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32(1987) APLIKACE MATEMATIKY No. 3,224—239 

ON GENERALIZED DIFFERENCE EQUATIONS 

MIROSLAV BOSAK, JIRI GREGOR 

(Received October 11, 1985) 

Summary. In this paper linear difference equations with several independent variables are 
considered, whose solutions are functions defined on sets of n-dimensional vectors with integer 
coordinates. These equations could be called partial difference equations. Existence and uni
queness theorems for these equations are formulated and proved, and interconnections of such 
results with the theory of linear multidimensional digital systems are investigated. 

Numerous examples show essential differences of the results from those of the theory of (one-
dimensional) difference equations. The significance and the correct formulation of initial con
ditions for the solution of partial difference equations is established and methods are described, 
which make it possible to construct the solution algorithmically. Extensions of the theory to 
some special nonlinear partial difference equations are also considered. 

Keywords: Difference equations, recurrence relations, partial differences. 
AMS Subject Classification: 65N20, 65Q05, 93C35. 

1. INTRODUCTION 

Linear difference equations form a classical topic of mathematical analysis. These 
equations are usually written in the form 

(1-1) tat{k)f{n-i + k) = g{k). 
i = 0 

The solution of such a difference equation is a sequence / satisfying equation (1.1) 
with given coefficients af(k), given input g(k) for keN, and satisfying some initial 
(or boundary) conditions. 

Here, N is the set of positive integers, a,f, g are sequences, i.e., mappings of the 
type / : N -> R or / : N -> C. If the values of/ on a certain set (e.g. for k = 0, 1, ... 
..., n — 1) are given, the difference equation (1.1) has exactly one solution, etc. 

In the last decades these difference equations have found important applications 
closely connected to numerical analysis and, in general, to the so-called digital 
systems. Finite difference methods in solving partial difference equations led to 
investigations of simple difference equations in several variables. During the last 
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10 — 20 years digital processing of "two dimensional signals" — functions defined 
on different types of grids, such as planar images of various origin — have become 
very useful and important. So the classical problem of difference equations, now in 
a more general setting, has been brought forward again. The analysis and applications 
of these more general difference equations revealed that well-known techniques and 
theorems can be used here only with caution, and moreover, that two and more 
dimensional problems may have some unexpected properties. Therefore it seems 
reasonable to reformulate the basic existence and uniqueness theorems for difference 
equations to make the necessary generalizations possible and, furthermore, to for
mulate basic theorems on difference equations, occurring in the so-called n — D 
digital systems theory. Such investigations seem to be even more important in con
nection with the widening field of applications on n — D digital filtering (recursive 
filters on the so-called nonsymmetric halfplanes [5], difference equations on non-
rectangular grids [3], nonlinear filtering techniques [5], [2], and many related 
problems). The use of the w-dimensional Z-transform for the description of n — D 
systems should also be based on a consistent theory of difference equations and 
their systems, since such basis could give more reliable results in the so-called 
frequency domain description of n — D digital filters. We could also mention 
qualitative investigations, namely the most important problem of BIBO stability 
(bounded input — bounded output) of linear systems [5]. 

Our approach starts with the single equation 

(1.2) £ a , ( a ) / ( a + /0 = x(a) , 
peB 

where a e i c Z " , B c Zn, x: A -> C, a: A x B -> C, a^(a) =j= 0 for all a e A , 
P e B, f: A + B -> C. 

In this formulation the following notation has been used: Z is the set of integers, 
Zn the set of their ra-tuples, i.e. aeZn means a = (a l9 a 2 , . . . , art), octeZ. C is the set 
of complex numbers, A + B = {y e Zn: y = a + p, a e A, P e B}. In equation (1.2) 
we shall always suppose n fixed and B to be a finite set, 2 S card B = \B\ < GO. 

For x(a) = 0 the equation is called homogeneous, for ap(<x) independent of a 
for all p G B it is with constant coefficients. The mappings / , x will also be called 
sequences. A sequence/: A + B -> Cis called a solution of (1.2) if for given a and x 
the sequence / satisfies equation (1.2). 

In equation (1.2) it is supposed that the Zn has a "natural" algebraic structure, 
namely Zn is a (torsion-free Abelian) group with component-wise addition as its 
group operation. Such group can be endowed with an order relation ^ so that for 
any a, ft e Zn either a ^ p or p ^ a holds true. Moreover, we shall suppose that 
on S P implies a + y ^ p + y for any y e Zn. Such orders do exist: one such example 
is the lexicographical order. The group Zn endowed with a fixed order ^ will be 
denoted by (Zn, ^ ) . For subsets of ordered groups we shall write A c (Zn, ^ ) , for 
a, p e (Zn, ^),<x<p will stand for a ^ p and a =f= p. 
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Any sequence f satisfying equation (1.2) for all a e A is called its solution. These 
solutions may perhaps be subject to some additional requirements. Accordingly we 
shall distinguish here two types of solutions; their definitions are derived from 
conditions of computability of the value f(a) for arbitrary a e A + B. 

Definition 1.1. A solution f is called a C-solution of (1.2) with given sets A, B and 
with a given mapping a: A x B -» C, a^(a) + 0 for all ft e B, if its value f(a) for 
any a + A + B can be obtained by a finite number of arithmetic operations from 
(1.2), provided the values f (a) are given on a fixed subset C c: A + B. 

We aim at proving a uniqueness theorem for the solutions of at least some classes 
of equations (1.2). In earlier investigations the so-called recursively computable or 
RC solution has been considered, which is inherently unique. To formalize the 
definition of the corresponding class of equations we formulate the following defini
tion (see also [2], [3]). 

Definition 1.2. The equation (1.2) with given sets A, B c Zn is said to have an 
RC-solution if there exists an order :g in the set A + B so that the value f(u), 
a E A + B, of this solution can be obtained by a finite number of arithmetic opera
tions from equation (1.2) provided the values f(a') for a' < a are known. 

Remark 1.3. In Definition 1.2 the valuef(a) evidently depends on the coefficients a. 
The main distinction between Definitions 1.1 and 1.2 can be characterized as follows: 
To have a C-solution is a property of one single equation with fixed coefficients a, 
while to posses an RC-solution is a property of a class of equations defined by the 
sets A, B only (independently of the coefficients a). Although it is not quite con
sequent, we shall speak of an RC-solution for a single equation, if this equation 
belongs to this class. In this sense each RC-solution is a C-solution, but not conversely. 
This is easily revealed by comparing Theorem 2.1 and Example 3.6. Moreover, any 
RC-solution is unique, while a certain fixed equation (1.2) may have nonunique 
C-solutions or no C-solution at all. In what follows we are mainly interested in 
RC-solutions of equation (V2). We shall see, that the existence of RC-solutions cor
responds to an initial value problem for equation (1.2). 

2. BASIC THEOREMS 

Theorem 2.1. In equation (1.2) let A, B be nonempty sets, A, B cz Zn, B finite 
with at least two elements. Then there exists a set C a A + B such that for any 
given function g:C -> C and for any coefficients ap(a) equation (1.2) has exactly 
one RC-solution f: A + B -> C satisfying the (initial) conditions f(a) = g(a) for 
all a G C. 

The proof of this theorem is based on two lemmas. 
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Lemma 2.2. For any nonempty finite set B c Z " there exists an n-tuple of integers 
(Nl9N2, ...,Nn) so that the mapping h: h(z) = N1z1 + N2z2 + . . . + Nnzn is 
one-to-one on the set B. 

We can prove this assertion by induction: 

a) Let n = 1. Then for any N1 + 0, h(z) = Ntzx is one-to-one on B. 

b) Fix n > 1 and let us assume the assertion to be true for n — 1, (B cz Z""1). 

Denote B' = {(pu . . . , pn.x), 3PneZ, (pu . . . , fin) e B}. As B + 0, |B | < oo we 
have B' 4= 0, |B ' | < oo. That is why there exist integers Nl9 ...,Nn-t so that the 

form YJ ^tzi *s one-to-one on B'. 
i = l 

Now it is easy to see that for any two elements p, P' e B with Pn + P'n there exists 
exactly one number N(P, /?') such that 

£ NJ, + N(p, p') p„ = E Í V ^ ; . + N(/ř, p') p'„ 
n- 1 

I! 
i = l 

Since B is finite we can choose an Nn e Z so that N„ =j= N(P, P') for all p, P' e B. 
It is now trivial to show that p = P' whenever 

tNip( = £Nip'i, and p,p'eB. 
£ = 1 i = l 

Indeed, ft, 4= P'n would imply N„ = N(P, p') and therefore Pn = P'n. But this means 

i W i -"Z-v̂ j 
i = l i = l 

whence pt = p] also for all 1 _" f < n and the statement is proved. 

Lemma 2.3. Any set A c Zn can be endowed with an order -< so that A becomes 

a well-ordered set and, moreover, to any finite set B c Z", 2 ^ card B there exists 

a mapping j8: A -> B such that 

(2.1) a' + j5(a') e a + B implies a' -< a for a// a, a' e A . 

Proof. From Lemma 2.2 it follows, that there exists a function h(z) = N1z1 + 
+ N2z2 + . . . + Nnzn, Nf e Z, z = (z l3 z2, . . . , zM) e Z", which attains its strict 
minimum and strict maximum on the set B, i.e., there exist p°, p1 e B so that 

(2.2) hOS1) < h(p), h(P°) > h(P) for all fi e B . 

Now we can define 

At = { a e A : |2h(a) + l | = i, i = 1, 3, 5,...} . 

oo 

Certainly (J At = A. Now let us take an arbitrary but fixed set of orders = ( so that 
i = 0 
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each (At, ^ , ) becomes a well-ordered set. (Such orders certainly exist [1].) Define 
the following order -<: 

(2.3) for a' e Aj , ae At there is a' -< a 

iff either j < i or a' ^ t a . 

Obviously, A is well ordered by -<. Furthermore, we put 

(2.4) A0 = {aeA: h(a) ^ 0} 

A! = { a e A : ft(a) < 0} 

and define the mapping /?: A -> B by 

\P° for a e A0 

^ ~ \ p for a e A ! . 

It remains to be verified that the order -< and the mapping /? satisfy condition (2.1). 
Assuming a' + fi(a') = a + j8 for some /? G B we have to discuss four cases: 

a', a e A0 

a', a G A! 

a' G A0 , a e A1 

a' G Aj , a e A0 . 

The linearity of the function ft implies 

ft(a') + ft(/*(a')) = ft(a) + fc(/J) . 

Now a 'GA 0 , a G A ! yields p(a') = f}°9 

ft(a) < 0 ^ ft(a') and h(0) S h(f) ; 

therefore ft(a) + h(0) < ft(a') + ft(/?(a')), which contradicts the assumption. Simi
larly, the fourth case cannot occur, either. Let the first case be analyzed. For a', a e A0 

we have 

ft(a') = ft(a) + h(0) - h(P°), whence ft(a') ^ ft (a) . 

Since 0 = ft(a'), we obtain 

|2fc(a') + 1| ^ |2ft(a) + l | . 

If the equality sign holds true, we have ft(a) = ft(a') and, consequently h(f$) = ft(/?°), 
whence ft = j8° nad a = a'. The strict inequality immediately implies a' •< a. 

In a similar way the case a', a e Ax can be handled; the mapping /? satisfies con
dition (2A) and the lemma is proven. 

P r o o f of T h e o r e m 2.1. Recalling Lemma 2.3, it is sufficient to prove the theorem 
assuming that A is a well-ordered set and that there exists a mapping jS: A -> B, 
satisfying condition (2.1). 
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In the sequel let the following set C be considered 

(2.5) C = (A + B) \ U {« + P(<x)} • 
Qtf=A 

Define Fa = U W + ]8(a')} for all a e A and denote B°(a) = B\p(<x). From (2.1) 
a ' < a 

it easily follows that for all a, a' e A 

(2.6) a' + p(cx,') e a + B°(a) implies a' < a . 

Furthermore, for all a e A we have 

(2.7) a + B°(a) c Fa u C , 

or equivalently 
(a + JB°(a)) n U {a' + jJ(a')} = 0 J 

<x<.tx' 

this is immediately evident from (2.6). Moreover, for a' < a we have Fa> cz Fa. The 
sum over B in equation (1.2) can now be decomposed and we obtain 

(2.8) /(a + 0(a)) = [«„w(a)] ~x (x(a) - £ a,(a)/(a + 0)) . 
/?eB°(a) 

Since A is well-ordered and the mapping a -> a + jS(a) is one-to-one1), the sets F^ 
are also well-ordered. Suppose that the values off have been computed on the set Fa 

(and given on the set C), i.e. f(a' + /?(a')) are known for all a' < a. Then (2.8) yields 
the still unknown value f(a + /?(a)), since on the right-hand side only the values off 
on either the set Fa or the set C occur and a + /?(a) $ Fa. 

By the induction principle for well-ordered sets [ l ] we may conclude, that all 
the values of f on the set A + B are recursively computable. Since every point 
£ e (A + B) \ C can be uniquely represented as £ = a + /?(a) with the mapping f$ 
fixed, the recursively constructed function f is indeed a unique solution of (1.2) 
and our proof is completed. 

Remark 2.4. From the proof it follows that the assumption ap(oc) + 0 for all 
a e A, fl e B can be weakened to ap{a)(cc) =j= 0 for all a e A. 

Remark 2.5. The proof remains unchanged, if in (2.4) the sets A0, A1 are defined by 

A0 = {a e A, h(z) ^ m} , 

A1 = { a e A , h(z) < m} 

for an arbitrary fixed integer m. As a result we obtain a "shifted" set C. 

1) Indeed, from a =1 a' and a + fi(cc) — a' + /?(°0 a contradiction can easily be derived. 
From (2.1) and from a + /i(a) e a' + B follows a ^ a' and from a' + /^(a7) e a + B follows 
a ' ^ a. Hence a -= a'. 
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Remark 2.6. Although the idea of the RC-soiution is based on a step-by-step 
construction of the solution f, the proof has some "nonconstructive" parts. Therefore 
the algorithm of determining the value f(£) for an arbitrary £ e A + B is not self-
evident. Bellow it will be shown, how such an algorithm can be derived from Theorem 
2.1. 

The system-theoretical point of view considers equation (1.2) with g(a) = 0 for 
all a e C as a linear system. For linear systems with one variable the notion of causality 
is of basic importance. For multidimensional systems such as those described by 
equation (1.2) the notion of causality seemed to be less important [5]. Our next 
theorem, which in a certain sense is the converse of Theorem 2.1, shows that a cor
rectly described linear system given by a difference equation of the type (1.2) implies 
causality as a certain ordering of the set A. More precisely: 

Theorem 2.7. Let A, B,C a Zn be nonempty sets with 2 = card B < oo and 
C c A + B such that the following condition is satisfied: for each mapping 
a: A x B —> C with ap(a) + Ofor all ae A, /? e B, and for each sequence x: A -> C 
there exists one and only one sequence f: A + B —> C such that 

Yap(a)f(a + f?) = x(a) 
(ieB 

for all ae A and with f(y) = 0 for all y e C. 
Then there exists: an order ^ such that A is well-ordered with respect to g , and 

a mapping ft: A -> B satisfying the implication (as in (2.1)) 

so that (as in (2.5)) 

a' + P(a!) e a + B = > a ' ^ a 

C = (A + B) \ U {a + p(a)} 

Proof. From given A, B, C let the following sets be defined 

Vo = C, 

A0 = {a e A such that there exists exactly one ft e B with a + jl i T0}, 

F! = F0 u (A0 + B), 

Ak = {ae A such that there exists exactly one fi e B with a + p £ Tk}, 

A + i = Tkv(Ak + B). 

Evidently 

(2.9) r 0 c = r l C r 2 c : . . . c i r , <= ... 

rk+1 = C u ( / l 0 + J ) ) u . . . u ( / i t + B) 

and 

(2.9a) AinAj = <b for i+j. 
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We shall now prove by contradiction that 

(2.10) A = U Ak . 
*=o 

Suppose that 
00 

A \ U Ak + 0 
fc = 0 

and, moreover, suppose that for all a e A belonging to this nonempty set there exists 
two distinct values j S ^ f t e B such that 

« + j M U A , *' = 1,2. 
fc = 0 

Then there do exist nonzero coefficients a^(a) such that 
oo 

Y, #/?(<*) = 0 for all a e A \ \J Ak. 
fieB k=o 

* + Murk 

P u t / ^ + ^ = | l for the other ele elements of A + B 

and / 2 (a + /?) = 0 for all a + /? e A + B. For x = 0 both these functions satisfy 
the chosen equation (1.2) with the corresponding initial conditions and from the 
assumptions of the theorem we obtain ft = / 2 . Therefore A + B = \jrk9 which 
contradicts our assumption that a + fit $ \JTk. 

On the other hand for a e A \ \JAh the condition a + B <= UFfc cannot be satisfied, 
since i f / and / ' are solutions of (1.2) for inputs x and x' respectively, with x = x' 
on the set \JAk9 then evidently/ = / ' on the set UIV 

Summarizing, we obtain that there exists ae A\\JAk such that a single fteB 
can be found satisfying 

00 

fc = 0 

In this case (see (2A)) there must exist an index j for which this conclusion holds 
true with \JTk replaced by F^. This would mean aeAj9 which contradicts the as
sumption 

00 

ae A \ U Ak . 
fc = 0 

Therefore (2A0) is true. 
To continue the proof of Theorem 2.7 we define a mapping fi: A -> B by 

(2.11) a + $(a)$rk9 aeAk. 

From the proof of formula (2A0) and from (2.9a) it follows, that (2.11) indeed 
defines a mapping. 
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Now we define an order relation ^ on the set A: for a' e Ai9 a e Aj we shall say 
that 

(2A2) a' ^ a iff either i < j or (i = j and a' rg^ a) , 

where g , are arbitrary but fixed orders on the corresponding (mutually disjoint) 
sets At. 

We have to prove that the mapping (2.11) and the order given by (2.12) satisfy 
the implication (2A). To this end let a' + /?(a') = a + jS with a' e Ai9 aeAj. We 
immediately have a' + j?(a') <£ rt and a + /? e rj+l and therefore i ^ j . For i < j 
there remains nothing to be proven. For a, a' e A( and a #= a' we have a + jS £ F, 
and therefore /? = j?(a). This gives a' + jS(a') = a + /?(a) and for the equation(l.2) 
this means that the value x(a) depends on the values of x(d) with 

ae{JAjKj{a'}. 
j = o 

Since this would be a contradiction, we can conclude that either i < j or a = a', 
hence a' ^ a. 

The last part of the proof consists in proving (2.5). First let us prove that 

U { a + j3(a)} =3 (A + B)\C. 
aeA 

Choose y e (A + B) \ C and let i = min {k: y e Ak + B}. For a e Ax and a + /? = y 
we obtain a + /? 4 I\- an^ therefore /? = j8(a). Indeed, if 

yeTi = Cu(A0 + B) u (A t + B) u . . • u ( i 4 , . 1 + B), 

it would be y G Am + B for some index m with 0 ^ m < i, which contradicts the 
definition of the index z. Therefore y = a + /?(a), a e A and the inclusion is proved. 
The converse inclusion follows from the fact that a + /?(a) <£Fk for ae / l f c and 

c c r , 
Formula (2.5) is proved. Hence, the proof of Theorem 2.7 is complete. 

Corollary 2.8. Under the assumptions of Theorem 2.1 we have 

(2.13) \(A + B)\C\ = \A\ and therefore if | A | < oo then 

\C\ = |A + B\ - | A | , 

where \A\ = card A. 

Proof. The mapping E: A -> (A + B) \ C defined by 

E(a) = a + j8(a) 

is evidently one-to-one and surjective. Formula (2A3) follows from the assumption 
C c A + B. 
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In Theorem 2.7 the proof of formula (2A0) depends on the fact that a is a mapping 
from A x B, i.e. the equations considered are with variable coefficients. Sup
posing a: B —> C in fact weakens the assumption of this theorem. Although a state
ment similar to that of Theorem 2.7 for equations with constant coefficients would 
be important for multivariable linear systems theory, its proof would probably 
require some other type of reasoning. 

This theorem also emphasizes the distinction between C- and RC-solutions of 
difference equations: the existence of a C-solution, being the property of a single 
equation, cannot impose any order relation on the set A. On the other hand, RC-
solutions as a property of a class of equations may determine an order in the calcula
tions of values of the solution or, furthermore, an algorithm. 

It becomes also evident, that algorithms with various extent of paralellisms for 
the evaluation of f(a) can be constructed, although the initial set C is, in general, 
not finite. In fact, for the evaluation of f(a) at a fixed point a e A + B only a finite 
number of initial values g(<x), a e C, has to be used. This is immediately clear from 
the proof of Theorem 2.7: any a e (A + B) \ C can be uniquely written as a = a' + 
+ /?(a') with a' e Ay Since B is a finite set, to calculate f(a) from (1.2) we need to 
know only |B | — 1 values off Therefore, if f(a) for a e Ffc has to be calculated,the 
values of a(a), a e C o n not more than (|B| — \)k points must be used. In fact, this 
estimate is rather pessimistic. We do not want to go into details of construction of an 
effective algorithm of evaluation, although we consider this problem to be very 
important for practical applications of multidimensional digital systems. 

3. SOME EXAMPLES AND FURTHER RESULTS 

Equation (1.2) is a generalization of ( l . l ) even in the one-dimensional case; 
unexpected results stem from comparatively very simple problems. 

Example 3.1. Let equation 

(3.1) 2fw+1 -f, = 0 , neA, 

be considered for A = {n e Z: 4 < n #- 2k). Here, B has two elements, B = {0, 1}, 
and two different sets C can be considered: Cx = {neZ:n = 2k + 1, k = 2, 3, 4 , . . . } , 
C2 = {ne Z: n = 2k + i - 1, k = 2, 3, 4 , . . . } . For a given function g: Ct -* C let 
the RC-solution of equation (3.1) be denoted f ( 1 ) andf (2 ) , respectively. 

Since | f + i| = |f,|/2 for all i e A, we obtain 

sup |f(1>(?)| S sup \g(y)\, 
yeA+B yeCt 

i.e. bounded initial values imply bounded solutions. 
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For the function fW p u t g(y) = x f o r a l l yEc2.We successively obtain 

f(2)(2k+i _ ^ ^ 2 f c + 1 _ !) = 1 ? ^ ( 2 ) ^ + 1 _ 2) = 2 f ( 2 )(2 f c + 1 - 1) = 2 

and finally 
f(2)(2" + l) = 22n"2 for n = 2 , 

whence for M sufficiently large we have 

f(2)(2" + 1) ^ 2". 
The solution f ( 2 ) is unbounded. 

This example shows that boundedness of the solution on a set A + B may sub
stantially depend on the initial set C; this conclusion remains true a fortiori in multi
dimensional cases. 

Example 3.2. In equation (1.2) let x = 0, sup |g(y)| < oo and let the coefficients 
^(a) satisfy for all a e A the condition yeC 

\apUa)\ > I h(°OI > 
PeB° 

where jS(a) is the mapping defined by (2.1) and B° = B\{fi(a)}. Then the solution / 
is bounded, i.e. sup |f(y)| < oo. 

ye A + B 

The proof follows from (2.8). 
In view of Theorems 2A, 2.7 we may state that the correct choice of the "initial" 

set C for a given partial difference equation (L2) is essential for the existence and 
uniqueness of its RC-solution irrespectively of the coefficients ap, input x and initial 
values g. We shall say that he triple (A, B, C) with such a choice of the set C defines 
a class of well-posed initial value problems for the partial difference equation (1.2). 
Conclusions concerning the solutions of partial difference equations have to be 
formulated mostly within this class and therefore the construction of the initial set C 
from given sets A, B becomes important. This construction was hitherto mostly 
indirect. For practical purposes a direct construction will be described. 

Construction 3.3. Let sets A, B a Zn be given and let ^ denote the lexicographic 
order. For all integers m = 0, 1, 2, ..., 2n — 1 let their binary representation 

m = Yjmi2
i, m, = 0, 1 , 

/=o 

be considered. Let the given set A be decomposed into 2n subsets Am, defined by 

Am = {(aua2,...,an)eA:(ai ^ 0 iff mt = 0) for all i = 0, 1,2, .. . ,n - 1} . 

Now the set Zn will be endowed with 2n different orders ^ m as follows: for any 
a, a' e Zn we have a <;w a' if there exists an index fc e {l, 2, . . . , n) such that at = a\ 
for all i < k and (1 — 2mk) ak < (1 — 2mfe) <x'k. AH these orders are invariant under 
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addition and therefore (Zn, ^OT) is an ordered group for all m = 0, 1 , . . . , 2" — 1. 
Since B is a finite set, it contains its maximal element with respect to the order rgm. 
Let this element be denoted by jSm. 

It can be proved by an argument resembling that of the proof of Theorem 2.1, 
that the set 

(3.2) C = (A + B) s{J \Am + fiT) 
w = 0 

in (A, B, C) forms a class of well-posed initial value problems, i.e. that C is a "cor
rect" initial set. Even more, the sets Am are well ordered and the value f(a) for any 
a e A + B can be computed by an algorithm, which is based on the orders ^ m 

defined above. 
For the sake of brevity we do not give the details of the proof here; instead, in 

the sequel, some examples will be shown. 

Example 3.4. Let H be an upper triangular (n x n) nonsingular matrix of integers 
and let P be an (n x n) permutation matrix. Denoting by S the lexicographic order 
as in the previous construction, we may introduce the order •< in Zn as follows: 
for a, a' e Zn we have 

a<a' iff PHa ^ PHa'. 

(Z", -<) is an ordered group. For a e A , f$ e B we may consider a* = PHa, jS* = 
= PHP and use Construction 3.3. We obtain such a set C, that (A, B, C) forms a class 
of well-posed initial value problems. 

Construction 3.3 and Example 3.4 impose a certain ordering on the computation 
of the values f(a). These orderings may yield different ways of parallel computation 
and may imply different algorithms. For equation (1.2) this procedure can be 
interpreted as a change of the independent variables. 

Example 3.5. Consider a well-posed class (A, B, C) of initial value problems for 
partial difference equations (1.2) with g(oc) = 0 for all a e C. Then (1.2) defines 
a linear system 

f=Tx. 

If equation (1.2) has constant coefficients, the system is shift-invariant [2], [6] in 
the following sense: The equations belonging to the class (A + £, B, C + £) for any 
£ E Zn are well -posed and 

Tx(a + £ ) = f ( a + £ ) . 

For these linear, shift-invariant systems we may assume without loss of generality, 
that 0 e A. If a sequence S is defined by 

c / v f 1 for a = 0 
W - \ for 0 + a e A 
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then the solution h of the equation 

£ aph{x + p) = 8(<x) 
fleB 

with h(a) = 0 for all a e C is usually called the impulse response of the corresponding 
LSI system. 

For the sequence x* 

Y*(„\ _ J*(a) for cceA 
X { ] [0 for a $ A 

define now the function / * by 

(3.3) /*(a + fi) = Z % ' + j8) x*< a' ~ a) 
a 'e.4 

for all P e B, a,a' e A. Multiplying this equation by ap ar d summing these equations 
for all p e B, we obtain 

Z *„/*(« + P) = Z *(*') ^*(a' - °0 = ^*(a) 
/ieB a'e A 

for all a e A . We may conclude from the uniqueness of the solution of (1.2) that 
/ = / * and therefore 

(3.4) f=h*x, 

where * denotes the operation of convolution, defined by (3.3). 
In Section 1. C- and RC-solutions of (1.2) have been defined. In the following 

example we present an idea, how we can construct equations as in (1.2), which have 
unique or nonunique C-solutions, but have no RC-solution. 

Example 3.6. Choose n = 2 and let 

A = {(a1? a2): ax = 0, a2 = 0, at e Z}, 

£ = {(0,0), (1,0), (0,1), (1,1)}, 

C = {(0, q): q = 0, 1, 2 , . . .} u {(k, 0): k = 2, 3, 4 , . . .} u {(2,1)}. 

The corresponding difference equation with constant coefficients akq reads 

(3.5) a00f(a) + a10f(a + et) + a01f(a + e2) + atlf(a + e1 + e2) = 0 , 

where 

ex = (1, 0 ) , e2= (0, 1) . 

Let 

A = a10 alx 

aoo a01 

For A + 0 we may conclude: given any function g: C -* C, there exists one and 
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only onef: A + B -> C satisfying the given equation (3.5) and the condition f(a) = 
= g(oc) for all a e C. Indeed, f(l, 0) and f(l, 1) can be calculated from a system of 
linear equation with a (nonzero) determinant A. The remaining values f(a), a e A 
can be calculated recursively. 

For A = 0 either ao0^(0,0) = alla0lg(2, l) and e.g. the valuef(l, 0) can be chosen 
arbitrarily (an infinite number of solutions) or the given function g does not satisfy 
this condition and no values of f(l,0), f(l, 1) satisfy equation (3.5) (no solution 
exists). 

Similar, more involved "boundary value" problems as in Example 3.6 might be 
constructed and investigated; these investigations are beyond the scope of this paper. 

Summarizing the theorems and examples discussed so far we can conclude: Each 
element of a well-posed class (A, B, C) of initial value problems for partial difference 
equations defines a linear and causal system. If its coefficients a^ are constants, these 
systems are shift invariant and convolutional (see [6]). 

4. NONLINEAR EQUATIONS 

The method of proof of Theorems 2.1 and 2.7 offers the following generalization. 
Let us suppose we are given a map of B onto the set {V 2 , . . . , M} , M = card B < oo, 
and a set of functions F: CM -> C, a e A. Then we can consider the equation 

FXK* + P1), ...,/(«+ n) = *(«). « e A • 
We can extend our Theorem 2.1 also to this type of equations, provided the functions 
F are in some sense well-behaved. Indeed, it is not difficult to see, that the following 
theorem can be proved in exactly the same way as Theorem 2.1. 

Theorem 4.1. Let sets A, B satisfy conditions as in (2.1) (see the proof of Theorem 
2.1) and let the function Fa: CM —> C for any a e A have the following property: 
for any vector w e CM there exists exactly one value y such that 

Fx(wx,w2, ...,w^u y,wi+1, ...,wM) = w(, 

where ft1 = /?(a). Then for any x: A -> C and g: C -> C there exists exactly one 
function f: A + B -> C such that 

Fa(f(a + p% f(a + p2),.. .,f(a + pM)) = x(oc), aeA 

and f(y) = g(y) for all y e C. Here, similarly as above, 

C = (A + B)\ U {«+ , % ) } . 
aeA 

A number of examples, where F satisfies the assumptions of the above theorem 
can be given. 
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Example 4.2. i) For 

M 

i= 1 

with Aa i e C, p(a, i) e IV, it is sufficient to assume (Aa>1- + 0, p(a, i) odd whenever 

ii) Formal discretization of a single nonlinear hyperbolic partial differential 

equation yields the following equation 

7 (/(« + en+ .) - /(«)) + G(/(a)) t i (/(a + e t) - /(a)) = x(a) . 
/i ' = l k j 

Here, G is a nonzero one-variable function, the set B consists of the point 0 and of 

the points ek, k = 1, 2, . . . , n + 1, which have all the coordinates except the k-th 

one equal to zero, the k-th coordinate being equal to one. A choice of the set A 

leads to the construction of the set C as in the previous cases, and subsequently, 

to the construction of a unique solution, provided /?(a) + 0. 

Since only existence problems for nonlinear initial value problems are dealt with 

here, these examples are rather formal and we will not pursue this theme any further. 

5. CONCLUSIONS 

In this paper generalizations of difference equations have been dealt with, such 

that existence and uniqueness theorems could be formulated and proved. These 

theorems seem to be important in a rapidly growing area of multidimensional digital 

signal processing and, more generally, in the theory of multidimensional discrete 

systems. They may find applications also in numerical treatment of some partial 

differential equations by finite difference methods. 
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Souh rn 

O ZOBECNĚNÝCH DIFERENČNÍCH ROVNICÍCH 

MIROSLAV BOSÁK, JIŘÍ GREGOR 

Článek formuluje vety o existenci a unicitě řešení lineárních diferenčních rovnic o n nezávislých 
proměnných. Kromě významných odlišností od případu jedné proměnné sleduje souvislosti 
zkoumaného předmětu s teorií n-dimensionálních digitálních systémů. Výsledků je také použito 
na některé nelineární diferenční rovnice. 

Р е з ю м е 

ОБ ОБОБЩЕННЫХ УРАВНЕНИЯХ В КОНЕЧНЫХ РАЗНОСТЯХ 

MIROSLAV BOSÁK, JIŘÍ GREGOR 

Формулируются теоремы существования и единственности решения для линейных уравнений 
в конечных разностях функций многих переменных. Рассматриваются особенности, которыми 
этот случай отличается от обыкновенных уравнений в конечных разностях, но внимание 
уделяется также вопросам теории n-мерных систем цифровой обработки сигналов. Результа
ты применяются также к некоторым нелинейным уравнениям в конечных разностях упомяну
того типа. 
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