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Summary. The paper deals with the local differential geometry of two-parametric motions
in the Euclidean space. The first part of the paper contains contemporary formulation of classical
results in this area together with the connection to the elliptical differential geometry. The re-
maining part contains applications: Necessary and sufficient conditions for splitting of a two-
parametric motion into a product of two one-parametric motions, characterization of motions
with constant invariants and some others. The case of rolling of two isometric surfaces is treated
in detail.

Keywords: kinematics, differential geometry, Lie groups and Lie algebras.

AMS Classification: 53 A 17.

A. PRELIMINARIES

Let G be a Lie group of dimension m with Lie algebra . By a p-dimensional
motion in G, p < m, we mean an immersion g of a p-dimensional manifold X into
G, g: X — G. For a moment let us suppose that G is realized as a group of matrices,
acting in a vector space ¥V in a natural manner. Let us choose two copies of V, the
moving space V and the fixed space V. In each of them we select a base Z, =
={"fi,.... f,}and 2y = {f, ..., f,}, respectively. Then G acts as a group of linear
maps from Vinto V by the rule g(@o) = R, . g, where the product means formal
multiplication of the row 2, by the matrix g. By a frame in V(¥) we mean any base
A(#) such that Z = R, . g (% = R, . g), respectively, for some g € G. The group
G is then identified with the set of all frames in ¥ or in V. Any p-dimensional motion
g(X) in G then determines a p-parametric system of linear maps from V into V
by the rule g(X) (Z,) = Zo9, where g(X) = g is the corresponding matrix.

Let us determine what happens if we choose different frames #, = %, .7 and
Ry = Ry .7, 7, 7€G, in Vand V, respectively, as the basic ones. Then g(X) (%,) =
= g(X)(%,7) = g(X) #,7 = R,yg and so g(X) A, = R,yg7~". If we write g(X) .
R, = R.§, we get § = yg7~ . Motions g and § have to be considered as equi-
valent. This lcads to the following definition:
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Definition 1. Let G be a Lie group. Let us consider the homogeneous space G, =
= G x G|Diag(G x G), where G x G acts on G by the rule (9,, g,) g = g9.995 %,
the natural projection m is n(g1, 9;) = 9195 ', the origin is the unit element e
of G, the isotropy group of e is G; = Diag (G x G). G; is isomorphic with G and
G, is identified with G as a manifold. By a p-dimensional motion g in G we under-
stand an immersion g of a p-dimensional manifold X into G,.

For each closed subgroup H of G we have the corresponding homogeneous space
G/H, with the transformation group G acting from the left, g(9, H) = gg,H, g, 9, €
€ G. If g(X) is a p-dimensional motion in G, then for each point x, € G/H we have
the set g(X) x,, which is called the trajectory of x, under g(X). The trajectory of x,
is in general not an immersed submanifold of G/H as the dimension of the tangent
space of the trajectory of x, at g(f) x, = x, te X, is p — dim (6, N o(g. X,)),
where &, is the isotropy algebra of x and w is the left invariant form on G. The
kinematic geometry of the motion g then studies the relations between the proper-
ties of g(X) and g(X) x, for various x, and H.

The group G has a natural representation in & by the adjoint action. This means
that for any p-dim. motion g(X) (if Ad is an isomorphism of Lie algebras) we get
a motion in ®, ad g(X). By the natural projection # from ® to the projective space
P,_, modelled on ® we get a motion in P,_,. (Here, as well as in the sequel, all
considerations are local.)

Further, let H be a closed subgroup of G with the Lie algebra $. Let N($) = 9,
where N($) denotes the normalizer of $ in the group adG. Then the set of all
subspaces of 6 of the form adg($) is locally equimorphic with G/H and it is a sub-
manifold of Gr (®, dim H) — the Grassmanian manifold of all subspaces of aimen-
sion dim H in ®, on which G acts by the induced action. This submanifold may serve
as a model for the study of the properties of trajectories of points of G/H directly
in®orinP,_,.

Example. Let &3 be the 6-dimensional Lie group of congruences of the 3-dim.
Euclidean space E;, let €; be its Lie algebra with the invariant Killing and Klein
quadratic forms. We can construct the corresponding projective space Ps together
with the induced action. The manifold of all straight lines of E; is then naturally
immersed in Ps as the Klein quadric, and the trajectories of lines from E; may be
regarded as subsets of the Klein quadric.

The Lie algebra of G x G is & x ®, the isotropy algebra ®; is ©; =
= {(X, X) | X € 6} and may be identified with ®. The adjoint representation of the
isotropy group G; is ad g(X, Y) = (ad gX, ad gY). Let us denote m = {(X, —X) |
X € ®}. Then we have an ad G invariant splitting ® x & = G; + m. ®; and m
are orthogonal with respect to the Killing form and m determines a connection on G,
which is both left and right invariant.

Let us denote by ¢, the Maurer-Cartan left invariant form on G, dg, +
+ 1o, ®o] = 0. Then the Maurer-Cartan form on G x G can be written as
(®0> ¥o), where s, is another copy of @, (with dirg + [, o] = 0 again). Let us
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consider a p-dimensional motion g(X) in G. Then by a lift of g(X) we mean a (differen-
tiable) mapping &: G — G x G such that m o ¢ = id on g(X). By any lift ¢ of g(X)
we get the induced forms ¢, ¥ on X, given by (¢, ¥) = g« o &{@o, ¥,), which satisfy
the same integrability conditions as ¢, and .

If the lift of the motion g(X) is changed by h(X) € G, we get new forms @y, ¥,
where

(1) ¢ =adh™ o + h™'dh, Y, =adh Y + h 1dh.

Let us denote
2 o=3He-¥), n=3e+V¥), 0o g=0+n, Yy=1-o0.
Then
(3) o, =adh o, y, =adh ™y + h1dh.

For any ve X, pe X we have

(0(0). ¥(0) = 3o(s) + ¥(o) . oo) + ¥(0) +
+ He(v) = ¥(0), ¥(v) — 0(v)) '

and so w(v) € m, (v) € ;. This means that o(X,) is a p-dimensional linear subspace
of m = ® and by a change of the lift it changes by the group ad G.
The integrability conditions now are

(4) do = Y[, n] + [, @]), dn = —H[o, @] + [1,7]) .

This is an immediate consequence of the definition.

We also see that we have an invariant differential quadratic form on any motion,
which is induced by the invariant Killing form on G:K(X,Y)=TrAdX AdY
for X, Ye ®. This form is given by the formula (u,v) = K(w(u), o(v)), where
u, v € X,, p € X. This form can be taken as the first fundamental form of the immersion.

Integrability conditions (4) can also be obtained by using the following formalism:

Let us denote by D the ring of the so called “double numbers”, which is a two-
dim. associative and commutative algebra over R with the unit element 1 and with
the base 1, §, where 62> = 1. Let ® be a Lie algebra and let us consider the Lie algebra
D ® ® = G For the corresponding M.C. form o’ on 6%, ! = w + &y, we must
have do? + 4[0?, '] = 0, as the integrability conditions are determined by the Lie
structure of G only. In components we have

do +d6dn+ Ho + 6,0+ =0
and so

do + H[w, o] + [#,7]) =0 and d’1‘+ 3[w,n] + [, @]) = 0.

Further, as D =R x R (for & = ¥(1 + 8), &, = (1 — §) we have ., =0,
ef =¢8,8; =6),weget DQ & =6 x G. Ase, + ¢, =1, ¢, — &, = 5, we have
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o' =0+ =(e; + &)+ (5 — ex)n = es(0 + 1) + &x(@ — 1) = &,0 + &0
and so (¢, ¥) is the Maurer-Cartan form on G x G.

The formalism mentioned above was used for the first time by W. Blaschke in [1]
for the group O(3).

Remark. We may have more ad G invariant quadratic forms on ®. For instance
on the group &5 we have the Killing invariant form and the Klein invariant form.
Also on compact nonsemisimple groups we have more invariant forms.

Remark. The classification of motions in the 1st order (and the specialization
of the frame in the 1st order) means to find the fundamental domains for the action
of ad G on p-dimensional subspaces of ®, and to describe the orbits of this action
(see [3] and [4]).

Remark. In the case of the spherical motion (immersions in O(3)) we have G, =
= 0(3) x 0(3)/0(3). Because O(3) x O(3) = O(4) (we mean local isomorphism),
we get (locally) G, = 0(4)/0(3), which is (locally) the elliptic space. This correspon-
dence may be realized by using the group of unit quaternions, as was done in [1]
and [5]. In the case of Euclidean motions in E; the group &; can be realized as
the group of unit dual quaternions. The group &3 x &5 acts then by the left and right
multiplication of quaternions (see [1]).

B. REMARKS ON MOTIONS IN E,

Let g(X) be a Euclidean p-parametric motion in E,. Let us choose fixed ortho-
normal frames %, in E, and %, in E,. Then we may identify the elements of &, x &,
with pairs of orthonormal frames by # = #091, # = %092, so that the pair (g,, g2)
is identified with the pair (%, %). The pair (2(X), Z(X)) is a lift of g(X) iff g(X) .

.(%#(X)) = 2(X). This is easy to see, as g(X) %, = Rog and g (X) 2(X) = 9(X) .
- Rog2 = (9(X) &o) 95 = R0992 = Rogy and so g = ¢g195 ' = (g1, g,)-
So let (%, Z) be a lift of g(X). Then

(5) A2 =Rp, dZ =AY and do+ oA @=0, df + ¥y Ay =0
or, by using @ and #:
(6) do+nAowo+oan=0, di+oA0+nAn=0.

In the group &, we have the natural homomorphism x: &, - O(n), which we get
by the restriction of the action of &, on the vectors of E,. This gives the mapping
% o g: X — O(n), which is equivariant with respect to the homogeneous space struc-
ture O(n) x O(n)/Diag(0(n) x O(n) = O(n). We have to suppose that the rank
of the mapping y o g is constant on X. Then we get a spherical motion on some
factor manifold of X(locally), which is associated with the space motion g(X) and the

rank of o g is the basic invariant of the motion (it determines the number of inde-
pendent translations of the motion.). Let us call it the rank of the motion g(X).
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Further let 4 be a fixed point of E,. Then d4 = 0. Let us write 4 = %X 5, where
X5 is the column of coordinates of 4in #. Then 0 = d4 = d%X; + #dX; = Z .
. (le;; + dXZ) and so
(7) dXz = —yX;.

This means that the point 4 with the coordinates X ; belongs to the moving system
iff (7) holds. (7) is a completely integrable system of differential equations, as 0 =
= dZXZ = —'dl‘bX‘q + ',b A dXZ = —(dl// + l/l N !/I)XZ

Similarly, for a point 4 with coordinates X, we have
(8) dX, = —pX,.

The trajectory A(X) of the point 4 is A(X) = %X, where X, = X 1, because g(%) =
= 2 and g(A) = g(A) Xz = X ;.

For the tangent space of the trajectory A(X) of A we get
©) dA = dRX, + RdX, = ROX, — RYX, = 2R0X, .

If we denote by A the ordinary differential, we get A’A = 2(d2wX , + # AoX 4 +
+ Rw AX 4) = 2%(pow — oy + Aw) X4, as AX, = dX,, and similarly for higher
orders. 3

. 0, O . ; . e

Let us write w = , Where , is the column ', w, is the matrix w}, i, j =

o W 0 > Y1 Jj
0> 1

=1,...,n. ThenX, = (1, x', ..., x")Tand

0, 0 1 . "
X, = <w0, w1> (\) = w, + ox with x = (x', ..., x")7.

This gives

(0X,) = o +'zlo)1".xf .
=

Let %, « = 1,...,p be a base for 1-forms (locally). Then w} = aln* o' = byy*.
The base of the tangent space of the trajectory of 4 at 4 is determined by the vectors
v,, o = 1, ..., p with the coordinates

n
vy=>bi+Yyax, i=1,..,n.
j=1
The set of the singular points of trajectories of points is therefore given by the condi-

n
tion rank (b, + " a},x’) < p, which is an intersection of algebraic surfaces of degree -
<p =1

C. CLASSIFICATION OF 2-PARAMETRIC MOTIONS IN E; OF RANK 2
Let g(X) be a 2-parametric motion in E; with rank yo.g = 2, let (%, %) be its
lift. Then we get forms @ and 1 on X as in the previous section. If we choose another

lift of g{X), say (%, Z,), where #, = Rh, %, = %h, then for the new form &
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we have & = ad h™'w as in (3). Let

0, 0 (1 0\ .
(10) o= (wo’ wl) , h= (t, y> with ye 0(3).

Then

(11) By = Ty + YTot, &) = yToy.
We denote
! 0, -, o}
(12) w, =|0?], o, = of, 0, —w}
3 —w, o, 0

If we use the isomorphism i: O(3) — V; given by
i(w) = (03, 0}, 0})T, we get i(ad yo,) = yi(w,)

and soi(@,) = 97 i(w,).

The condition rank yo.g = 2 means that dim o,(X,) = 2, pe X. As the group
O(3) is transitive on 2-dim. subspaces of V3, we may always find a lift of g(X) such
that @] = 0. Then w3 A w} = 0 and the remaining isotropy group is

cos ¢, sin ¢, 0

(13) {y} ={| —sin ¢, cos ¢, 0],
0, 0, 1

and 7 is arbitrary. For the new form & we get

@3 = w3 cos ¢ + w}sing@,

@y = — 3 sin @ + w} cos ¢,

@' = (o' + wit;) cos ¢ + (0® — wit,)sin @,
@ = —(0' + wit;)sin ¢ + (0 — w3t,)cos @,
@ = 0 — olt; + 0it,.

Let us denote
o' = aw} + bo}, ©* = co} + ew}, ®® = fo} + gol,

and similarly for &.
Computation gives
(14) =acos’ ¢ + (c — b)sinpcosp — esin® ¢ + t5,
= (a + e)sinpcos ¢ + csin® ¢ + bcos? ¢,
= —(a + e)sin ¢ cos ¢ + ccos® ¢ + bsin? ¢,
—asin® ¢ + ecos® ¢ + (¢ — b)sinpcos ¢ — t5,
=(f—t))cosp — (g + ty)sing,
g=(f—t)sinp + (g + t,) cos .

Il

M M ov
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From (14) we immediately see that b + c is an invariant and we get
d—&=a—e—25,d+ &= (a+ e cos2¢ + (¢ — b)sin2¢,
¢—b= —(a+esin2¢ + (¢ — b)cos2¢.

This shows that we may always choose a lift of g{X) such thata = e = f =g = 0,
b = c.If b > ¢, thelift is fixed up to a finite group, if b = ¢, the group (13) remains.
Let us denote b = vand ¢ = w in the sequel.

On X we have two invariant quadratic differential forms ¢ and ¥ induced by the
two invariant quadratic forms on €, the Killing form (®3)* + (w3)* + (w})? and
the Klein form wlw! + wiw® + w3w?. They are

@ = (@) + @I, ¥ =Vl + wol)?.

Remark. The Klein form determines the Klein quadric, which is the image
of the space of the straight lines of E; in €;.

With respect to the form ¥ we distinguish elliptic, hyperbolic, parabolic and flat
motions. The first three constitute the general case of a motion of rank 2, where
we have already defined the canonical frame of the immersion, the flat case must be
treated separately. A

1. The general case. We have

2 1 2

ol =0)=0, o'=vol, ©®=wo, v>w

The integrability conditions are

(15)  do' = —9®> A @ + 0> A 9y, dol =9} A 9},
dp? = @' A9l —9® A 93, do} =0} A ¢},
dp® = =o' A @5 + 0* A @3, doi =3 A @]

and similarly for . In terms of w and n we get

(16) do' = —n?> A @2 + 1 A 0y — 0 Ayl + % Ay,
do? =n' A0} —n® A @} + o' A} — 0 A,
do® = —n' A 0} + 17 A @03 — 0" Any + 0 AR,

2 1 3 1 3
dwi =n; A 03 + 03 A 15,
3 2 1 2 1
dw; =ni A w3 + 07 A Y3,

1 _ .3 2 3 2
doy =1; A 0] + ©; AT,

dp' = = Anf+ 0P Ay — 0® A 0] + 0° A 0,
dn* = ' Ani =0 A+ ol Aol -0 A e,
dn® = —n' Amy+ 07 An}— o' Ao+ 0 Ao,

2 1 3 1 3
dni =m AN + 03 A 3,

3 2 1 2 1
dn; =07 ANy + ) A g,
1 3 2 . 3 2
dnz =m ANy + 0; A .
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Using Cartan’s lemma we get
(1) n3 = aw3 + oy, 73 = —foi — 0}, i = a0 + a0,
n' = (wB — n) ®3 — po3, n*=mo; + (n - vp)w},
n® = biwi+ bol,
do} = a,03 A 0, do} = a,0] A 0},
by = —(v), + a;(v—w), by =(W); —ay(v—w),
—(ay), +(ay)y +af + a3 +1=p*—ay,
(B2 — (7)1 — 20,8 + ar(@ —y) =0,
—(0)2 + (B)1 + 2a28 + ay(x — ) =0,
— (by)2 + (by); + byay + byas +ap +ym —2Bn + (v + w)(1 + p?) =0,
(WB — n); + (p)1 — as[B(v + W) — 2n] + ay(p — m) + b,B — b2 =0,
—(m), + (n — vB); + ay(m — p) + ax[2n — B(v + w)] — byy + b, = 0.
2. The flat case(v = w). We have

0! =0’=0, o'=vol, ©®=vol.
Further,
1 3 1 ~3 3 1
N3 = aw, + o, N =MN3CO08Q + n3smm@,
3 3 1 Sl 3 1
N, = —Bw; — yws3, N3 = —N2 SN Q + 13 COs @.

Computation yields
& = 2Bsin @ cos ¢ + acos®> @ + ysin ¢,
B=(y—a)sinpcosp — Bsin®> ¢ + Bcos® ¢,
§ = —2Bsinpcos @ + asin? ¢ + ycos ¢.

So o + y = & + is an invariant and

(18) B = Bcos2p — Ha — y)sin2¢,
L& — 7) = Bsin2¢ + ¥« — y) cos 2¢.

This means that we may always choose such a lift that § =0 and oo — y = 0. If
a — y > 0, we are finished, if § = « — y = 0, (13) remains.

The integrability conditions change to
(19) = a0+ a0y, do}=a0] A o,
= —nwi — po;, do= a0 A o},
n? = mwj + nwy,
1 = —=(v)05 + ()03,
(@)1 = (ar): + af + a5 + 1= —ap, ()1 = ax(x —7),
(“)2 = al(“ - }’),

Il
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(V11 + (Va2 — (V2 ay + (V)1 a, + ap + ym + 2v = 0,
—(n), + (p)1 + 2a3n + ay(p — m) — (v); = 0,
—(m), + (n); + (m — p)a; + 2an + (v), = 0;
3. Thecasev=w,f=0—7y=0.
This case is treated in a similar way as the previous one. The result is: n = 0,
m—p =0, so
0} =0 =0, o=vol, o®=vol, =00},

1 2

3 1 1 3
Ny = —Ww3, 1" = —po3, N~ = M.

The integrability conditions are obtained by a mere specialization of (19). If n =
=m — p = 0, (13) remains.

4, The casev=w,f =0 —y=0,n=m — p = 0. We have

2 1 1 1
0l =w)=0, o'=vol, 0®=voi, 7} =00, 1= —ao),
1_ 1 2 _ 3
n = —pwz, " = pw;.
Computation yields 7> = #3 and k

(V)2 = (V) cos @ — (V)ysing, (V); = (V) sin @ + (v); cos ¢ .
The lift can be changed to (v); = 0, (v), = 0; if (v), = 0, (13) remains. The inte-
grability conditions are obtained again from (19).

5. The singular case, for which the specialization cannot be completed. We have

(20) 0 =0=1"=0, o'=vol, o®=voi, 1=,

3 =
= —awy, n'= —pwi, n*=pw3, V= const.

The integrability conditions are

(1)
o =const., p=const. V= —ap, do}=a,03 A @0}, doi=a,0} A o},
(a2); — (ay), + af + a5 + 1 = —o®. (13) remains.

D. DISCUSSION OF THE CASE 5

Let us find out what motions we get in the case when the specialization of the
frame cannot be completed. In order to simplify notation in this section we shall
1 2 3 N
. o', o, o . . .
write for o: w = 3° 7 ", ). The other matrices from €; will be denoted in
3, 03, O :
a similar way.

Let us consider a motion which satisfies conditions (20) from the case 5. Then the
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set of all tangent frames over our motion is given by the following system of Pfaffian
equations:

1

0l =0 =1*=0, o'—vol=0, 0*—voi=0, 7 —oaw =0,

n+owl =0, nt+ poy =0, #*— po3 =0 with v= —ap, a,p = const.

It is easy to see that this system is completely integrable. So it has 3—dim. integral
manifolds. The distribution D; for these integral manifolds has left translates to
€; x €; given by

3 1 1 3
_[vx3, ¥X3, 0 _ [ —px3, px3, 0
W = 3 19 n= 1 3 2]
X3, X3, —oxy, 0X5, Vi

o VX3 — pxi, vxi 4 px3, 0 " —pxy — vx3, px3 —wvxi. 0
P = 1 2 =
A SN S ROl (S S R ) B

where x3, x3, y} are arbitrary functions on &5 x &;.
Let us write ¢ = ¢(x3, x3, ¥1), ¥ = P(x3, x3, y}) and let us denote

o((1 + o®)™12,0,0) = X, , ¥((1 + o?)7'2,0,0) = Y, ,
o0, (1 + 0?)712,0) = X,, ¥(0,(1 + o«®)" "2 0)=Y,,

(0, 0, 1) = X5, ¥(0,0,1) =Y.

Then Z; = (X;, Y;), i = 1,2,3 is from €; x €, and Z;, Z,, Z, is a base for Dj.
It is easy to compute that [Zi, Z j] = &;Zy. This shows that the integral manifolds
of D are the translates of a group G, isomorphis with O(3) and the investigated
motion is the sphere 0(3)/0(2).

Let us further denote by =;: &3 x &3 — &5 the projection on the i-th factor,
i =1, 2. Then n;G; and 7©,G; are isomorphic groups, isomorphic to 0(3). The iso-
morphism between them is given by «: n,G3 — 7,G3, @ = 7, - 7; . Easy computa-
tion shows that ;G5 is the group preserving the point pe;, 7,G5 is the group preserv-
ing the point — pe, the groups 7, 0(2) and n,0(2) are the groups of rotations round
the e; axis.

Further on, if the investigated motion is M, we may locally write G; = M . 0(2),
74(G3) = ny(M) . 0(2), 75(G3) = m,(M). 0(2), with n;(M).n(M)™* = M.

Then

Il

ny(M) = exp 1,Xy . exp t,X,, 7w \M) =expt;Y,.expi,Y,
and so M can be locally expressed as the manifold

M = exp t,X; .exp ,X, . exp(—1,Y,) . exp (—1,Y;),

where exp #,X; is the rotation round A4, = pe; + Ale; + ae,),
exp t,X, isthe rotation round A4, = pe; + l(~—oce1 + e,),
exp t;Y; is the rotation round A; = —pe; + A(—e; + ove,),
exp t,Y, is the rotation round A, = —pe; + A —ae; — e,).
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E. THE ELLIPTIC SURFACE THEORY

The natural homomorphism y associates with every space motion of rank 2
a 2-parametrical spherical motion. The space O(3) x O(3)/Diag. O(3) is locally
isomorphic with the space S® = 0(4)/0(3) which is (locally) the 3-dim. elliptic
space, and so each property of surfaces in elliptical geometry is at the same time
a property of space motions. For this reason we present here a short review of the
local surface theory in S3.

The material of this section is basically a transcription of results on the elliptic
surface theory from [1].

The isomorphism between O(3) x O(3) and O(4) is explicitly described in the
following way:

Let X = (x}), Y= (yj) be any two vectors from O(3), i,j = 1,2, 3. Denote
X = Yeipxl, i = vfa,J,(yL Let us define the matrix Z € O(4), Z = (z}),0, B = 0, 1, 2,3,
by the formulas z{ = ¥(x; — y;) = —z), z} = 3(x} + »%), zJ = 0. Direct computa-
tion shows that the described mapping is an isomorphism of Lie algebras.

Let us now have the space S3, realized as the unit sphere of a vector space V,
with the Buclidean scalar product, and let g: X — S3 be a two-dimensional immersed
submanifold. By an adapted frame # = {e,, ..., es} of the first order of the sub-
manifold g(X) we understand any orthonormal frame such that e, = g(X) and e,, e,
span g«(X,) for x € X. Then we have

dZ2 = 2 [0, —o3, —w}, 0
@3, 0, —ni, m
w;’ 77%: 0, '—’7;
0, _17:13’ 77%’ 0
for the adapted frames of the first order; the notation is justified by the described
isomorphism between O(3) x O(3) and O(4).
The integrability conditions are given in (17). The remaining isotropy group is

02)~ (1,0, 0\,
0, 0(2), 0
0,0, 1

its action is described by (18). From (18) we immediately see that
? = (O + (1),

?; = 033 + oz = —f(03)* + (¢ - y) w305 + f(w3)?
and

®, = w3n; — wyn; = o(w3)? + 2pwiw; + y(w})?

are invariant quadratic forms. Any direction in the tangent plane of g(X) is given
by the equation 3 cos ¢ + wj} sin ¢ = 0.
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The directions given by ®,(¢) = 0 are called the main curvature directions, the
directions ®,(¢) = 0 are called the asymptotic directions. Further, o + y = 2H,,
1 4+ ay — p? = K, areinvariants of the submanifold, the mean and Gauss curvatures.
The integrability conditions (17) also show that K, is an invariant of the first form
@ only. The main curvature directions are always real and orthogonal, they are
eigendirections of &,. The asymptotic directions are real and distint for K, < 1,
they coincide for K, = 1 and are imaginary for K, > 1. The surfaces with K, = 1
are developable surfaces, as we shall show later on. The form ®; = (13)* + (n})?
is invariant as well and it is the length element of the surface described by the normal
;.

The frame can be specialized to f = 0 provided 4(o — y)* + B* + 0, as we know
from Section B, case 2. If § = 0, « = y, we have a spherical point, if this condition
is satisfied on a neighbourhood, we get a part of a sphere, as then d(e; — (1/0) e3) = 0
with a = const. by virtue of the integrability conditions.

If we denote tan¢ = 1, we get A= (—1/2B){a —y £ [(¢ — y)* + 48*]"/2}
for the main directions and 1 = (1/a) {f + [B* — ay]*/?} for the asymptotic direc-
tions.

For the eigendirections of @, we get tan 2¢ = 28/(x — y) and so A = (—1/2f).
Ao =9 £ [(« = y)® + 4B*]"/?}. For the eigendirections of @, we get tan 2¢ =
=(y — 0)[2B, so 2 = 1f(a — 7). {=28 + [(a — y)* + 4p7]"/*}.

a) Let us determine all the surfaces with a transitive group of isometries. The
possibilities are:

1. B =0, o = y. This is a sphere of radius /2 — p, where « = tan .

2. Let « —y >0, «a >0, o =const.,y = const. The integrability conditions
give (y); =0=a,(0 —7), (), =0=ay(x—7y), so ag=a,=0, ay= —1.
Then dw} = do} = 0. Denote @3 = du, w; = dv. The Frenet formulas for the
surface are

deg = due, + dve,, de = —dve, + 1/o dves,
de,

I

—duey — adue;, de; = due — 1o dve, .
Integration yields

1 .
ey + aey = —— (fycosu + frsinu),
cos i

1 1
“eo+—83= -
o sSin u

(fscosv + fysinv),

where o = tan g and {f}, ..., f,} is a fixed orthonormal base. So
eo = cos U(fp cosu + f; sin u) + sin B(f> cos v + f; sin v)
and the equation of the surface is

2 2 2 2
x0+x1_x2+x3

cos? sin® p
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Such a surface is called Clifford’s quadric.

b) Developable surfaces. A surface is called developable, if Ko =t\l. Let us
investigate these surfaces in more detail. K, = 1 implies ay = 0. Let y = 0, & = 0.
The integrability conditions give a, = 0, (%), = a,a, (a), = a; + 1. dw} =0,
so denote ) = dv. Further, dnl = d(aw3) = de A 0} + aa,03 A ©F = (2),05 A
A @3 + aa,03 A ©) = 0. So let n} = du. Then a, = tan (v + g(u)), @ = {h(u).
.cos [v + g(u)]} ™1, where h(u), g(u) are arbitrary functions, #3 = 0, ©3 = du/a.

Frenet formulas for the frame # = {¢;},i = 0, ..., 3, are

du a;
deg = e, — + e, do, de, = —eydv — e, —du,
o o

de; = —e, du + ezﬁdu — e;du, de; = e, du .
o o

Integration with respect to v gives e, = fo(u) cos v + f;(u) sin v, where f;, f; are
fixed orthonormal vectors, and so the curves u = const. are great circles (lines of the
elliptic geometry), e; = es(u) is a function of u only, the edge of the regression is
given by cos (v + g(u)) = 0, its tangent vector is e,, which coincides witl: the tangent
vector of the circle. This means that developable surfaces in elliptic geometry have
similar properties as those in the Euclidean geometry.

c) Bianchi’s developable surfaces. Bianchi’s developable surfaces in elliptical
geometry are surfaces which can be developed into the Euclidean plane. Such surfaces
are characterized by the condition K, = 0. Let us have such a surface. Then ay =
= —1,let « > 0,y = 1/a. Then (x), = a(a + 1/a), («); = o?a,(x + 1/a), (a5); —
— (ay), + a} + a3 = 0. Further, dnj = d(a,03 + a,0}) = 0.

Let us now suppose that our surface is determined by a two-parametric spherical
motion. Then

— 3 1 3 1 i
Q= 0 , —a W3 — A3, 65 + 0y =(¢}).
1
a,03 + a0}, 0 , —0) — -}
o
1
—ow3 — o) , O +_ o} , 0

@ )

Let us write n? = d9 and let us rotate the frame by the angle 9. Then

=/ 0 , —p? —d3 . @ycos 9 — p3sin 9\ =
@* — d9 , 0 , —@3sin 9 — @3 cos 9
—plcos @ + @3sin 9, plsin9 + @3 cos 9, 0
= 0, O, @3\ .
0, 0, —a@
_(5;7 @g’ 0
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The integrability conditions give
(/3;/\@3: ,d(ﬁ;=0> d(f'agzo
and so
gy =du, ¢ =2idu, d@p}=diadu=0, A=Au).

This means that @ is a function of u only. Similarly, \ is also a function of one
variable v and so g; = g,(u), g, = g,(v) and g(u, v) = g,(u) . g5 '(v). This shows
than Bianchi’s developable surface is a product of two one-parametric motions.
The converse of this statement will be discussed later.

A special case of a Bianchi’s developable surface is Clifford’s quadric. For it we
have ow; + o} = du, aw) — oy = dv. This yields d(e; + ae,) = 0, d(— "e; +
+ o "e,) = 0 and so Clifford’s quadric is a product of rotations round the axes
determined by the vectors e, + ae, and —"e; + o ~e,. Easy computation shows
that Clifford’s quadric (x§ + x7)/cos® u = (x3 + x3)/sin® u is the product of
rotations round (intersecting) axes with the angle 2u.

F. GENERAL PROPERTIES OF 2-PAR. MOTIONS OF RANK 2

The origins of the kinematic geometry of two-parametric motions in E; go back
to the second half of the 19" century. According to [6] the first paper published
on this subject was by Th. Schonemann in 1855, later contributions were from
A. Manheim, A. Ribeaucour, A. Cayley, G. Darboux and others. A short review
of their results is in [6], pp. 151—154, 239—-243. As we shall need some of those
“classical” results in our further considerations, we shall present what is necessary
in an abbreviated form. Whenever convenient, we shall also present proofs. The reader
may also consult [2], which deals with similar problems.

To simplify notations, we shall write ®3 = w,, @} = w,. We shall also use the
notation from C) for matrices from €;. Then

(22) o = (Vo wo,, 0, = FWy — pw,, Mw, + Sw,, biw; + byw,
®y, w,, 0 —fw, — yw,, aw; + fw,, a,w; + a,w,

and

(23) @

Il

(r + V) 0y — pw,, mo; + (s + W) w,, by, + brw,\,
(1 = B oy — yw,, aw, + (B + 1) w,, a,0, + a0,

V=[(r —v)o, — pw,, mo, + (s — w)w,, bjo, + bn,),
—(B + Do, —yo,, ao; + (B — 1) w,, a,0; + a,0,

where r = fw — n, s = n — fv.
The two-dimensional subspace w(T(X)) = €, characterizes the instantaneous
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one-parametric motions of the given two-parametric motion at a given instant x,

Vectors
v, 0, 0 0, w, 0

X ‘(1, 0, 0) and Y= (o, 1, o>
form an orthonormal base of w(T(X)) with respect to the Killing form. Any one-
parametric subgroup of the instantaneous motion is determined by the vector Z = X .
.cos ¢ + Ysin ¢ = [vcos ¢, wsin ¢, 0\. The axis z of such a motion is z =

cos @, sing, 0
= Aey cos @ + e, sin @) + es(v — W) cos ¢ sin ¢, A € R, the parameter v, is Vo =
=vcos? ¢ + wsin? ¢ = ¥(¢), so v and w are extremal values of the parameter
of the instantaneous one-parameter motions. All axes z generate a ruled surface

zZ(x* + y?) = (v — w)xy,

known as Cayley’s cylindroid of Pliicker’s conoid. Its properties can be derived
from its equation.

The canonical frames #Z = {4, “e,, "e,, “es} and # = {4, e,, e,, 5} gradually
coincide during the motion as g(X) %(X) = %(X). This means that we have two
surfaces A(X) and A(X) in E;, which are in a 1-1 correspondence and such that
g(A) = A. Similarly, we have three line congruences L; = A + pu “e;, L; = A + pe;, -
peR, such that g(X)L(X) = L(X), i =1,2,3. Let us call the surface A{A)
the moving (fixed) polar surface; the endpoint of ~es(es) is called the moving (fixed,
respectively) spherical pole.

It is known ([5]) that the correspondence “e; — e; is volume preserving:

dof = $d(e} — Y1) = o3 A 93 — Y5 A ¥3) =0,
d ey =3 "eg — Y3 Tey, des = pie; — ple;

and the corresponding volume elements are /3 A /3 and @3 A @3.

Straightforward computation also shows that the congruences L, and L; have
the same mean curvature of the second fundamental form.

The correspondence between A4 and A has no special properties; the tangent
spaces of the polar surfaces at g(Z) and A are in general different. The difference
between the first fundamental forms F, of 4 and F; of A4 is

Fy — Fy = 4[vro} + (mw — pv) 0,0, + wsw3],

and so the correspondence is not an isometry.

On Cayley’s cylindroid we have two exceptional straight lines u and v, for which
the instantaneous motion is a rotation. They correspond to the asymptotic directions
of ¥ (in the elliptic case they are not real) and are given by the equations

(24) z2Z24wvw=0, xz—wy=0, v+ yz=0.
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In the case v = w = 0 we get the whole plane z = 0, such a motion is a rolling
of two isometric surfaces (Ribaucour, Thévenet, see [6]).

The tangent plane of the trajectory of a point P at P is given in the frame 2
by the form

(25) dP = wP = (Vo + zw,) e; + (—zw; + W,) e, + (yo, — xm,) e;,

where x, y, z are the coordinates of P in #. The normal vector of the trajectory
of P at P is determined by the vector

(26) n=(xz— ywe, + (yz + xv) e, + (z* + vw) e,

as is easily computed from (25). This means that the points of the lines u and v are
singular points of their trajectories. All normals of trajectories of all points at a given
instant form a congruence of lines, it is the congruence of all lines which intersect
u and v.

The second order properties of the trajectory of a point are derived from the formu-
las for the differentials AP and A?P of the trajectory of P at P. In # we have (25)
and according to (9) we obtain A’P = 2(pw — wf + Aw) P.

The first or second fundamental form of the trajectory of P is @, = (AP, AP) or
¥, = (A’P, N), respectively, where N is the unit vector of the normal of the trajectory,
determined by (26). This gives the possibility to express the mean and Gauss curvatures
of the trajectory. The set of all points which are parabolic points of their trajectory
is a surface of the 6th degree (see [2], the fact was already known to Manheim),
each normal of the trajectory intersects this surface in 6 points, four of which are
on u and v. Further details will be discussed later on.

G. SPECIAL MOTIONS
a) Splitting

We say that a space motion g(u, v) splits (into two one-parametric motions) if
there exist two one-parametric motions k,(u) and k,(v) such that g(u, v) = k,/u).

. ka(v).
Lemma 1. A motion g{u,v) splits iff there is a lift (gy, g,) of g such that ¢ =
= a(u) du, ¥ = b(v) dv.

Proof. Let g(u, v) = ky(u) . ky(v). Then (k,(u), k5 '(v)) is a lift of g and we have
@ = ki " dky(u), ¥ = ky(v) dk;'(v) = —dk, . k3", as dk™' = —k~'dk.k™" for
any k. Conversely, let ¢ = a(u) du, Y = b(v) dv. Then we have g, = g,(u), g, =
= g,(v) for the corresponding lift (¢, g,) and so g(u, v) = g,(u) g5 '(v).

Lemma 2. 4 motion g(u, v) splits iff there is a form & on g{u, v) with values in €,
such that d3 = 3 A 3 and
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(of + 5) A (o + 98 =0, (W) + 9) A (V5 + 8 = 0,
(i + ) A (@ + ) =0, (¥ + %) A (V" + 9 =0,
where i,j, k,1 = 1,2,3 and @, ¥ correspond to any lift of g.

Proof. Let ¢, ¥ correspond to any lift of a motion g(u, v). Then for the change
of the lift we have ¢ = h™'@h + h™*dh,§ = h™"yh + h™* dh, where h(u, v)
is the matrix of the change. The motion splits according to Lemma 1 iff there is
a matrix h(u, v) € &3 such that ¢ = a(w,) dwy, ¥ = b(w,) dw,, where w, and w,
are functions of u and v. This happens iff 3} A ¢ =0, ¢} A ¢ =0, ¢' A ¢/ =0
and similarly for if. As one of the forms @ is different from zero, the condition
@' A @' = 0is superfluous and similarly for . Further, let us denote 9 = dh . h~1.
Then d = —dh A d(h™Y)=dh A h™'dh.h™* =dh.h"* Adh. k™' = 3 A9, -
where we have used that o, A ho, = o.h A o, for any matrix forms ¢, and o,
and any matrix h. We have also hgh™' = ¢ + 9 and (¢} + 9}) A (o} + %) =
= Y h@gh™ " A Hi@)(h™")! =0 and similarly for the others. As ¢ =

a,p.y,0
= h™'(@ + 9) h and the equation dh = 9h is completely integrable, the converse
is also true. This completes the proof.

The forms @ and ¥ are defined uniquely up to the initial conditions by the form 9.
Indeed, if h; and h are two solutions of dh = Sh, we get h, = hy, where y = const.”
For the corresponding @, ¢ we get ¢; = hy (¢ + 9) hy = y~*@y and also , =
= 9~ YWy. This means, that ¢ and ¥ are determined up to the adjoint action, but
their mutual position is invariant. If we write k;'dk, = @, k;'dk, =y~ '@y
and similarly for k,, we obtain by analogous considerations that k; = ak,yand k, =
=y~ 'k, B, where a, B,y are constant matrices. This show that 3 determines the splitting
of g uniquely up to the position of the factors k; and k,.

Theorem 1. The motion g(X) of rank 2 splits iff there exist functions A, B, C on
X such that
AC — B* = K,, Ay —2BB + Ca = —2K,,

—A(p + yw) — C(m + av) + 2Bn = L, + Ky(v + W),

(B), — (C); = ay(C — A) + 2Ba;, —(A4), + (B); = a,(C — A) — 2Ba,,
=2(v), (B + B) + (v); (v + C) + [—=(W); + 2a,(v — w)](x + 4) =0,
~2(w), (B + B) + [=(: + 2a,(v = W] (5 + ©) + (W (x + 4) = 0,

where Ko = 1+ ay — p%, Ly = op + ym — 2fn + (v + w) (1 + ).
Proof. We use Lemma 2. The proof is straightforward computation.

Theorem 2. A two-par. spherical motion g(X) splits iff there exists a surface
h(X) in the Euclidean space E5 such that it is isometric with g(X) and for its second
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fundamental form F = A(w,)* + 2Bw,w, + C(w,)* we have Ay — 2B + Co =
— 2K,

Proof. Let us define forms o, o, i,j = 1, 2, 3, o} + a} = 0, in the following way:
al = 0y, 0% = 0,03 =0, af = —97, al = 91,03 = 93. Then it is easy to check
that the forms o, o} define a frame of an isometric surface in E; iff the equations
for splitting of a spherical motion are satisfied with the exception of the second one:
AC — B? = K, is the isometry condition, the other two equations are the integrability
conditions. The second fundamental form of & is F = alay — o?03 = o,(Adw, +
+ Bw,) + wy(Bw; + Cw,) = A(w,)?* + 2Bw,w, + C(w,)>.

Surfaces satisfying the conditions from Theorem 2 will be simply called associated.

Remark. The notion of associated surfaces is independent of the choice of the
tangent frame, as the equation Ay — 2Bff + Ca = —2K,, in invariant with respect
to rotations round the third axis of the frame.

Remark. Elliptical surfaces with K, = 0 (Bianchi’s developable surfaces) are
associated with the Euclidean plane, so spherical motions with K, = 0 always split,
which was proved in [6] (see D)c)).

Let us now look for cases with K, = 0, for which the splitting is not unique.
In such a case we must have an associated surface with F & 0. We may suppose
that we have chosen such a frame that B = 0. It is the canonical frame of the asso-
ciated surface. This frame is unique, if A &= C. We have AC = 0. Let 4 = 0. Then
Ca = 0. o + 0 gives the already known trivial solution, so we must have o = 0. Then
K, = 1 — B* = 0. Using the integrability conditions, we finally obtain

(C)lz('yl)=a1=a2=o(:A=B:O, ﬁ: il, C+0.

Integration shows that the associated surface is a cylinder; the splitting will be
described later on.

Now we shall show that solutions for the splitting of a spherical motion, other than
with K, = 0, exist. So let g(u, v) = g,(u) . g3(v) be a product of two one-par. motions,
let u and v be canonical parameters. Then (g,(u), g,(v)) is a lift of this motion and
o(u) = gi(u) dg,(u) = a(u) du, Y(v) = g3(v) dg,(v) = b(v) dv with a® = b*> = 1.
Let us denote (a, b) = cos a, & = a{u, v), sin & =+ 0.

To find invariants K, H, of the motion g(u, v), we have to change the lift (g,, g,)
to a tangent one. Let h = (hy, h,, h3) € 0(3) be the matrix of the change with columns
Iy, hy, hy. Then @& = h™ph 4+ K" dh and similarly for . We need such a change
that &f = @7 — Y1 =[h"(¢ — Y)h]} =0, so (hy,a) = (h;, b) =0, where a
and b are written in the vector form, see D). This yields h; = (a x b)[sin a. Let
us choose (for symmetry reasons) hy = (a + b)/2 cos (%/2), , h, = (a — b)[2 sin («/2).

After some computation we arrive at K, = —4sin"*ala, b, a’| . |a, b, V|, Hy =
= Ha + y) = cosasin™? «fsin® a + |a, b, b’[ - \a, b, a’l), where the prime denotes
the derivative.
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Let now K, = 0. Then |a, b, a’l = 0or |a, b, b’| = 0.If b = const. or a = const.,
we have K, = 0.Soletb’ & 0, a’ * 0, |a, b, a’] = 0. Then (b(v),a x a’(u,)) = 0 for
fixed u, and all v. This means that b(v) lies in a plane and a x a’ is constant, and
so a and b lie in the same plane.

Theorem 3. Let K, = 0. Then for g(u,v) = g,(u).g,(v) one of the following
situations occurs: a) g, is a rotation with a fixed axis, g, is arbitrary; b) g, is
arbitrary, g, is a rotation with a fixed axis; c) g, is a rolling of a curve on a great
circle and g, is a rolling of the same great ¢ircle on a curve.

Proof. Let K, = 0, a(u), b(v) be not constant. Then a and b lie in the same plane
for all u and v, and a(u) describes the fixed centrode of g,(u), b(v) describes the fixed
centrode of the motion inverse to g,(v) and a(u), b(v) lie on the same circle. The -
converse is obvious.

Remark. Theorem 3 shows that the product of any two spherical motions different
from those in Theorem 3 gives a solution of the equations for the functions A, B. C
in Theorem 2, for which K, * 0. \

Remark. We shall show that Bianchi’s developable surfaces are characterized
as splitting spherical motions such that the curves u = const. and v = const. are.
asymptotic curves (see [1]). Indeed, let g(u,v) = g,(u)g,(v) and let dv = 0.
Then @(dv = 0) = (—‘a, b, a'l (du)®)/2sina and so ®(dv =0)=0 iff K, =0
and similarly for u = const. As we see from the formula, one of the curves
u = const., v = const. is enough.

It remains to describe the cases with K, = 0 for which the splitting is not unique.
We have p = +1,0 = (y);, @ = (y); = a; = a, = 0. Let = 1. Then

Yy = /0, 0, 0
0, 0, 2du + ydo
0, —2du — ydo, 0
and g, is a rotation round the first axis. The change of the frame h(v) which gives
the different splitting is again a rotation round the first axis and we have

glu, v) = g,(v) g5 ' (u) = g4(v) h(v) . [h7(v) g5 ' (u)] = g3(v) g5 "(u + v),

where g3(v) = g,(v) h(v) is a one-parametric motion and g,(u) h(v) = g,(u + v).
The case f = —1 is similar. This shows that the splitting in the case K, = 0 is not
unique in the cases a) and b) of Theorem 3.

b) Motions with a two-dimensional group of automorphisms

Let us find all 2-par. motions which have a 2-dim. transitive group of auto-
morphisms. This excludes the already discussed case 5, where the group of auto-
morphisms has dimension 3. If a motion has a 2-dim. transitive group of auto-
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morphisms and if it has a canonical frame, then its invariants must be constant.
Let us consider the general case first. Then we have

2a:8 + ax(a — ) =0, a(x—7)+ 2a,=0.

Let f =0, a =y Then ai + a} + 1 = —o2, which is impossible. So 482 +
+ (¢ — y)* = 0anda; = a, = 0. Then b, = b, = K, = L, = 0and the conditions
for splitting are satisfied, so the motion is a product of two one-parametric motions.
In the case 2 we get similar result, cases 3 and 4 are impossible.

Theorem 4. A two-parametric motion of rank 2 with a two-dimensional transitive
group of automorphisms exists only if 4B* + (x— y)*> & 0. Such a motion is
determined by constants v, w, o, f, y, m, n, p, where K, = L, = 0. It splits into
a product of two one-parametric motions. The spherical image of such a motion
is the Clifford’s quadric.

c) Rolling of two isometric surfaces

Theorem 5. A two-parametric motion is a rolling of two isometric surfaces iff
v=w=0,n* — pm # 0. The two surfaces are then the polar surfaces of the motion.

Proof. Let A(u, v) and A(u, v) be two isometric surfaces, B(s) and B(s) two corre-
sponding curves on 4 and A4, respectively, such that B(0) = A(0, 0) and B(0) =
= A’0,0), let s be the arc. Then for the rolling of 4 on A4 which carries B into B
we must have g(s) B(s) = B{s) and g(s) B'(s) = B'(s). The derivative of the first
equation gives g'(s) B(s) + g{s) B'(s) = B'(s). This yields 0 = g'(s) B(s) = g'(s) .
. g~ '(s) B(s). Hence we see that the instantaneous motion is a rotation (there exists
a point with velocity zero). As this is true for any curve on A(u, v), all instantaneous
motions are rotations and sov = w = 0.

Conversely, let v=w = 0. Then we have the case 2 and we may suppose that
B=0. Then #* =0, by = b, = ap + ym = 0. The polar surfaces contact, as
®3 = n® = 0, and their correspondence is an isometry since the difference of the
first fundamental forms of 4 and A4 is zero, as we see from F). From (23) we see that
the tangent vectors of the corresponding curves also correspond if n? = pm; the
polar surfaces have a singular point.

Remark. The rolling of two isometric surfaces is in general determined if an
isometric correspondence between these two surfaces is given. The problem of
unicity of such a correspondence was solved by E. Cartan. We shall simply suppose
that such a correspondence is already given.

Now we shall discuss the connection between the invariants of the motion and the
invariants of the polar surfaces.

Let A(u, v) and A(u, v) be two surfaces in an isometric correspondence. Let %
and 2 be tangent frames of 4 and A, respectively, which correspond to each other
in the isometry. Let us consider a motion g(u, v) such that g(Z) = #. (g is not
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necessarily a two-par. motion.) (2, Z) is a lift of g(u, v) and for this lift we have
dZ = R, dR = R\.

As ¢! = !, ¢ = Y2, we have
03 = ag' + be?, @3 = —bp' —cp®, Y3 =a¢' +be*, Y3 =—Dbo' -9’
where K = ac — b* = @¢ — b*. Letusdenoteb — b = by,a —a = a,,¢c — ¢ = ¢,,
a+a=a,c+ ¢ = c,. For the change of the tangent frame we get b; = 4{c, — a,)
.sin 2o + by cos 2a, where « is the angle of rotation of the frame. This shows that
we may always change the frame to b = b. (If ¢; = a, the frame is not unique.)
The resulting motion has rank 2 if w} and w3 are linearly independent. This yields
) A @3 = (9} = ¥d) A (02 = ¥2) = —arci0! A 97 + 0 and aje; + 0,

1. Let us look for what pairs of surfaces we have a;¢; = 0. Let a; = 0. Then also
ac = a¢. If a # 0, then the surfaces are identical, g(u, v) = e. We may therefore
suppose that a = a = 0, ¢ & &, b = b. The integrability conditions give do' ==
= rep' A @* do* = sp' A ¢? for some functions r and s; further, (b); = —2bs +
+ cr = —2bs + ¢r and r = 0. Let us write @' = du. Then for the curves ¢?> = 0
we get dA = due,, de; = ¢ple, — pie; = 0 and so they are straight lines. Along
those curves we also have d("e; — e3) = 0 and so ~e3(u) = e,(u). This means that
the surfaces are ruled surfaces, which contact along a generating line. Such surfaces
are axoids of a one-parametric motion. (If two isometric ruled surfaces have another
position, they still may determine a two-parametric motion.)

Theorem 6. Two surfaces in an isometric correspondence define a 2-parametric
motion of rank 2 iff they are not identical or if they are not two ruled surfaces
which contact along a generating line.

2. Letayey + 0, a0y — ¢q * 0. To find invariants of the motion we have to rotate
the tangent frame again. Let us denote the angle of rotation by &, let M? =
= b*(a; + ¢,)* + a3c;. Computation yields

a = (ayeq)” ' [bley — ay) + M], vy = (aye;) *[ble; — a,) — M],
m= —2la;0;)" " (¢;sin* 9% + a, cos* 9), p = —2(ac;) (¢, cos® § + a, sin? 9),
n = (asc;) (a; — ¢;)sin 29,
where
cotan 9 = (aze,)”™ ' [—b(ay + ¢,) + M].
In particular,
Ko =0y + 1= —4K(a;e,)™", n* — pm = —4(ac,)”}

3. Let ayey +0, ag — ¢, =0. Discussion of this case shows that for a = ¢
we get two opposite spheres with the same radius; it is a special case of the case 5.
For a + ¢ we get two surfaces which are symmetric with respect to the common
tangent plane; the main directions correspond to each other. The associated spherical
motion is a minimal surface, « + y = 0.
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d) Motions with two curves as trajectories

In this section we shall describe all 2-parametric motions of rank 2 which have at
least two curves as trajectories of points. The tangent plane of the trajectory of
a point is given by (25), the tangent space has dimension less then 2 if (24) is satisfied.
If v=w=x =y =z =0, the dimension is zero, it is the origin, which is fixed
by a spherical motion. We leave this case out.

If a space motion has two curves as trajectories, then the corresponding spherical
motion must have cne curve as a trajectory of a point. Let us investigate this case
first. So let g(u, v) be a spherical motion such that the point P = (x, y, z) has a curve
as its trajectory. From (24) we get z = 0 and (7) yields
(27) may have a nontrivial solution only if K, = 0 and the motion splits into a product
of two one-parametric motions; let us find them. dy} = K,w3 A o} gives dy} = 0
and we may choose such a frame that a; = a, = 0. Then ¥} = 0 and x = const,
y = const. Now it is easy to see that we get the case b) of Theorem 3.

Let us return to the original problem.

a) Letv = w = 0 and let g(u, v) be a space motion with two curves as trajectories
of points. As the corresponding spherical motion must have one curve as a trajectory,
we shall use the preceding results. Let us also keep the same frame for the spherical
motions. Points P = (X, Y, Z) with curves as trajectories must satisfy the equations

Z=0, dX = —y', dY= —y?, X = —puY, u=a"'(f + 1) = const.

If (X, Y, 0) is a solution of these equations, then (X + C, Y + C, 0), C = const.,
is also a solution. The integrability conditions show that the motion splits. Frenet
formulas show that the moving polar surface is a straight line. The fixed polar
surface is a curve. The points of the moving polar surface have curves as trajectories
since the second factor of the motion is a rotation about the moving polar surface.

b) Let v 0, —vw = 0. Denote 4 = —v~'/? w'/2, Points which have curves as
trajectories must lie of the line Z = Av, X = — 1Y (we change the orientation of e,
if necessary). The functions (X, Y, Z) must solve (7) and we know, that (X + C,
Y + C, Z), C = const., must be also a solution. We obtain

(28) v = -t , Adb= —y3, dY= —y? - A%byl, dA=0,
Yl+ A%+ abYi(A2 + 1) = 0.

The solution of (28) together with the integrability conditions yields that K, =
=Ly=0, o, B,y,m, n, pv, w are functions of one variable only, where o, v, n,
can be chosen arbitrarily and the others can be expressed from them.

Theorem 7. A space motion whose two trajectories are curves is given by three
arbitrary functions of one variable and one nonnegative constant (o, v, n, A).
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Theorem 8. Any 2-parametric space motion whose two trajectories are curves
splits into a product g(u, v) = g(u) g,(v), where g,(v) is a rotation and the points
of the axis of rotation have curves as trajectories.

Proof. The proof is computational and we leave it out.

As an application we shall describe the two-parametric motion of rank 2 which
has two skew straight lines as trajectories. Such a motion is a motion from Theorem 7,
such that there are two solutions for Y which describe straight lines. The tangent
vector of the trajectory at the point (—A1Y, Y, Av) is the vector (v, —Av, Y). This
means that the unit vector a of the straight trajectory is a = ,u_l(v, — v, Y), where
i = (Vox + Y?)"?, o = (1 4+ A%)!/2, The vector a belongs to the fixed system and
therefore it satisfies (8).

As a result we must have two vectors a = (X, y, z), y = —Ax, such that .

dx = —zdu, dy=—o"'(f—1)zdu, dz=xdu+a "(f— 1)ydu.

Substitution for y yields § = 0, « = A7, o = const. Further, we have dY = —n du.
Derivatives with respect to u will be denoted by a prime. We have
x=vwul, y=—=dwwl, z=Yu', w' =wao®-Yn.

The derivative of v = xp yields Y? + YV’ + v’0® 4+ vn = 0. We have Y, , —
= }(—v & D'?), where Y; — Y, = D'/?> = 2x = const., Y; , = +x - V|2, D =
= (V)? — 4(v’@® + vn) = 4x*. As Y' = —n = —v'[2, we have (V)? — 2w’ =
= 4%* -+ 4v*@>. The general solutions is v = C + Bw ™! sin 2mu, where C is an inte-
gration constant (the other one was absorbed in u), B = (x* + C*0*)'?. Y=
= +x — Bcos2ou, n = —2wBsin 2ou and the invariants of the motion are
determined. To complete the computation we have to show that a satisfies (8), and
this is easy.

For the angle ¢ of straight trajectories we have cos ¢ = C @B ™!, their shortest
distance d satisfies d = 2xBC™' 0~ ?|2% — 1|.

e) Rolling of two curves

Let &(u) and c(u) be two curves in the spaces E3 and Ej, respectively, let u be the
arc, %, A their Frenet frames, k, k the curvatures, 7, 7 the torsions, respectively. Let
h(v) be the rotation round the first axis. Then the motion which realizes the rolling
of &(u) on c(u) is the 2-par. motion g(u, v) such that g(%(u) h™*(v)) = %(u) h(v).
For the lift (# . h, Z . h™ ") of g(u, v) we have

9) ¢=( w, 0 , 0 )

v —dv, —ksinv.du, kcosv.du
v = du , s 0
" \T+dv, ksinv.du, kcosv.du/’
ooy O .0 , 0
S *\e -7 —2dv, —(k + Kk)sinv.du, (k —Kk)cosv.du/’
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Theorem 9. The two-parametric motion of rank two, given as a rolling of two
curves with k* 4+ k? + 0, is characterized by the conditions v = w = 0, n> = mp.
The polar surfaces of such a motion form the rolling pair of curves and we have
ap + yn = 0 and (Ky), . /(@) = (Ko)1 /(& — 7).

Proof. Let g(u, v) be given as above. It has rank two iff one of the products

o] Ao} = —Hk —k)cosvdu A dv and o3 A w3 = Hk + k)sinvdu A dv is

different from zero. This yields k* + k* # 0. The rest follows from (29), (23) and

(19). (To be continued.)
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Souhrn
DVOJPARAMETRICKE POHYBY V Ej
ADOLF KARGER

Clanek se zabyva lokalni diferencialni geometrii dvojparametrickgych pohybi euklidovského
prostoru. Prva ast se zabyva preformulovanim klasickych vysledkil této discipliny do soudas-
ného geometrického jazyka spolu s uvedenim souvislosti s eliptickou diferencialni geometrii.

Dale jsou uvedeny ndkteré aplikace: Nutné a postalujici pominky pro rozklad dvojpara-
metrického pohybu na soudin dvou jednoparametrickych pohybi, jsou charakterizovany pohyby
s konstantnimi invarianty, pohyby majici dvé krivkové trajektorie a pohyby urdené jako odvalo-
vani dvou ktivek. Podrobng je rozebran ptipad odvalovani dvou isometrickych ploch.

Pezrome
OBVXITAPAMETPUYECKUE OBWXEHUS B E,
ADOLF KARGER

CraThsl 3aHUMAETCA JIOKAIbHO! AuddepeHIMaIbHOR reOMETPHe ABYXIapaMeTPUYECKHUX [[BHXKE-
mmii B upocrpascrse E,. B mepBoil 4acTH M3JIOXEHBI KIACCHYECKHE DPe3yJbTAaThl 3TOM oGnactm
U3 TOYKM 3PEHUSI COBPEMEHHOM IreOMETPHHU M MX CBSI3M C SJUIMNTHYECKOM reomerpueii. Ocranbuast
YacTh 3aHUMAETCS TPWIOKeHsAIMHU. OHA CONEPKUT HEOOXOJUMBIE M JOCTATOYHbBIC YCIIOBHS ISk
Pa3JIOKEHMs] ABWKEHVS B MPOU3BEICHNUE JABYX ONHONAPAMETPUYECKUX NBHKCHHU, OMMCAHNE XapaK-
TEPUCTUYECKUX CBOUCTB ABUKSHUIA C IOCTOSIHHBIMEA AHBAPHAHTAMAK HEKOTOPBIEC APYTHe Pe3yJLTaTEL.

Author’s address: RNDr. Adolf Karger, CSc., katedra matematické analyzy MFF UK, Sokolov-
ska 83, 186 00 Praha 8.
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