
Aplikace matematiky

Ivan Hlaváček
Shape optimization of elastoplastic bodies obeying Hencky’s law

Aplikace matematiky, Vol. 31 (1986), No. 6, 486–499

Persistent URL: http://dml.cz/dmlcz/104226

Terms of use:
© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104226
http://dml.cz


31(1986) APLIKACE MATEMATIKY No. 6,486-499 

SHAPE OPTIMIZATION OF ELASTO-PLASTIC BODIES 
OBEYING HENCKY'S LAW 

IVAN HLAVACEK 

(Received October 18, 1985) 

Abstract. A minimization of a cost functional with respect to a part of the boundary, where 
the body is fixed, is considered. The criterion is defined by an integral of a yield function. The 
principle of Haar-Karman and piecewise constant stress approximations are used to solve the 
state problem. A convergence result and the existence of an optimal boundary is proved. 

Keywords: domain optimization, variational inequality, elasto-plastic bodies obeying Hencky's 
law. 

AMS Subject class.: 65K10, 65N30, 73E99. 

INTRODUCTION 

It is the aim of the present paper to solve the following optimal design problem. 
Given body forces, surface loads and material characteristics of an elasto-plastic 
two-dimensional body, find the shape of a part of its boundary such that a cost 
functional is minimized. The cost functional is an integral of the yield function and 
zero displacements are prescribed on the unknown part of the boundary. 

One of the simplest mathematical models describing the elasto-plastic behaviour 
of solid bodies is given by the constituent law of Hencky. The classical boundary 
value problems allow a variational formulation in terms of stresses, known by the 
name of Haar-Karman principle. In the papers by Mercier [6] and Falk [4], [3], 
approximate solutions of two-dimensional problems have been studied, which 
consist of piecewise constant stress fields. Using the latter finite element model and 
piecewise linear approximations of the unknown boundary, we define some discrete 
optimization problem. 

The main result of the paper is the convergence analysis of the solutions of discrete 
problems to a solution of the original continuous optimization problem. 

1. FORMULATION OF THE OPTIMIZATION PROBLEM 

First let us recall some basic relations of the elasto-plastic bodies obeying the law 
of Hencky. 

Let Q a R2 be a given bounded domain with Lipschitz boundary dQ. Assume 
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that 

dQ = ruuFg9 runrg = ®, 

each of the parts Ftt and Tg being open in dQ. 

Let Rff be the space of symmetric 2 x 2 matrices (stress or strain tensors). A repeat­
ed index implies summation over the range 1, 2. Assume that a yield function f: Rff -> 
-> #? is given, which is convex, Lipschitz and 

(1) /(*") = |A|/(a) VAeff, v^ew, . 
These conditions are fulfilled e.g. by the von Mises function 

where 

fry = °"u ~ i<*ij<tkk • 

We introduce the following spaces and notations: 

S(Q) = {T: 0 - ff, | Ty G L2(*2) Vi,j} , 

r 
<<7, £>£> = J (7lVel7 dx , \(j\0iQ = <(7, (T>£/2 . 

J Q 

In the space S(Q) we introduce also the energy scalar product 

(°, *)fl = <b(7, T>̂> , ||(7||fl = ((7, ex)1/2 , 
where 

b: S(f2) -> S(f2) 

is the isomorphism defined by the generalized Hooke's law 

e = bao etJ = bijklakl. 

We assume that positive constants b0, b1 exist such that 

(2) b0\\a\\lQ = <b(7, a}Q = ^ H ^ V(7 e S(Q) 

and 
<b(J, z}Q = <(7, &T% V(J, T G S(O) . 

Assume that a body force Fe[L2((2)]2 and a surface traction gG[L2(F^)]2 are 
given. 

We define the set of plastically admissible stress fields 

p(Q) - {T e S(Q) | / ( T ) S 1 a.e. in Q} 

and the set of statically admissible stress fields 

E(Q) = {ze S(Q) | <T, e(v)}Q = LQ(v) W G V(Q)} , 
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where 

V(Q) = {ve[H\Q)f\v = Oonrtl}, 

e(y)ij = i(dVijdxj + dvjjdXi), 

LQ(v) = FtVidx + gtv,-ds. 
JiQ J Tg 

The Haar-Kdrmdn principle says that the actual stress field minimizes the 
complementary energy 

^W = IMS 
over the set F(.Q) n P(.Q). 

For the derivation of the principle - see [2] or [4], [3]. Note that the principle 
is equivalent to the following variational inequality: a e E(Q) n P(Q), 

(3) (a, r - o-)fl = 0 VT G £(p) n P(O) . 

Passing to the shape optimization problem, we introduce the following set of 
admissible design variables 

Uad = Y e C(0)'l([0, 1]) (i.e. Lipschitz functions) , 

v ^ v ^ p , |dv/dx2| = C! , J "v dx2 = C2|, 

where a, /?, Cx and C2 are given positive constants. 

Л(v) Г(v) 

ří Fig. 1. 
ff /J 

We shall consider a class of domains .(2 = Q(v), (Fig. 1) where v e Ufld- and 

&00 = {(*i. *2)| 0 < x! < v;x2), 0 < x2 < 1}. 
For any v e Uad, the graph F(v) of v will coincide with the part Fu of <9:Q(v). 
The function v has to be determined from the Optimization Problem 

(4) A°(v)) = m i n • 



over the set of v e Uad, where 

M*))-[ fW))*> 
J Q(v) 

and a(v) is the solution of the variational inequality (3) on the domain Q — Q(v). 
In what follows we assume that F e [ L 2 ^ ) ] 4 and F e \j}(dQd — F^)]2 are given, 

where Q5 = (0, 5) x (0, 1), S > p and 

rd = {(*!, x2)\ x, = s, o < x2 < i } . 

Moreover, assume that a tensor field o° e E(Qd) exists such that x -> cr°(x) is 
a Lipschitz function in Qd and 

(5) (1 +s)a°eP(Qd) 

holds for some positive s. 

Note that (1) implies /(0) = 0 so that 0 e P(O^) and a0 e P(Qd) follows from (5), 
since P(Q#) is convex. 

R e m a r k 1.1. From the definition of E(QS) we easily derive that 

div o-0 + F = 0 in ^ , 

a0 .v = g on ^ - F5. 

Consequently, g is a Lipschitz function on any side of dQd — r3. 

Proposition 1.1. The Haar-Kdrmdn principle has a unique solution for any 
Q(v), v e Uad. 

Proof. We can easily show that P(Q(v)) n E(Q(v)) is non-empty. In fact, the 
restriction of a0 onto Q(v) belongs to this intersection, since the extension w of any 
w e V(Q(v)) by zero belongs to V(Q§) and we may write 

(e(w), <J°>Q(V) = <e(w), o°)Qs = LQd(w) = LQ(v)(w) . 

The sets E(Q(v)) and P(Q(v)) are convex and closed in S(Q(v)), the functional 
^(o) is quadratic, strictly convex. Hence the existence and uniqueness follow. 

2. APPROXIMATIONS BY PIECEWISE CONSTANT STRESS FIELDS 

Let N be a positive integer and h = 1/N. We denote by ej9 j = 1, 2, ...,N, the 
subintervals [(j — 1) h9jh] and introduce the set 

Ut^^eUjv^eP^Vj} 

where Pk denotes the set of polynomials of k-th degree. Let Qh denote the domain 
Q(vh), bounded by the graph Fh of vh e U

h
ad. The domain Qh will be carved into triangles 

as follows (see fig. 2). 
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We choose a0 e (0, a) and introduce a uniform triangulation of the rectangle 
M = [0, OCQ] x [0, 1], independent of vA if h is fixed. 

In the remaining part Qh — M let the nodal points divide the intervals [oe0, vh(jhj] 
into M equal segments, where 

M = l + [ ( / ? - a0)N] 

and the square brackets denote the integer part. 

a 
Fig. 2. 

Thus we obtain a regular family {^~h(vh)}9 h -> 0, vA e Uh
ad9 of triangulations. Note 

that for any vA e Uh
ad we construct a unique triangulation <Th(vh). Denoting the 

triangles of ^h(vh) by K, we define the finite element spaces 

Vh(Qh) = {wh e V(Qh)\ wh[K E [PX(K)]2 VK e trh(vh)} 

Hh{Qh) = {z E S(Qh) \T\K E [P0(K)]4 VK e $~h(vh)} 

and external approximation of the set E(Qh) 

Eh(Qh) = {TA G ffA(QA)| <TA, e(wh)}Qh = LQh(wh) Vwh e Vh(Qh)} . 

Instead of the problem (3) we introduce the following approximate state problem: 

find <xA G P(Qh) n KA(.QA) such that 

(6) K T* - <rh)Qh ^ 0 VTA G P(£>A) n KA(^A) . 

Lemma 2.1. The problem (6) has a unique solution for any vh E Uh
ad9 h > 0. 

Proof. Like in the proof of Proposition 1.1 we can show that 

a°\QhEP(Qh)nE(Qh). 

For any polygonal domain Q a.nd its triangulation ?Th we define a projection 
mapping 

rh: SxQ) -> Hh(Q) 
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by means of the relation 

(7) <T - rhx, <7„>„ = 0 Vah e Hh(Q) . 

Henceforth we shall write 

°o\oh
 = ^o 

and prove that rha° e Eh(Qh). In fact, given a wh e Vh(Qh) we have e(wh) e Hh(Qh) 
so that 

<e(wh), rha°)Qh = <e(w/?), <r%h = L f l h (^) , 

since wh e V^). 

It is readily seen that 

rha° = (mes K)"1 j a0 dx VK e ^ (v / 7 ) . 

Consequently, 
/ ( /yr 0 ) £ 1 in Qh 

and rAr/° e P(iQA) follows. 

The set P(Qh) n Eh(Q^ is therefore non-empty. Since it is also convex and closed 
in S(Qh), we obtain the unique solvability of (6). 

Lemma 2.2. Let {vh}, h -> 0, be a sequence of vh e Uh
d, vh -> v in [0, 1] uniformly. 

Then 

(8) *»-<<») i» P(a {)]4 , 
where ah is the solution of the approximate state problem (6) extended by zero 
to Qd — Qh and a(v) is the solution of the problem (3), extended by zero to Qd — Q(v). 

Proof. 1° The sequence {ah} is bounded in S(Qd). In fact, we may insert 

xh = rha° e P(Qh) n Eh(Qh) 

into the inequality (6) to obtain 

IN|f l h -S (vh9 rha°)Qh = \\<Th\\oh \\rh°
0\\nh • 

Cancelling and using the inequalities (2) and (7), we may write 

l>J/2N|0>«h -* Ihlk = I M k = 
^ b\l2\\rhA\0,a„ ^ *i"K| |oA = l>5/2|k°IU • 

Consequently, 

(9) IN|o,«, = C Vh 

and there exists a subsequence (denote it by the same symbol) such that 

(10) ah ~v a (weakly) in S(QS), a e S(QS) . 
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2° We can show that 

(11) a\Q(v)GE(Q(v))nP(Q(v)). 

Let w e V(Q(v)) be given. Let us construct its extension w by zero into Q8 — Q(v). 
There exists a sequence {wx}, x -» 0, such that 

wx e [C°°(0,)]2 , w„ = 0 in Qd-Q(v), 

supp wxf n r(v) = 0 , i = 1, 2 , 

(12) w x - > # in H1^,). 

There exists h0(x) such that wx = 0 on Th if h < h0(x), so that 

^ k e F W Vh<h0(x). 
Let us construct the standard interpolation nhwx e Vh(Qh) and denote its extension 
by zero to Q5 — Qh by the same symbol. 

For any oh we have 

<cr/l, e(nhwx))Qh = LQh(nhwx) , 

which can be rewritten as follows 

(13) <<7A9 e(nhwy))Qd = LQd(nhwx) . 

Note that 
nhwx -> wx for h -> 0 in H1^) 

and therefore 

< ^ 0 -> *(**) in S(.Q5). 

Passing to the limit with h -» 0 in (13) and using (10), we thus obtain 

<CJ, e(w„)>0<5 - L„d(wx) . 

Passing to the limit with x -* 0 and using (12), we arrive at 

<<7, <w)> f l ( t?) = <<7, e(w)>^ = LQd(w) = K«(t;)(W) > 

so that (?\Q(V) e E(Q(v)). 

Since P(Qd) is closed and convex in S(Q), it is weakly closed. Any dh belongs to 
P(Q$) and hence the weak limit a e P(Qd), as well. Therefore o\Q{v) e P(Q(v)). 

3° We show that 

(14) G = 0 a.e. in £ a - £ v). 

Let cr 4= 0 on a set M c ^ - r2(v), mes M > 0. Introducing the characteristic 
function XM of M", we obtain 

<<3*> Z M ^ > ^ -+ <<r, XM<7>^ = |k||o,M > 0 • 
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On the other hand, 

<<?/.> XM^Q6 = <#/p ^QhnM ^ ||̂ *||0,17.3 H k - ^ n M ~* ° 

by virtue of (9) and mes (Qh n M) -> 0. 

Consequently, we arrive at a contradiction. 

4° We show that the restriction c>\Q(v) solves the state problem (3). 

Let a T e E(Q(v) n P(Q(v)) be given. We consider a "shifted" domain Q(v + X) = 
= .0^, where A is a positive constant and construct a function 

(15) ^ 6 £ ( f 2 A ) n P ( 0 A ) 

which tends to T in S(Q(v)) for A -> 0, as follows. 

We define the function 

(16) y(A) = i ^ » 
i + v^ 

(see (5), where s has been introduced), and the extension c5 of co = T — cr° by zero 

to the negative half-plane Xj < 0. 

Let us define 

(17) w\xu x2) = ^ (x ! - X, x2), xe iQ A , 

TA = o-0 + y(A) cDA. 

To prove that TA e F^), it suffices to show that 

<co\e(w)>aji = 0 VweV(Qx), 

since 
<x° e E(QX) 

follows by the argument used in proving Proposition 1.1. 

We may use the transformation of coordinates 

(18) xt - X =a y± , x2 = y2 , 

w(x) = w(yt + A, y2) = w(y) 

and write 

<or\ e(w)>i2A = €j(xt - X, x2) e(w(x)) dx = 
J QA 

•J, «Xy) e(w») dУ = «(y) e(w{Ý)) dУ = 0 -

Here we used the fact that w e F(£2 (*>)) and 

co = - _ a0 , z e E(Q(-)) , a0
 e £(fi(»)) 
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It remains to show that TA e P(0A). Let us denote 

*o(y) + y W ®(y) = °\Y) > 
Then 

(19) \\X\K) - a\y)\\ = ||o-0(x) - cr0(y)|| S CX V x e f i , - (0, X) x (0, 1), 

since a0 is Lipschitz and ||x — y|| = X 

One can prove that 

(20) /((i + VA) o-(,r)) = ( i + V^)j(^(y)) = i 

holds for sufficiently small X and y e O(v). 

In fact, we may write 

(i + VA) <rA = (i + VA) 0 ° + y(T - o-0)] = 

= ffo(1 + e ) ^ + г / ' 1 _ V Ą = (l + VA)[a°(l + 8 ) ^ + 7T 
L 1 + £ 

and (20) holds for yJX < s, since / is convex and both T and (1 + s) a0 belong to 
P(Q(v)). 

Since f is Lipschitz, we have 

f(TA(x)) = f(a\y)) + C| |T A (X) - a\y)\\ = (1 + X A ) _ 1 + CCA 5_ 1 

for A = A0(CC, s) and any x e Qk - (0, A) x (0, 1). In the strip (0, X) x (0, 1) it 
holds 

/ ( T * ) = / ( « 7 0 ) _ 1 . 

Altogether, TA G P(Qj) and the proof of (15) is complete. 
Furthermore, we have 

( 2 1 ) h* - AoMv) = \W) WX ~ °>[|0,0(1,) = 

= \y(X)\ | |o/ - co\\0Mv) + \y(X) - l | \\co\\0Mv) -* 0 

for A -> 0. In fact, 
|y(A)Ui, b ( A ) - i | - o 

and 
I K - w | |o,o(,) -> 0 for A - » 0 . 

(See [7] - Theorem 1.1.) 

The function TA will now be used to construct the test functions in the approximate 
problem (6). 

It is obvious that 
Qh <=. Qx V/i < h0(X). 

Then 
?%heE(Qh)nP(Qh) 

494 



and we may construct the projection 

rhx
x e Eh(Qh) n P(Qh) 

(cf. the proof of Lemma 2.1). 

Let Qxu be a polygonal domain inscribed into Qx and such that 

(i) Qh cz Qm, 
(ii) the partitions Dh of the interval [0, 1] refine the partition DH, (i.e. H is a mul­

tiple of h), 

holds for the sequence of h under consideration. Let us consider extended triangu-
lations 

&m ^ erh(vh) 

of the domain QUi and the projection mapping 

r f : S(QMi) -> Hh(Qm) 

dQf[\\Qd on the triangulations 3~m by means of the relation (7). Obviously, rXflzx 

is an extension of rhx
x onto Qm. 

By definition 

(22) (<r», V \ ^ ||<rA||^ . 

Passing to the limit with /* -> 0, we may write 

(23) (<rh9 rhx
x)Qh = (Sh9 rXHT%XH -> (a, TX)QAH = {a, z%(v) 

using (10), the relation 
lim ||ri}V - ^ | | 0 , Q A H = 0 
/i->0 

and (14). 

The weak convergence (10) implies 

(24) lim inf \\<r„\\2
h = lim inf \\ah\\

2
l6 ^ ||<-|& = M o w • 

h-+0 h-*0 

Using (23) and (24) in (22), we obtain 

Passing to the limit with X -> 0, we arrive at 

(or, T - <7)0(l;) ^ 0 , 
by virtue of (21). 

Using also (11), we conclude that the restriction a\Q(V) coincides with the solution 
a(v) of the state problem (3). Since the latter problem is uniquely solvable - cf. 
Proposition l.l - the whole sequence {ah} tends to tr(v) weakly in S(Qd). 

It remains to prove the strong convergence. Inserting % = a(v) into the previous 
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argument and writing a(v) = a, we obtain 

11 JX IІ 2 ^ / _ ,„ —k\ 
\Gh\ӣõ = V^A' ř'A(7 ) toл 

Passing to the limit with ft -» 0, we arrive at 

lim sup \oh\Q5 _S (<r, (7% ( y ) VA . 

Passing to the limit with A ~» 0 and using (21), we obtain 

lim sup ||<7fc||^ = || ( 7 1 | ^ . 
/i-»0 

Combining this estimate with (24), we are led to the relation 

i i m N i ^ = ik^iii' 
h^O 

which together with the weak convergence implies 

lim \ah - <J(V)\\Q6 = 0 . 
h-*o 

On the basis of the equivalence of the norms, the strong convergence in S(Qd) 

follows. 

Lemma 2.3. Let {vh}, ft -» 0, be a sequence of vh e Uad, vh -» v in [0, 1] uniformly. 

Then 

f(ah(vh)) -* f(a(v)) , 

where ah(vh) and a(v) are the solutions of the problems (6) and (3) on the domain Qh 

and Q(v), respectively. 

Proof. Sincef(0) = 0, we may write 

f(oh(vh))=\ f\oh)dx, / ( * ( - ) ) - [ f2(o(v)) 
J n6 jQd 

By assumption, we have 

\f\Sh) - f\o)\ S \f(Sh) ~f(o)\ \f(oh) +f(o)\ ^ 

^ C\\oh - o\\ (2f(o) + C\\oh - o\\) . 

Therefore, we may write 

dx. 

ß(oh)-Ąo) = \ (f\õh)-f\o)dx 
J Qô 

< c, ЏҺ - Ö-Ц Дcr) dx + C, 
QÔ 

\ah — cr||2 dx ^ 
QÕ 

= С5\дн - «г||0,0* + св\°и ~ °\\о,па "+ °> 

using Lemma 2.2. 
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We define the A p p r o x i m a t e O p t i m i z a t i o n P r o b l e m : 

find uh E Uad such that 

(25) f(vh(uh)) S f(*h(vh)) Vv, e Uh

ad . 

Lemma 2.4. The Approximate Optimization Problem has a solution for any h. 

Proof. Denoting by a e RN+1 the vector of nodal values 

vh(ih) = ai9 i = 0, 1, . . . , N , 

it is easy to see that 

vheUh

doaes/, 

where stf is a compact set. 

One can prove that the function 

(26) a^f{ah(a)) 

is continuous on the set s/. In fact, the condition 

<e(wh)> °h>oh(a) = LQh(a)(wh) \fwh E Vh(Qh(a)) 

is equivalent with a linear system 
A(a) a = F(a) 

with continuous functions a \—> A(a), a !—> F(a) (where a denotes the vector of the 
values of crh in all triangles K e 3Th(a)). The positive definite quadratic function 

&(?) = ł Ы Í2„(a) 

has coefficients, which depend continuously on a. Consequently, a i—> a(a) is a con­
tinuous function, as well. The continuity of (26) follows from this fact and the pro­
perties of the yield function f. 

Theorem 2.1. Let {uh}, h -> 0, be a sequence of solutions of the Approximate 
Optimization Problems (25). 

Then a subsequence {u^} exists such that 

uh-+u in C([0,1]) , 

(27) dh(uh) -> <r(u) in [L2(Qd)f 

holds for h -> 0, where && is the solution of the approximate problem (6), extended 
by zero to Qd — Qft, a(u) is the solution of the problem (3) on Q(u), extended by 
zero to Qd — Q(u) and u is a solution of the Optimization Problem (4). 

Any uniformly convergent subsequence of {uh} tends to a solution of (4) and (27) 
holds. 
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Proof. Let us consider a v e Uad. There exists a sequence {vh}, h -» 0, such that 

vh e Uh
ad, vh -> v in C([0, 1]) (see [ l ] - Lemma 7.1). 

Since Uad is compact in C([0, 1]), a subsequence {uh} and u e Uad exist such that 

uh -> w in C([0, 1]). 

By definition (25), we have 

ý(oh(u-h)) g ý(ah(vh)) . 

Applying Lemma 2.3 to both the sequences {uri} and {v/j}, we obtain 

f(a(u)) S f(<r(v)) . 

Consequently, u is a solution of the Optimization Problem (4). The convergence 

(27) follows from Lemma 2.2. The rest of the Theorem is obvious. 

Corollary. There exists at least one solution of the Optimization Problem (4). 

P r o o f is an immediate consequence of Lemma 2.4 and Theorem 2.1. 
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Souhrn 

OPTIMALIZACE TVARU PRUŽNĚ PLASTICKÝCH TĚLES 
PODLÉHAJÍCÍCH ZÁKONU HENCKYHO 

IVAN HLAVÁČEK 

Minimalizuje se účelový funkcionál vzhledem k části hranice, na níž je těleso upevněno. 
Kritérium optimality je definováno integrálem funkce plasticity. K řešení stavové úlohy se 
užívá princip Haara-Kármána a po částech konstantní aproximace pole napětí na triangulacích. 
Dokazuje se existence řešení a konvergence přibližných řešení. 
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Резюме 

ОПТИМИЗАЦИЯ ФОРМЫ УПРУГО-ПЛАСТИЧЕСКИХ ТЕЛ, 
ПОДЧИНЯЮЩИХСЯ ЗАКОНУ ХЕНКИ 

IVАN Н^АVАСЕК 

Рассматривается минимизация целевой функции по отношению к той части границы, где 
тело фиксировано. Целевая функция определяется интегралом из функции пластичности. 
Для решения проблемы состояния применяется принцип Хара-Кармана и кусочно постоян­
ные аппроксимации напряжений. Доказывается сходимость аппроксимаций в определённом 
смысле и существование оптимальной границы. 

Ашког'в асМгем: 1п§. Ъап Шаюасек, С8с, МагетаЦску йз1ау С8АУ, 2лта 25, 115 67 
Ргапа 1. 
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