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NON-POLYCONVEXITY OF THE STORED ENERGY FUNCTION 
OF A SAINT VENANT-KIRCHHOFF MATERIAL 

ANNIE RAOULT 

(Received October 15, 1984) 

Summary. A direct proof of the non-polyconvexity of the stored energy function of a Saint 
Venant-Kirchhoff material is given by means of a simple counter-example. 
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In his famous paper [1] dealing with existence theorems in nonlinear elasticity, 
John Ball introduced the notion of polyconvexity and proved the existence of an 
equilibrium state — understood as a minimizer of the total energy function — for 
hyperplastic materials whose stored energy function is polyconvex, subjected to 
conservative applied forces. It is well known, for instance, that Ogden's materials 
are polyconvex materials [2], but as far as we know there has been no direct proof 
of the non-polyconvexity of the usual Saint Venant-Kirchhoff model. The purpose 
of this note is to provide such a direct proof by constructing an easy counter-example. 
However, there exists an "indirect" proof, where the non-polyconvexity is a con
sequence of the non weak lower semi-continuity of the associated functional (cf. 
Necas [4]). 

Let M3 be the set of real matrices of order 3 and let M+ be the subset of matrices 
with determinant > 0. Let us recall [ l ] , [2] that a real-valued function W defined 
on M 3 is polyconvex if and only if there exists a convex function g defined on M 3 x 
M 3 x R+* such that 

(1) VF e M\ , W(F) = g(F, adj F, det F) 

where adj F = de tF (F - 1 ) . Notice [1], [3] that M3 x M3 x R+* coincides with 
the convex hull of {(F. adj F, det F), F e M+}. The stored energy function of a Saint 
Venant-Kirchhoff material with Lame's coefficients X and \i is 

(2) W(F) = a! tr (FTF) + a2 tr (FTF)2 + bt tr adj (FTF) 
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where 

/ V i 3X + 2\i X + 2fi X 
(3) a± = , a2 = — - — м. 

We want to decide whether Wis polyconvex or not. It is well-known that for physical 
reasons X and \i are positive; therefore the first coefficient in W is negative and this 
is the first indication that Wneed not be polyconvex (note that if all coefficients were 
nonnegative polyconvexity would be immediate [1], [3]). 

Theorem. W is not polyconvex. 

Proof. Let us construct a counter-example. Let s be a positive number, and let F 
and F' be the following elements of M+: 

F = si, F' = £ diag (1,1, 3) . 

One immediately obtains 

det F = s3 , adj F = s2I, det F' = 3s3 , adj F' = ^2 diag (3, 3, 1) , 

*'=--« diag (1 ,1 , 2 ) , 
2 

det-—1~^~ = 223 , adj - - = s2 diag (2, 2, 1) , 
f + f ' ~„з nAlF + F' л 

so that the following relations are satisfied, (of course, they do not hold for arbitrary 
F and F' in M\): 

<A\ F + F *M* A F + F adjF + adjF' A F + F' 
(4) e M\ , adj = — — , det = 
W 2 2 2 2 

det F + det F' 

2 

If W were polyconvex, equations (1) and (4) would lead to 

(5) wfL±n^i{W(F) + w{F))_ 

For the sake of brevity, let us write 

FTF = S2I, E'TE' = £2J, (Z^Y(1±E\ = S2K 

with J = diag(l, 1, 9), K = diag(l, 1, 4). 
Then using expression (2), where the first term is homogeneous of degree 1 and the 

remaining terms are homogeneous of degree 2 with respect to FTF, we derive from 
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inequality (5) 

ax tr Ke2 + (a2 tr K2 + bx tr adj K) e4 ^ 

\{ax(\xl + tr J) s2 + (a2(tr I + tr J2) + bx(trI + tr adj J)) e4) 

and this inequality amounts to 

at + (25a2 + 2bx) s2 ^ 0 

which (recall that at is negative) cannot be true for s small enough. • 
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S o u h r n 

NEPOLYKONVEXITA FUNKCE VNITŘNÍ ENERGIE 
SAINT VENANTOVA-KIRCHHOFFOVA MATERIÁLU 

ANNIE RAOULT 

Je podán protipříklad dokazující, že funkce vnitřní energie Saint Venantova-Kirchhoffova 
materiálu není póly konvexní. 

Pe3ioMe 

HE-nOJIHBBinyKJIOCTB BHyTPEHHEH cDyHKIJHH MATEPHAJIA CEH B3HAH-
-KHPXFOOA 

A N N I E R A O U L T 

.ZJaeTCH npHMep MaTepnajia CeH B3HaH-KHpxro(J)a, <},yHKUHH BHyrpeHHeii 3HepniH KOTOporo 
He HBJífleTca nonHBBinyKJiOH. 
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