definition 3.1. Find a dn
hk eKh(tn) such that 

(3.2) {dan
hk, t - an

hk} = 0 , Vt e K„(l„), n = 1, . . . , N , 

tfk = (0, «0) • 

R e m a r k 3.L Since â fc minimizes the strictly convex functional 

(3.3) i|||(7|||2 - {&,an~1} 

over the closed convex set Kh(t), there exists a unique £J|k provided Kh(tn) 4= 0. 
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The convergence of the finite element approximations is proved in the following 
theorem: 

Theorem 3.1. Let us denote 

e(h,k) = inf ||d - f]|/2(K) 

where 
X = {x = (x\ . . . , * " ) , TneKh(tn), n = l,...,N}, 

lklw) = (Zfc||«T)1/2, q = (q\...,qN), q" e H . 
n = l 

Assume that if Fff =1= 0, fherc there exists 

fe[L°(Q)rnE(F°,gO). 

Then there exist such positive constants C and k0 that for k = k0, 

(3.4) max ||d" - &n
hk\\ = C(J(e(h, k)) + Jk). 

« = 1 , . . . , / V 

Proof. See [3], Th. 2.1. 

Remark 3.2. Construction of a fixed stress field x°: Let F° be continuous in Q. 
Then there exists 

J t ' e S n ^ O ) ] " 2 

such that 
divx1 = -F° in Q 

(x1 can be obtained by integration). 

Let the vector-function g° — x1 • v, where v denotes the unit outward normal, 
be piecewise linear on F^ with respect to a simplicial partition of Fff. Then there 
exists a simplicial partition of .Q and x2 e Fj|, where F£ consists of piecewise linear 
stress fields such that 

x2 
. V -9°-Ѓ . V . 

Settinj 11° = Z1 + X2> w e obtain 

x° є [Ľ°(Q)]nl 
5 

div x° = -F° in ß , 

x° . V = 0° on г,, 
which implies x° є F(F°, в°). 

4. EQUILIBRIUM FINITE ELEMENT MODEL 
IN TWO-DIMENSIONAL PROBLEMS 

In the following we shall consider the problems in R2 and evaluate the quantity 
e(h, k) introduced in Theorem 3.1 for a piecewise linear finite element model assuming 
a certain regularity of the exact solution &. 
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We assume that the reference body forces F° are constant and the reference 
surface tractions g° are piecewise linear on Tff. 

Let us consider a regular family {&~h}, 0 < h ^ h0, of triangulations of the 
domain Q (i.e., there exists a positive S0 such that all angles in all triangulations are 
not less than &0). Let h denote the maximal length of all sides in &~h. 

We employ the self-equilibriated triangular block-elements of Watwood and 
Hartz [8]. The model consists of triangular block-elements, each of them being 
generated by connecting the vertices of the triangle K with its centre of gravity. 
On each subtriangle Kt three linear functions — components of a self-equilibriated 
stress tensor — are denned. The stress vector has to be continuous when crossing 
any common boundary between the subtriangles. 

Note that under the assumptions on F° and g°, the auxiliary function x° c&n be 
chosen piecewise linear with respect to the triangulation ZTho. Then x(tn) — ? ( 0 X° 
is piecewise linear as well. In the sequel, we assume that each 3Th of the family {^h\ 
of the triangulations is generated by a regular refinement of ZTho. 

Let us define 

M ( K ) = {*11 = 01 + 02*1 + 03*2, ?22 = P4 + P5X± + fi6X2, 

*i2 = T2i = fa - 06*1 - £2*2, P e R1} ; 

N(K) = {T = (T1 , T2, T3) , T1 = T\Ki e M(K), T(T() + T ( T / + 1 ) = 0 , 

r(T) = {T1(T),T2(T)}, Ti(T) = TtjVj} ; 

Nh(Q) = {T G 5, T\K G N(K), VK e *Thy T(T)\K + T(T)\K, = 0 on K n K'} ; 

E°h = Nh(Q) n F(0, 0) = {T G N^Q), T . v = 0 on Fff} . 

An a priori error estimate is presented in the following theorem. 

Theorem 4.1. Let the solution a = (o-, a) be such that for a0 = a — % and a 
and for any K° e ZTho, 

sup po(0l|[c2(Ko)]4 = ||cr0||Lco(/?[C2(Xo)]4) < oo , 
tel 

sup IKOll^cK.o) = Hal^oo^,^^^) < oo , i = 1, 2, 3 . 
reJ 

Then lhere exis* constants C and k0 such that 

(4.1) max ||*" - &n
hk\\ = C(h + Vk) 

« = t , . . . , J V 

holds for fc ^ fc0, h ^ h0. 

Proof, see [3], Th. 3.2. 

R e m a r k 4.1. For T0 e Eh we obtain 

(4.2) (f + T0, r ) e P < ^ jB"(<i,) £ / (*" + T"0) (a,) 

a t all vertices a . e Kt <=• K of all triangles K e .^~A. 
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Thus we have also nonlinear constraints for the parametrs of /?" and r0 . In the 
case of von Mises' yield function / these constraints are quadratic. 

R e m a r k 4.2. (An algorithm for solving the approximate problem (3.2).) At each 
time level we have to minimize the quadratic functional (3.3) with the nonlinear 
constraints (4.2) and with linear constraints (equations) which guarantee the con
tinuity of the stress vectors across the interelement boundaries. We employ the initial 
values 

<T(0) == 0 , 

a(0) = a0 

and for the initial values of the next time step we take the values calculated at the 
previous one. 
The choice o( a suitable algorithm of nonlinear programming is discussed in the 
next chapter. 

R e m a r k 4.3. In three-dimensional problems, Theorem 4.1 can be proved if we 
use tetrahedral bl 3ck-elements [12]. 

R e m a r k 4.4. The convergence of the approximations can be proved without any 
regularity assumptions (see [3], Th. 4.1). 

5. NONLINEAR OPTIMIZATION PROBLEM 

Using Remark 3.1, for each time level we can define the following nonlinear 
optimization problem for the plasticity with strain-hardening: 

Definition 5.1. For each time level tn find a minimum of the functional 

(5.1) J(S) = £J/S'US*) 
P=I 

with linear constraints (equations) 

(5.2) NAX Ns Ns X 1 NA x 1 

[A] {S} = {R} 

and with nonlinear constraints (inequalities, cf. (4.2), a(Sa) *z 0) 

(5 .3) 9Ne x l 9Ne x 1 

{a(S«)}2 - {f(S[)y ^ 0 
where 

S = (Si, Sa)T are parameters, 

J/Si, S") = lM Aijklaij(7kl dx + x f a2 dx 1 - j f Aijkla^l dx + x f atf-1 dx\ 

— the functional defined on one block-element, 

[A ] — the matrix of linear constraints, 
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6. NUMERICAL RESULTS 

Numerical tests of the method proposed were performed for thin perforated 
strips of a strain-hardening material subjected to a uniform tension [10] (Fig. 1). 

The results have been compared with the experiment. The material and geometrical 
parameters considered were E = 68 700 [MPa], Poisson's ratio v = 0-2, x = 

L 

I I I I I 1 I I I I I 

0.36 

Fig. 1. Perforated tension strip. 

= 0-55510-3 [MPa]- \ a0 = 238 [MPa], t = 0-003 [m], L = 0-2 [m], d = 0-1 [m]. 
The applied stress was increased monotonically from the elastic region of loading 
(P = 104 [MPa]) to values producing an impending plastic flow (P = 117, 130, 144, 
158, 172 [MPa]). Due to the symmetry of the problem we can restrict the solution 
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to a quarter of the strip only. The mesh is displayed in Fig. 2. It was represented 
by 28 triangular block-elements. The total number of parameters used for nonlinear 
optimization problem was 1204 with the frontwidth 84. 

The average computer time required for the solution of the system of linear equations 
was 2-43 min. CPU (ICL 2958 computer). The total time was about 60 min. The ulti-

Fig. 2. Finite element mesh, 

VI. V. IV. Ill II. I. 
Fig. 3. Progressive yielding of perforated strip 
(numerical and experimental). Values at the 
centroid of elements: 0 - 1 1 7 MPa, o - 130 MPa, 
A - 144 MPa, • - 158 MPa, + - 172 MPa, 

experimental. 

mate elastic stress was calculated to 117 [MPa]. The measured value of this stress 
was 109 [MPa]. The first yielding appeared in the element at the root of the notch 
(node number 3). The propagation of the elastic-plastic points is shown in Fig.3. 
The figure includes the experimental results due to Theocaris and Marketos [10]. 
The results obtained by the present method are in good agreement with the experi
ment. It may be seen that a slight difference results from the coarse mesh used and 
the difference of load and boundary conditions between the calculation and the 
experiment. 
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7. CONCLUSION 

The theory of variational inequalities applied to plasticity provides a firm basis 
for the theory and for the numerical algorithms. In the present paper the equilibrium 
finite element model has been used. 

This new analysis has opened up great possibilities for better understanding of 
nonlinear models of the plastic bodies used in practice. 

References 

[1] C. Johnson: On Plasticity with Hardening. J. Math. Anal. Appl., Vol. 62, 1978, pp. 325—336. 
[2] /. Hlavdcek, J. Necas: Mathematical Theory of Elastic and Elasto-Plastic Bodies. Elsevier, 

Amsterdam, 1981. 
[3] I. Hlavdcek: A Finite Element Solution for Plasticity with Strain-Hardening. R.A.I.R.O. 

Numerical Analysis, V. 14, No. 4, 1980, pp. 347—368. 
[4] Nguyen Quoc Son: Materiaux elastoplastiques ecrouissable. Arch. Mech. Stos., V. 25, 1973, 

pp. 695-702. 
[5] B. Halphen, Nguyen Quoc Son: Sur les materiaux standard generalises. J. Mecan., V. 14, 

1975, pp. 3 9 - 6 3 . 
[6] C. Johnson: A Mixed Finite Element Method for Plasticity Problems with Hardening. 

S.I.A.M. J. Numer. Anal., V. 14, 1977, pp. 575-583. 
[7] Z. Kestrdnek: A Finite Element Solution of Variational Inequality of Plasticity with Strain-

Hardening. Thesis, Czechoslovak Academy of Sciences, 1982 (in Czech). 

[8] V. B. Watwood, B. J. Hartz: An Equilibrium Stress Field Model for Finite Element Solution 
of Two-Dimcnsional Elastostatic Problems. Inter. J. Solids Structures, V. 4, 1968, pp. 
857-873. 

[9] M. Avriel: Nonlinear Programming. Analysis and Methods. Prentice-Hall, New York, 1976. 
[10] P. S. Theocaris, E. Marketos: Elastic-Plastic Analysis of Perforated Thin Strips of a Strain-

Hardening Material. J. Mech. Phys. Solids, 1964, \ . 12, pp. 377—390. 
[11] C. Johnson: On Finite Element Methods for Plasticity Problems. Numer. Math., V. 26, 

1976, pp. 79-84 . 
[12] M. Krizek: An Equilibrium Finite Element Method in Three-Dimensional Elasticity. A pi. 

Mat., V. 27, No. 1, 1982. 
[13] D. M. Himmelblau: Applied Nonlinear Programming. McGraw-Hill, New York, 1972. 
[14] M. S. Bazaraa, C. M. Shetty: Nonlinear Programming. Theory and Algorithms, John Wiley 

and Sons, New York, 1979. 

[15] P. E. Gill, W. Murrey: Numerical Methods for Constrained Optimization. Academic Press, 
London, 1974. 

[16] B. M. Irons: A Frontal Solution Program for Finite Element Analysis. Intern. J. for Numer. 
Meth. in Eng., V. 2, 1970. 

[17] K Schittkowski: The Nonlinear Programming Method cf Wilson, Han and Powell with 
an Augmented Lagrangian Type Line Search Function, Part 1, 2. Numer. Math., V. 38, 
No. 1, 1981. 

[18] A. Samuelsson, M. Froier: Finite Elements in Plasticity. A Variational Inequality Approach. 
Proc. MAFELAP 1978, Academic Press, London, 1979. 

[19] J. Cea: Optimisation, theorie et algorithmes. Dunod, Paris, 1971. 
[20] O. L. Mangasarian: Nonlinear Programming 3, 4. Academic Press, New York, 1978, 1981. 
[21] Z. Kestrdnek: Variational Inequalities in Plasticity — Dual Finite Element Approach. 

Proc. MAFELAP 1984, Academic Press, London, 1984. 

280 



S o u h r n 

VARIAČNÍ NEROVNICE V PLASTICITĚ SE ZPEVNĚNÍM DEFORMACÍ -
UŽITÍ ROVNOVÁŽNÉHO MODELU METODY KONEČNÝCH PRVKŮ 

ZDENĚK KESTŘÁNEK 

V článku je aplikována přírůstková metoda konečných prvků k nalezení numerického řešení 
problému plasticity se zpevněním deformací. K aproximaci pole napětí je užito rovnovážných 
trojúhelníkových prvků s lineárními funkcemi podle Watwooda a Hartze. Pole parametru zpev
nění deformací je uvažováno rovněž po částech lineární. K řešení výsledného nelineárního opti
malizačního problému s vazbami je užito metody Lagrangeových multiplikátorů s přídatnými 
proměnnými. Získané numerické výsledky jsou porovnány s experimentem. 

Р е з ю м е 

ВАРИАЦИОННЫЕ НЕРАВЕНСТВА В ПЛАСТИЧНОСТИ 
С МЕХАНИЧЕСКИМ УПРОЧНЕНИЕМ - ПРИЛОЖЕНИЕ РАВНОВЕСНОЙ 

МОДЕЛИ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ 

7.ВЕШК К Е З Т К А ^ К 

В статье применяется метод приращения конечных элементов к определению численного 
решения проблемы пластичности с механическим упрочнением. Для аппроксимации поля 
напряжений используются равновесные треугольные элементы с линейными функциями по 
Вотвуду и Харцу. Поле параметра механического упрочнения также считается кусочно линей
ным. Для решения результирующей нелинейной проблемы оптимизации с органичениями 
использован метод множителей Лагранжа с дополнительными переменными. Проведено 
сравнение полученных численных результатов с экспериментом. 

АшНог'з аййгез8: К^Ог. Хйепёк Кезггапек, С8с, Ууросегт сепггит СКЮ РгаЬа, № НагГё 
7, 190 02 РгаЬа9. 
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