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ON GENERALIZED DIFFERENCE EQUATIONS
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Summary. In this paper linear difference equations with several independent variables are
considered, whose solutions are functions defined on sets of n-dimensional vectors with integer
coordinates. These equations could be called partial difference equations. Existence and uni-
queness theorems for these equations are formulated and proved, and interconnections of such
results with the theory of linear multidimensional digital systems are investigated.

Numerous examples show essential differences of the results from those of the theory of (one-
dimensional) difference equations. The significance and the correct formulation of initial con-
ditions for the solution of partial difference equations is established and methods are described,
which make it possible to construct the solution algorithmically. Extensions of the theory to
some special nonlinear partial difference equations are also considered.

Keywords: Difference equations, recurrence relations, partial differences.
AMS Subject Classification: 65N20, 65Q05, 93C35.

1. INTRODUCTION

Linear difference equations form a classical topic of mathematical analysis. These
equations are usually written in the form

(1.1) Yafk)f(n —i+k)=g(k).

i=0
The solution of such a difference equation is a sequence f satisfying equation (1.1)
with given coefficients a,(k), given input g(k) for k € N, and satisfying some initial
(or boundary) conditions.

Here, N is the set of positive integers, a, f, g are sequences, i.e., mappings of the
type f: N — R or f: N — C. If the values of f on a certain set (e.g. for k =0, 1, ...
...,n — 1) are given, the difference equation (1.1) has exactly one solution, etc.

In the last decades these difference equations have found important applications
closely connected to numerical analysis and, in general, to the so-called digital
systems. Finite difference methods in solving partial difference equations led to
investigations of simple difference equations in several variables. During the last
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10—20 years digital processing of “two dimensional signals” — functions defined
on different types of grids, such as planar images of various origin — have become
very useful and important. So the classical problem of difference equations, now in
a more general setting, has been brought forward again. The analysis and applications
of these more general difference equations revealed that well-known techniques and
theorems can be used here only with caution, and moreover, that two and more
dimensional problems may have some unexpected properties. Therefore it seems
reasonable to reformulate the basic existence and uniqueness theorems for difference
equations to make the necessary generalizations possible and, furthermore, to for-
mulate basic theorems on difference equations, occurring in the so-called n — D
digital systems theory. Such investigations seem to be even more important in con-
nection with the widening field of applications on n — D digital filtering (recursive
filters on the so-called nonsymmetric halfplanes [5], difference equations on non-
rectangular grids [3], nonlinear filtering techniques [5], [2], and many related
problems). The use of the n-dimensional Z-transform for the description of n — D
systems should also be based on a consistent theory of difference equations and
their systems, since such basis could give more reliable results in the so-called
frequency domain description of n — D digital filters. We could also mention
qualitative investigations, namely the most important problem of BIBO stability
(bounded input — bounded output) of linear systems [5].
Our approach starts with the single equation

(1.2) ﬂZBa,,(cx)f(oz + B) = x(«) ,
where €A c 2", Bc Z", x:A— C, a:A x B— C, ay(«) + 0 for all ae4,
peB, 1A+ B—-C.

In this formulation the following notation has been used: Z is the set of integers,
Z" the set of their n-tuples, i.e. o € Z" means o = (oy, oy, ..., %), o; € Z. Cis the set
of complex numbers, A + B = {yeZ"y = a + p, a€ A, f € B}. In equation (1.2)
we shall always suppose n fixed and B to be a finite set, 2 < card B = ]B] < 0.

For x(x) = 0 the equation is called homogeneous, for as(e) independent of «
for all B e B it is with constant coefficients. The mappings f, x will also be called
sequences. A sequence f: A + B — C'is called a solution of (1.2) if for given a and x
the sequence f satisfies equation (1.2).

In equation (1.2) it is supposed that the Z" has a “natural” algebraic structure,
namely Z" is a (torsion-free Abelian) group with component-wise addition as its
group operation. Such group can be endowed with an order relation < so that for
any o, f e Z" either « < f or f < a holds true. Moreover, we shall suppose that
o < fimplies o + y < B + y for any y € Z". Such orders do exist: one such example
is the lexicographical order. The group Z" endowed with a fixed order < will be
denoted by (Z", §). For subsets of ordered groups we shall write A = (Z", g), for
a, pe(Z", £), a <  will stand for & < B and a + .
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Any sequence f satisfying equation (1.2) for all a € 4 is called its solution. These
solutions may perhaps be subject to some additional requirements. Accordingly we
shall distinguish here two types of solutions; their definitions are derived from
conditions of computability of the value f(a) for arbitrary € A + B.

Definition 1.1. A4 solution f is called a C-solution of(1.2) with given sets A, B and
with a given mapping a: A x B — C, a,(o) % 0 for all B € B, if its value f(x) for
any o + A + B can be obtained by a finite number of arithmetic operations from
(1.2), provided the values f(x) are given on a fixed subset C = A + B.

We aim at proving a uniqueness theorem for the solutions of at least some classes
of equations (1.2). In earlier investigations the so-called recursively computable or
RC solution has been considered, which is inherently unique. To formalize the
definition of the corresponding class of equations we formulate the following defini-
tion (see also [2], [3]).

Definition 1.2. The equation (1.2) with given sets A, B = Z" is said to have an
RC-solution if there exists an order < in the set A + B so that the value f(oc),
o€ A + B, of this solution can be obtained by a finite number of arithmetic opera-
tions from equation (1.2) provided the values f(o) for ' < o are known.

Remark 1.3. In Definition 1.2 the value f(«) evidently depends on the coefficients a.
The main distinction between Definitions 1.1 and 1.2 can be characterized as follows:
To have a C-solution is a property of one single equation with fixed coefficients a,
while to posses an RC-solution is a property of a class of equations defined by the
sets A, B only (independent]y of the coefficients a). Although it is not quite con-
sequent, we shall speak of an RC-solution for a single equation, if this equation
belongs to this class. In this sense each RC-solution is a C-solution, but not conversely.
This is easily revealed by comparing Theorem 2.1 and Example 3.6. Moreover, any
RC-solution is unique, while a certain fixed equation (1.2) may have nonunique
C-solutions or no C-solution at all. In what follows we are mainly interested in
RC-solutions of equation (1.2). We shall see, that the existence of RC-solutions cor-
responds to an initial value problem for equation (1.2).

2. BASIC THEOREMS

Theorem 2.1. In equation (1.2) let A, B be nonempty sets, A, B = Z", B finite
with at least two elements. Then there exists a set C = A + B such that for any
given function g: C > C and for any coefficients ay(«) equation (1.2) has exactly
one RC-solution f: A + B — C satisfying the (initial) conditions f(«) = g(«) for
allaeC.

The proof of this theorem is based on two lemmas.
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Lemma 2.2. For any nonempty finite set B < Z" there exists an n-tuple of integers
(N, N,,...,N,) so that the mapping h:h(z) = Nyz; + Nz, + ... + N,z, is
one-to-one on the set B.

We can prove this assertion by induction:

a) Let n = 1. Then for any N =% 0, h(z) = N,z, is one-to-one on B.

b) Fix n > 1 and let us assume the assertion to be true for n — 1, (B = Z"™1).

Denote B’ = {(B...., fu=1), 3P, €Z, (By,...., B,)€B}. As B+ 0, [B| < o0 we
have B’ + 0, IB’| < oo. That is why there exist integers Ny, ..., N,—; so that the

1 .

form ) N;z;is one-to-one on B'.
i=1
Now it is easy to see that for any two elements f, f’ € B with 8, #+ f, there exists
exactly one number N(f, f’) such that

n—1

Y, N+ N(B. B) fa = LNB; + N(B. ) i

Since B is finite we can choose an N, € Z so that N, # N(B, p) for all B, p’' € B.
It is now trivial to show that § = B’ whenever

__iN,-B,- =__2"21N,-B§ , and B,p'eB.
Indeed, B, + B, would imply N, = N(B, p’) and therefore §, = f,. But this means
iZ;:INiﬂi =':4§1Niﬂ:'
whence f8; = f; also for all 1 < i < n and the statement is proved.

Lemma 2.3. Any set A = Z" can be endowed with an order < so that A becomes
a well-ordered set and, moreover, to any finite set B < Z", 2 < card B there exists
a mapping B: A — B such that

(2.1) « + p&)ea + B implies o <o forall a,oa'€A.

Proof. From Lemma 2.2 it follows, that there exists a function h(z) = Nz, +
+ Nyzy + ... + N,z,, N;€Z, z=(zy,2,,...,2,) € Z", which attains its strict
minimum and strict maximum on the set B, i.e., there exist f°, ' € B so that

(2.2) h(B) < h(B), h(B°) > h(B) forall BeB.

Now we can define

A;={aed:|2h(o) + 1| =1i,i=1,3,5,..}.

o0
Certainly | A; = A. Now let us take an arbitrary but fixed set of orders <; so that

=i
i=0
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each (4;, <) becomes a well-ordered set. (Such orders certainly exist [1].) Define
the following order <:
(2.3) for a'€A;, aed; thereis o <a
iffeither j<i or o <;a.
Obviously, A4 is well ordered by <. Furthermore, we put
(2.4) Ay = {0 € A: h(o) = 0}
Ay = {ae A: h(a) < 0}

and define the mapping f: A — B by

_p° for aeA
B(a)_{ﬁl for cxeA(l).

It remains to be verified that the order < and the mapping f satisfy condition (2.1).
Assuming o + B(¢’) = « + B for some B e B we have to discuss four cases:

o, 0 € Ag A

o, e Ay
o' €Ay, o€,
o ed;, aed,.

The linearity of the function k implies
h(o) + W(B(«')) = (=) + h(B).
Now o' € Ay, x€ A, yields f(o') = g°,
h(x) <0 < k(o) and h(B) < h(°);

therefore h(a) + h(B) < h(a') + h(B(«')), which contradicts the assumption. Simi-
larly, the fourth case cannot occur, either. Let the first case be analyzed. For o', & € A4,

we have
h{o') = h(a) + h(B) — h(B°), whence h(«') < h(a).

Since 0 < h(a’), we obtain
|2 h(e') + 1| £ |2 h(0) + 1].
If the equality sign holds true, we have h(ex) = h(«') and, consequently h(f) = h(B°),
whence f = B° nad a = o'. The strict inequality immediately implies o < a.
In a similar way the case o', @ € A; can be handled; the mapping f satisfies con-
dition (2.1) and the lemma is proven.

Proof of Theorem 2.1. Recalling Lemma 2.3, it is sufficient to prove the theorem
assuming that 4 is a well-ordered set and that there exists a mapping f: 4 —» B,
satisfying condition (2.1).
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In the sequel let the following set C be considered
(2.5) C=(A4+B)\U{a+ Bx)}.
acA

Define I', = U {o’ + B(e')} for all a€ A and denote B°(a) = B~ B(x). From (2.1)

it easily follows that for all o, o' € 4

(2.6) o + P(a)ex + B%a) implies o <.
Furthermore, for all « € 4 we have

(2.7) «+ B%a)=T,uC,

or equivalently

(a4 BY@) N U (o + B&)} = 0
this is immediately evident from (2.6). Moreover, for o' < « we have I',, < I',. The
sum over B in equation (1.2) can now be decomposed and we obtain
Y S+ ) =[] (0 - T @6+ ).
Since A is well-ordered and the mapping o« — « + p(a) is one-to-one'), the sets I',
are also well-ordered. Suppose that the values of f have been computed on the set I',
(and given on the set C), i.e. f(o' + B(a’)) are known for all &’ < o. Then (2.8) yields
the still unknown value f(a + f(c)), since on the right-hand side only the values of f
on either the set I', or the set C occur and « + B(«) ¢ I',.

By the induction principle for well-ordered sets [1] we may conclude, that all
the values of f on the set 4 + B are recursively computable. Since every point
¢e(A + B)\C can be uniquely represented as £ = a + f(«) with the mapping
fixed, the recursively constructed function f is indeed a unique solution of (1.2)
and our proof is completed.

Remark 2.4. From the proof it follows that the assumption aﬁ(oc) + 0 for all
a€ A, e B can be weakened t0 ay,)(®) + 0 for all a € 4.
Remark 2.5. The proof remains unchanged, if in (2.4) the sets Ao, 4, are defined by
Ay ={ae A, h(z) = m},
A, = {ae A, h(z) < m}

for an arbitrary fixed integer m. As a result we obtain a “shifted” set C.

1y Indeed, from o = &’ and « + B@) = o« + B(&’) a contradiction can easily be derived.
From (2.1) and from « -+ f(2)€ a’ + B follows & = «’ and from « -+ f(a’) €« + B follows
o < o. Hence o0 = o',
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Remark 2.6. Although the idea of the RC-solution is based on a step-by-step
construction of the solution f, the proof has some “nonconstructive” parts. Therefore
the algorithm of determining the value f(£) for an arbitrary £ € 4 + B is not self-
evident. Bellow it will be shown, how such an algorithm can be derived from Theorem
2.1.

The system-theoretical point of view considers equation (1.2) with g(x) = 0 for
allo € C as a linear system. For linear systems with one variable the notion of causality
is of basic importance. For multidimensional systems such as those described by
equation (1.2) the notion of causality seemed to be less important [5]. Our next
theorem, which in a certain sense is the converse of Theorem 2.1, shows that a cor-
rectly described linear system given by a difference equation of the type (1.2) implies
causality as a certain ordering of the set 4. More precisely:

Theorem 2.7. Let A,B,C <= Z" be nonempty sets with 2 < card B < o0 and
C < A + B such that the following condition is satisfied: for each mapping
a: A x B— Cwith ay(a) % 0 for all . € A, B € B, and for each sequence x: A — C
there exists one and only one sequence f: A + B — C such that ‘

Y. ag(@) fle + ) = x(2)
peB

for all w. € A and with f(y) = 0 for all y e C.
Then there exists: an order < such that A is well-ordered with respect to <, and
a mapping B: A — B satisfying the implication (as in (2.1))

o + ple)ea+ B=a < a
so that (as in (2.5))
C=(A+B)\ U {a+ p(a)}.

aeA
Proof. From given A, B, C let the following sets be defined
r,=0¢,
Ay = {a € A such that there exists exactly one f € B with « + B ¢ I'o},
r, =Fou(/10 + B),
Ay = {oc € A such that there exists exactly one f e B with « + f ¢ Fk},
Iy =Tyo (4, + B).

Evidently

(2.9) Iyclycl,c..cl,c...
Iy =Cu(4, + B)u...u (4, + B)

and

(2.92) AinA;j=0 for i+j.
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We shall now prove by contradiction that

(2.10) A=04,.

k=0
Suppose that

ANUA F0
k=0
and, moreover, suppose that for all « € 4 belonging to this nonempty set there exists
two distinct values B, B, € B such that

o+ B,¢Ul,, i=1,2.
k=0
Then there do exist nonzero coefficients a,(«) such that

Y, aya) =0 forall aeA N 4.
feB k=0
a+f¢ul

__J0for o + el
Put fi( + ) = {1 for the other elements of A + B

and f,(a + B) = 0 for all @ + Be A + B. For x = 0 both these functions satisfy
the chosen equation (1.2) with the corresponding initial conditions and from the
assumptions of the theorem we obtain f; = f,. Therefore 4 + B = I',, which
contradicts our assumption that o + ;¢ UT.

On the other hand for « € A\ |J4, the condition « + B = {JI'; cannot be satisfied,
since if f and f” are solutions of (1.2) for inputs x and x’ respectively, with x = x’
on the set |J A, then evidently f = f’ on the set I

Summarizing, we obtain that there exists & € A\ |JA, such that a single fe B
can be found satisfying

&+B¢Drk.
k=0

In this case (see (2.1)) there must exist an index j for which this conclusion holds
true with (JI', replaced by I';. This would mean & € 4;, which contradicts the as-
sumption

deAdA N U 4.
x=0
Therefore (2.10) is true.

To continue the proof of Theorem 2.7 we define a mapping f: A —» B by
(2.11) o+ Ba) ¢, oed.
From the proof of formula (2.10) and from (2.9a) it follows, that (2.11) indeed

defines a mapping.
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Now we define an order relation < on the set A: for o’ € 4;, & € A; we shall say
that

(2.12) o < o iff either i <j or (i =j and o' <;0),
where <; are arbitrary but fixed orders on the corresponding (mutually disjoint)
sets A;.

We have to prove that the mapping (2.11) and the order given by (2.12) satisfy
the implication (2.1). To this end let o + (') = o + B with o’ € 4;, x e 4;. We
immediately have o’ + B(o') ¢ I'; and o« + BeI';,, and therefore i < j. For i < j
there remains nothing to be proven. For a, o' € 4; and o + o' we have a + ¢ T;
and therefore f = f(a). This gives o’ + (') = « + P(a) and for the equation(1.2)
this means that the value x(«) depends on the values of x(&) with

i-1
gel 4,0 {od}.
Jji=0

Since this would be a contradiction, we can conclude that either i < j or a = o/,
hence o' < a. N
The last part of the proof consists in proving (2.5). First let us prove that

U {e + B(®)} = (4 + B)NC.
acA
Choose ye (4 + B)NC and let i = min {k:ye A, + B}. Forae A;and o + B =y
we obtain o + B¢ I'; and therefore f = B(«). Indeed, if
yel; = Cu(4y + B)u(4; + B)u...u(4;-; + B),

it would be y € 4,, + B for some index m with 0 < m < i, which contradicts the
definition of the index i. Therefore y = &« + B(a), @ € A and the inclusion is proved.
The converse inclusion follows from the fact that o + B(«) ¢ I, for we A, and
C cI,.

Formula (2.5) is proved. Hence, the proof of Theorem 2.7 is complete.

Corollary 2.8. Under the assumptions of Theorem 2.7 we have
(2.13) |(A + B)NC| = |A| and therefore if |A| < oo then

Cl = 14 + B - J4],

where |A| = card A.

Proof. The mapping E: A - (4 + B)\C defined by

E(a) = o + P(o)

is evidently one-to-one and surjective. Formula (2.13) follows from the assumption
Cc A+ B
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In Theorem 2.7 the proof of formula (2.10) depends on the fact that a is a mapping
from A x B, i.e. the equations considered are with variable coefficients. Sup-
posing a: B —» C in fact weakens the assumption of this theorem. Although a state-
ment similar to that of Theorem 2.7 for equations with constant coefficients would
be important for multivariable linear systems theory, its proof would probably
require some other type of reasoning.

This theorem also emphasizes the distinction between C- and RC-solutions of
difference equations: the existence of a C-solution, being the property of a single
equation, cannot impose any order relation on the set 4. On the other hand, RC-
solutions as a property of a class of equations may determine an order in the calcula-
tions of values of the solution or, furthermore, an algorithm.

It becomes also evident, that algorithms with various extent of paralellisms for
the evaluation of f (oz) can be constructed, although the initial set C is, in general,
not finite. In fact, for the evaluation of f(«) at a fixed point € A + B only a finite
number of initial values g(«), « € C, has to be used. This is immediately clear from
the proof of Theorem 2.7: any a € (4 + B)\ C can be uniquely written as & = a’ +
+ P(a’) with o’ € A;. Since B is a finite set, to calculate f(«) from (1.2) we need to
know only |B| — 1 values of f. Therefore, if f(«) for a € I', has to be calculated,the
values of g(x), « € C on not more than (|B| — 1)* points must be used. In fact, this
estimate is rather pessimistic. We do not want to go into details of construction of an
effective algorithm of evaluation, although we consider this problem to be very
important for practical applications of multidimensional digital systems.

3. SOME EXAMPLES AND FURTHER RESULTS

Equation (1.2) is a generalization of (1.1) even in the one-dimensional case;
unexpected results stem from comparatively very simple problems.

Example 3.1. Let equation
(3.1) 2%ps1 —fo =0, ned,

be considered for A = {neZ: 4 < n % 2*}. Here, B has two elements, B = {0, 1},
and two different sets C can be considered: C; = {ne€Z:n =2" + 1,k =2,3,4,...},
C,={neZ:n=2"" -1, k=2,3,4,...}. For a given function g: C; - C let
the RC-solution of equation (3.1) be denoted £ and f®, respectively.

Since |f11| = |fi|/2 for all i € A, we obtain

sup |f(y)| < sup |9(v)] ,
y€A+B 7eCy
i.e. bounded initial values imply bounded solutions.
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For the function f put g(y) = 1 for all y e C,. We successively obtain

f(Z)(2k+1 _ 1) =~ g(2k+1 _ 1) — 1’ f(z)(2k+1 _ 2) — 2f(2)(2k+1 _ 1) =2
and finally
fP2"+1)=2""2 for n=2,

whence for n sufficiently large we have

e+ 1) =2,
The solution f® is unbounded.
This example shows that boundedness of the solution on a set A + B may sub-
stantially depend on the initial set C; this conclusion remains true a fortiori in multi-
dimensional cases.

Example 3.2. In equation (1.2) let x = 0, sup |[g(y)] < oo and let the coefficients
ag(o) satisfy for all « € A the condition 7eC

| pa()] >ﬂe§;,o|aﬁ(°‘)| ,

where f(a) is the mapping defined by (2.1) and B’ = B\ {$(«)}. Then the solution f
is bounded, i.e. sup |f(7)| < oo.

yed+B

The proof follows from (2.8).

In view of Theorems 2.1, 2.7 we may state that the correct choice of the “initial”
set C for a given partial difference equation (1.2) is essential for the existence and
uniqueness of its RC-solution irrespectively of the coefficients ag, input x and initial
values g. We shall say that he triple (A4, B, C) with such a choice of the set C defines
a class of well-posed initial value problems for the partial difference equation (1.2).
Conclusions concerning the solutions of partial difference equations have to be
formulated mostly within this class and therefore the construction of the initial set C
from given sets A, B becomes important. This construction was hitherto mostly
indirect. For practical purposes a direct construction will be described.

%

Construction 3.3, Let sets 4, B = Z" be given and let < denote the lexicographic
order. For all integers m = 0, 1, 2, ...,2" — 1 let their binary representation
n—1

m=Ym?2, m=0,1,

i=0
be considered. Let the given set A be decomposed into 2" subsets A4,,, defined by
Ay = {(0g, 05, ...,0,) € A: (o; = 0 iff m; = 0) forall i =0,1,2,....,n — 1}.

Now the set Z" will be endowed with 2" different orders <, as follows: for any
o, o’ € Z" we have a <,, o if there exists an index k € {1, 2, ..., n} such that o; = a}
foralli < k and (1 — 2m,) o, < (1 — 2m,) o;;. All these orders are invariant under
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addition and therefore (Z", g,,,) is an ordered group for all m =0,1,...,2" — 1.
Since B is a finite set, it contains its maximal element with respect to the order <,,.
Let this element be denoted by ™.
It can be proved by an argument resembling that of the proof of Theorem 2.1,
that the set
2n—1
(3.2) C=(A+B)\U(4,+ B
m=0
in (4, B, C) forms a class of well-posed initial value problems, i.e. that C is a “cor-
rect” initial set. Even more, the sets A4,, are well ordered and the value f(oz) for any
o€ A + B can be computed by an algorithm, which is based on the orders =<,
defined above.
For the sake of brevity we do not give the details of the proof here; instead, in
the sequel, some examples will be shown.

Example 3.4. Let H be an upper triangular (n x n) nonsingular matrix of integers
and let P be an (n x n) permutation matrix. Denoting by < the lexicographic order
as in the previous construction, we may introduce the order < in Z" as follows:
for o, o' € Z" we have

o <o iff PHo £ PHo' .

(Z", <) is an ordered group. For o€ 4, f e B we may consider a* = PHo, B* =
= PHP and use Construction 3.3. We obtain such a set C, that (4, B, C) forms a class
of well-posed initial value problems.

Construction 3.3 and Example 3.4 impose a certain ordering on the computation
of the values f(e). These orderings may yield different ways of parallel computation
and may imply different algorithms. For equation (1.2) this procedure can be
interpreted as a change of the independent variables.

Example 3.5. Consider a well-posed class (4, B, C) of initial value problems for
partial difference equations (1.2) with g(a) = 0 for all a e C. Then (1.2) defines
a linear system

f=Tx.
If equation (1.2) has constant coefficients, the system is shift-invariant [2], [6] in
the following sense: The equations belonging to the class (4 + &, B, C + &) for any
& e Z" are well -posed and

Tx(o + &) = f(a + ).

For these linear, shift-invariant systems we may assume without loss of generality,
that 0 € A. If a sequence 9 is defined by

1 for a=0
5(@_{ for 0+acA
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then the solution h of the equation
Y. agh(e + B) = 6(a)
feB

with h(e) = 0 for all & € C is usually called the impulse response of the corresponding
LSI system.
For the sequence x*

e Jx(2) for aeAd
"(“)"{0 for a¢ A

define now the function f* by
(3.3) fHo + B) =3 h(a + B)x*a’ — a)
a’‘ed

for all B € B, a, o' € A. Multiplying this equation by a, ar 1 summing these equations
for all f € B, we obtain

ﬂZaﬂf*ot-l-,B Zo\at,x\oc-—a)=x*(a)

Y

for all « € A. We may conclude from the uniqueness of the solution of (1.2) that
f = f* and therefore

(3-4) f=h#*x,

where % denotes the operation of convolution, defined by (3.3).

In Section 1. C- and RC-solutions of (1.2) have been defined. In the following
example we present an idea, how we can construct equations as in (1.2), which have
unique or nonunique C-solutions, but have no RC-solution.

Example 3.6. Choose n = 2 and let
A={(ap,a): 0020, a, =0, ;€Z},
B = {(0,0), (1,0), (0, 1), (1, 1)},
C={049):qg=012.30{(k0): k=2734,..}0{21D}
The corresponding difference equation with constant coefficients a,, reads

(3:5) agof(o) + ajof(o + €;) + aoif(% + €;) + ay f(e + ey + e;) =0,

where
er = (1,0), e, =(0,1).
Let

dyo 411

4 =

Qoo o1

For 4 + 0 we may conclude: given any function g: C — C, there exists one and
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only one f: A + B — C satisfying the given equation (3.5) and the condition f(o) =
= g(a) for all « € C. Indeed, f(1,0) and f(1, 1) can be calculated from a system of
linear equation with a (nonzero) determinant 4. The remaining values f(), x € A
can be calculated recursively.

For 4 = Oeither a,,g(0, 0) = a;,a0:9(2, 1) and e.g. the value f(1, 0) can be chosen
arbitrarily (an infinite number of solutions) or the given function g does not satisfy
this condition and no values of f(1,0), f(1, 1) satisfy equation (3.5) (no solution
exists).

Similar, more involved ‘“boundary value” problems as in Example 3.6 might be
constructed and investigated; these investigations are beyond the scope of this paper.

Summarizing the theorems and examples discussed so far we can conclude: Each
element of a well-posed class (4, B, C) of initial value problems for partial difference
equations defines a linear and causal system. If its coefficients a, are constants, these
systems are shift invariant and convolutional (see [6]).

4. NONLINEAR EQUATIONS

The method of proof of Theorems 2.1 and 2.7 offers the following generalization.
Let us suppose we are given a map of B onto the set {1,2, ..., M},M = card B < o0,
and a set of functions F: CM - C, a € A. Then we can consider the equation

F(f(e + BY), ..., fla + p") = x(a), aeA.

We can extend our Theorem 2.1 also to this type of equations, provided the functions
F are in some sense well-behaved. Indeed, it is not difficult to see, that the following
theorem can be proved in exactly the same way as Theorem 2.1.

Theorem 4.1. Let sets A, B satisfy conditions as in (2.1) (see the proof of Theorem
2.1) and let the function F,: CM - C for any w e A have the following property:
for any vector w e CM there exists exactly one value y such that

Fz(wlﬁ Was eoos Wi 15 Vs Wi g5 - -5 WM) =W;,

where B = B(a). Then for any x: A — C and g: C — C there exists exactly one
function f: A + B — C such that

F(f(e+ BY). fle+ ), ... fla + BY)) = x(2) , a€4
and f(y) = g(y) for all y € C. Here, similarly as above,

C=(4+ B)\aLE)A{oc + Bla)} .

A number of examples, where F satisfies the assumptions of the above theorem
can be given.
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Example 4.2. i) For

M
Fa(wj, Wosonns WM) = Z Aa,iwtiz(zx,x) ,

i=1

with A4, ;€ C, p(x, i) € N, it is sufficient to assume (4, ; # 0, p(«, i) odd whenever
Bo) = B).

ii) Formal discretization of a single nonlinear hyperbolic partial differential
equation yields the following equation

Lo+ eya) = J(@) + GUE) Y (e + ) = /(2) = x(0).

Here, G is a nonzero one-variable function, the set B consists of the point 0 and of
the points ¢, k = 1,2, ..., n + 1, which have all the coordinates except the k-th
one equal to zero, the k-th coordinate being equal to one. A choice of the set 4
leads to the construction of the set C as in the previous cases, and subsequently,
to the construction of a unique solution, provided f(e) =+ 0.

Since only existence problems for nonlinear initial value problems are dealt with
here, these examples are rather formal and we will not pursue this theme any further.

5. CONCLUSIONS

In this paper generalizations of difference equations have been dealt with, such
that existence and uniqueness theorems could be formulated and proved. These
theorems seem to be important in a rapidly growing area of multidimensional digital
signal processing and, more generally, in the theory of multidimensional discrete
systems. They may find applications also in numerical treatment of some partial
differential equations by finite difference methods.
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Souhrn
O ZOBECNENYCH DIFERENCNICH ROVNICICH
MirosLAV BosAK, Jiki GREGOR

Clanek formuluje vty o existenci a unicitd feSeni lincarnich diferenénich rovnic o n nezavislych
prom&nnych. Krom& vyznamnych odlinosti od pripadu jedné promé&nné sleduje souvislosti
zkoumaného predmé&tu s teorii n-dimensionalnich digitlnich systému. Vysledku je také pouZito
na nékteré nelinearni diferencni rovnice.

Pesome
OB OBOBIIEHHBIX VPABHEHUAX B KOHEYHBLIX PABHOCTSX
MirosLAV BosAk, Jiki GREGOR

BOopMyTHPYIOTCA TEOPEMBI CYIIECTBOBAHMS ¥ €[IHHCTBEHHOCTH PELLIEHHUS 115l IMHEMHBIX YPABHEHUMA
B KOHEYHBIX PA3HOCTAX QYHKIMHA MHOTHX IEPEMEHHBIX. PaccMaTpUBarOTCs 0COOEHHOCTH, KOTOPBIME
3TOT CilyyYail OTIM4YAeTCs OT OOBIKHOBEHHBIX YPABHEHHMM B KOHEYHBIX Pa3HOCTAX, HO BHMMaHHE
YAESAETCS TaK)Ke BOINPOCAM TEOPHH H-MEPHBIX CHCTeM LU(pOoBOi 0OpaboTku curnanos. Pesynbra-
THI IPUMEHSIFOTCA TAKXKE K HEKOTOPBIM HEJIMHEHHBIM YPaBHEHUSIM B KOHEYHBIX PA3HOCTSX yIIOMSIHY-
TOro THMA.
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