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BOUNDS OF THE ROOTS OF THE REAL POLYNOMIAL

IMRICH KOMARA

(Received July 8, 1985)

Summary. An algorithm for the calculation of a lower bound of the absolute values of the
roots of a real algebraic polynomial, of an arbitrary degree, is derived. An example is given
to compare the bounds calculated by the method proposed and by other methods.

1. FORMULATION OF THE PROBLEM

Let us consider a real polynomial
(1.1) P(x) = x" — s;x" 1 + (=1)2sox" 72 4 o+ (= 1) s, 0% +
+ (=1t s,mgx + (—=1)"s,,

where sy, §5, ..., s, are symmetric functions of roots and s, &= 0. In what follows,
consider the equation P(x) = 0. We define a substitution

(1.2) x = w ;

then we have

[ﬂﬂ]" — 5 [(’—lz—c;—s]_l +(=1)s, [(;1):_1“&']"_2 +o

Xo Xo
—1\n—1 2 —1\n—1
R e | s [ |+ 1 =o.
Xo Xo
Let us divide this equation by the expression
(_ 1)" sn
Xo

and then extract before the brackets the factor (—1)""'s, from those members
in which it is contained. So we have



(1.3)
(—1yt sn{[(_“l—)":_ﬁ']"_z ~ s, [t_%:li"]"ﬂ Foot (—1)"‘25,,_2} +

0

+ (=1t s,oyxe — x5 = 0.
If we set

(L4 = = [(~'>~.] . [L_- o ] o (=1,

0 Xo
then we obtain, after a small arrangement, the equation (1.3) in the form

(1.5) xg + xoS,—1(— 1) = xy5,(—=1)""1 = 0.

Theorem 1.1. Let s, &= 0. Then for every solution (x, Xo» xl) of the system
xS + xos"—'l(—])"ﬁz - xlsll(_l)"—l = 05
1 n—2 11 n—3
(16) x = [(ﬁf—l)w*ff] -5 [(———1) S"] o+ (=1,
Xo Xo
xxo = (—1)""1ts,,

X is a root of the polynomial (1.1).

The proof is clear.

In the plane (x,, x,) the first equation of the system (1.6) represents a parabola,
the second equation yields an algebraic curve with the asymptote

(1.7) Xy = (—17"%s,_,.

We are going to do further considerations in the plane (x,, xl).

Lemma 1.1. The function

(1.8) f(x0)=f°(_x£lSL1D, 5, + 0,

|sa]
has in the open interval (0, o0) the following characteristics:

a) f is continuous;
b) for xo > |s,—4|, f is positive;
c) for xq > |s,-4|/2, f is monotonously ascending.

These characteristics are obvious, so we will not prove them.

Lemma 1.2. The function

(1L9)  glxe) = <|z_|> £ s (@)3 bt ol B s

X0 0 0
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has in the open interval (0, ) the following characteristics:

a) g is continuous and positive;

b) g is monotonously descending;

¢) g has an asymptote x, = |s,_,|, such that g(xo) > |s,-|;

d) for the real coordinate X, of the point of intersection with the curve (1.8)
we have: X, > Is,,_ll.

The characteristics a), b), ¢) of Lemma 1.2 are obvious, d) follows from the charac-
teristic b) of Lemma 1.1 and from the characteristic a) of Lemma 1.2.

Theorem 2.1. Consider the polynomial (1.1), where at least one of the coefficients
Su—1> Su—2 is different from zero. Let the function g(x,) be given by the relation
(1.9). Then for the absolute value |A| of the roots of the polynomial (1.1) the following
inequality holds:

2[s,|
Isu-1] + V/(Isu-1]* + g(x0) [sul)

Proof. Solving the quadratic equation in the relation (1.6) for the unknown x,,
we obtain

(1.10) | =

x0 € (0, ).

'—sn—l(_]')n_2 i_ \/(sr%—-l + 4x1sll(_1)n_1) i

(1~11) (xO)l,Z = 5
Hence for the absolute value |xo| we get
(1.12) | < ol «/(|Sn—21|2 + 4 [s))

< soma] + lsn=af? + 49(x0) |sal) _ %,
= 2 ’

where g(x,) is given by the relation (1.9) and X, is the real coordinate of the point of
intersection of the curves given by the relations (1.8) and (1.9). But from the third
equation of the system (1.6) we have

(1.13) |x| = s
[ol

and according to Theorem 1.1

(119 i = 4],
which yields

ol =

4

Let us substitute the last relation into the inequality (1.12); then the statement (1.10)
directly follows. This completes the proof.
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2. THE ALGORITHM FOR THE CALCULATION OF A LOWER BOUND
OF THE ROOTS OF THE POLYNOMIAL (1.1).

The value X, in the relation (1.12), as has already been mentioned, is in fact the
coordinate of the real intersection point of the curves f(x,) and g(x,) described
in Lemma 1.1 and Lemma 1.2. Because we do not know how to calculate the co-
ordinate precisely, we propose how to calculate an upper bound of the point X,.
We proceed so that we find two points x4, X,,, such that the inequalities

(2~1) f(xo1) < g(xm) »

f(x02) > g(x02)
are satisfied. Then, taking into account the properties of the functions f(x,), g(x,),
we conclude that the point x4, is an upper bound of the point X,. We proceed in
three steps:

1. We find the coordinate of the intersection point of the asymptote c) in (1.9)
with the parabola (1.8), obtaining the solution

(2:2) X0 = lsn—xl + \/(IS,,—1|2 + 4|s,,~2| s"|) ’

2
where s,_4, 5,-, are not both simultaneously equal to zero. It satisfies the relation
(2.3) f(x01) < g(x01) 5

because f(xo;) = |s,-,| and, according to ¢) in Lemma 1.2, |s,_,| < g(x¢1)-
2. We calculate the value of the function (1.9) at the point x4;:

n—3

+ ..+ |Sn__3|

n—

S, Sy

2
Ca) oo = [+ Jsd ol

sn
Xo1 Xo1 Xo1

3. We calculate the coordinate x,, of the point of intersection of the parabola
(1.8) with the line

(2'5) Xy = g(xm) = f(xoz) .
We obtain
(2.6) xg, = Snmal - lsaoa” + 4 9(x0) [s)
2

We claim that the point x,, is already an upper bound of the point X,. The relations
(2.2) and (2.6) and c) in (1.9) imply the inequality

(2.7) Xo1 < Xo2 -

As a consequence of Lemma 1.2 we have g(xo1) > g(xo2) and the relation (2.5)
yields

(2.8) f(xoz) > g(XOZ) .
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The points xo1, Xo2 iven by the relations (2.2) and (2.6), respectively, satisfy the
conditions (2.1) and so, because of the relations (1.13) and (1.14), we obtain

2ls,|
|sn—1| + \/( Sn~1|2 + 4g(x01) IS"D

The relation (2.9) gives a lower bound of the absolute values of the roots of the
polynomial (1.1).

(2.9) |A| > Sal =

Xo2

Remark 2.1. Let us substitute

(2.10) x=1

y
into the polynomial (1.1). It is known that after an arrangement we get a polynomial
with the roots
1

A

i

If we apply the above algorithm (computaticn of a lower bound of the absolute
values of the roots of the polynomial (1.1)) to this polynomial then the upper bound
of the absolute values of the roots of the polynomial (1.1) is the reciprocal value
to the value (2.9).

As an interesting illustration, the results of the method proposed are demonstrated
on a simple example, and these are compared with the results of other known methods,
in particular with Westerfield’s method and the method using 4, B as maximum
values.

Example. Consider the equation

(2.11) x3 — 2:10%x% — 5-10*x + 6:10° = 0.
Exact roots: x; = 100, x, = —200, x; = 300. After the substitution
1
X ==
y

into (2.11) we get

(2.12) 3 Sy 2 !

6.10% 6.104y 6.10°

1. Westerfield’s method.

We calculate
a.="Js|, r=12..n,
and arrange these values in a non-increasing sequence:

di1 Z Gy2 Z -+ Z Gy, - Then lil S Qi t iz
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Lower bound: using (2.12), g, = 8-3333.107%, q, = 5-7735. 1073, ¢3 = 5-5032.1073;
|4] = 70-887798.

Upper bound: using (2.11), ¢, = 200, g, = 223:60679, q; = 181-71205; |4| <
< 423-60679.

2. Method using A, B as maximum values.

Lower bound:

|4 >

, B =max(1,|sy],..., [s,—4]) .
[so
Upper bound:
2] <1+ 4, A=max(|sy|]|sa],.... [s.]) - |4] > 0:9917355;
2] <6.10° + 1.
3. Proposed method.
Lower bound: using (2.11),
Xo1 = 67720018, g(xo;) = 288:6, xo, = 7354483 ; |2 > 81-58.

Upper bound: using (2.12),

vor = (1 + /(6)).600007" ,  g(yoy) = 0:0112323, y,, = 0-0630329. 1073 ;

|4] < 37819.
Table 1
Method Lower bound Upper bound
Using 4, B 09917355 6.10° 4 1
Westerfield’s 70-887798 42360679
Proposed 81-58 37819
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Suhrn
IMRICH KOMARA
ODHAD ABSOLUTNYCH HODNOT KORENOV REALNEHO POLYNOMU
V praci je odvodeny algoritmus na vypocet dolnej hranice absolitnych hodnét korerov
realneho algebraického polynoému Iubovolného stupfia. Na priklade sa porovnavaju hodnoty
hranic vypoditané navrhovanou metédou s hodnotami vypocitanymi podla inych metdd.

Pe3ome

OLIEHKA ABCOJIFOTHBIX 3HAYEHUI KOPHEM PEAJIBHOI'O
AJITEBPANYECKOI'O ITOJIMHOMA

IMRICH KOMARA
B 370# paboTe BBHIBENEHHBIA aJITOPUTM TSl BBIYMCIICHHS] HHXKHEH TpaHULbl aGCOIOTHRIX 3HAaye-
HUI{ KOPHEH peanbHOro ajaredpanyeckoro NojuHOMa Jiroboro nopsiaxa. Ha npumepe cpasauBaroTCa

PE3yJIbTATHI BBIYHCIICHHBI YKa3aHHBIM METOIOM M JanbHERIITAMHA METONAMH.
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