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32(1987) APLIKACE MATEMATIKY No. 4,315—331 

ON THE OPTIMAL CONTROL PROBLEM GOVERNED 
BY THE EQUATIONS OF VON KARMAN 

III. THE CASE OF AN ARBITRARY LARGE PERPENDICULAR LOAD 

IGOR BOCK, IVAN HLAVACEK, JAN LOVISEK 

(Received February 18, 1986) 

Summary. We shall deal with an optimal control problem for the system of von Karman 
equations for the deflection of a thin elastic plate. We consider the perpendicular load on the 
plate as the control variable. In contrast to the papers [1], [2], arbitrarily large loads are admitted. 
As the unicity of a solution of the state equation is not guaranteed, we consider the cost functional 
defined on the set of admissible controls and states, and the state equation plays the role of the 
constraint. The existence of an optimal couple (i.e., control and state) is verified. By using 
Lagrange multipliers, some necessary optimality conditions are derived. 

A control problem with the cost functional involving all possible solutions of the state equation 
for arbitrary perpendicular load-control is investigated in the last part. The optimal control 
problem is solved via a sequence of penalized optimal control problems. 

Key words: optimal control, Karman's equations, existence proof, conditions of optimality. 
AMS Subject classification: 73K10, 73H05, 49A22, 49B22. 

1. FORMULATION OF THE STATE PROBLEM 

We consider the same state problem as in the paper [2]. Let Q be a bounded 
i 

simply connected region with the boundary F = (J Sj, where Sj are simple smooth 
1=i 

arcs and the angles of the tangents at the corners, if there are any, are positive. 
Problem I. To find functions y, <P such that 

(1.1) A2y = [$,y] +v, 

A2<2> = - [y, y] in Q , where [<p, <P] = (p^22 + <p22^n - 2<Pi2^n > 

d2<P • • , , <Pij = z—— » *,I = 1, 2 ; 
OXi OXj 

(1.2) y = y„ = 0 on rX9 

y = M(y) + k2yn = 0 on F2 , 
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M(y) + k3iy* = T(y) + k32yn = 0 on F3, 

(1.3) <2> = <p0 , <£>„ = <px on F , 

(1.3') ^22^! - <£12n2 = X , <Pltn2 - $12n! = Y on F3 , 

where 
r = r1 u F2 u F3, Fi n F, = 0 for 14=;. 

The data and operators from (1.2), (1.3), (1.3') are specified in the papers [2] or [3]. 
We introduce a weak solution of the problem (1.1) —(1.3) in the same way as 

in [3]. 
Let I}(Q) be the Hilbert space of all real measurable square integrable functions 

in the Lebesgue sense on Q with the scalar product 

wvdx (1.4) («,»)„-= f« 
QJ 

and the norm 
%. 

(1.5) i«|0 = («,«)r. 

We introduce the Sobolev space 

H2(Q) = {w | w G L2(Q), Dau e L2(Q) for |a| S 2} 

with derivatives 
5 H w i i 

£)a
M = a _ a _|_ a 

dxi1 dx*2
2 M 

in the distributive sense. H2(Q) is the Hilbert space with the scalar product 

(1.6) (w, v)2 = \(uv + £ D*uDav) dx 

and the norm 
(1-7) \\u\\2 = {u,u)l'\ 

Let us set 

Y = {w | w e C°°(fi), u = un = 0 on Fl9 u = 0 on F2} 

and denote by V = "F the closure of TV in the space H2(Q). Further we define two 
bilinear forms on V x V: 

A(w, v) = [«ii^ii + 2(1 - JA) uí2v12 + w22i?22 + fi(utiv22 + M2 2»II)] dx, 

H(II, t>) = I fc2wnt;n ds + (k31wnt;M + fc32wv) ds , 
J E2 J T3 
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where \i e < 0, ^) is the Poisson constant appearing in the boundary operators M, T 
(see [2]). If the partition of the boundary F = F! u F2 u F3 satisfies some conditions 
([3], Lemma 3.1), the bilinear form 

((w, v)) = A(w, v) + a(u, v) , u,veV, 

determines a scalar product on Vwith the associated norm |jw|| = ((w, w))1/2, which 
is equivalent to the original norm f]wj|2. Hence Vis a Hilbert space with the scalar 
product ((w, v)) and the norm |w||. 

Further we introduce the space 

Hl(Q) = (W I W G H2(Q), U = w„ = 0 on F in the sense of traces} . 

Hl(Q) is a Hilbert space with the scalar product 

((w, v))0 = Aw Av dx 
Qj 

and the norm 

||«||0 = ((«,»))0 '2 . 

Next, we define the trilinear form on [H2(.Q)]3 

B(w, v, w) = [u12(v2w1 + vxw2) - w22v1w1 - Wuv2w2] dx . 
QJ 

Let F e H2(Q) be a function fulfilling the relations 

(1.8) ( (F ,^)) o = 0 for all ifr e H2
0(Q) , 

(1.9) F = <Po, Fn = <Pi on F. 

Setting <P = F + f,feHl(Q), we arrive at the following definition of a weak solution 
of Problem I. 

Definition 1.1. A couple [ y , / ] e V x H^(Q) is a reduced weak solution of Problem 

Li/ 
(1.10) ((>>, <?)) = B(f, y, <p) + B(F, y, <p) + (v, <p)0 for all <peV, 

(1.11) ( ( L ^ ) ) o = - B ( y , y , f) for all ^>eH2
0(Q). 

The system (1.10), (1.11) can be transformed to an operator equation in the space V. 
Let us define the following operators: 

M: L2(Q) -> V: 

(1A2) ((Mv, <p)) = (v, <p)0 for all <p e V, 

L: V-* V: 

(1.13) ((Ly, <p)) = B(F, y, <p) for all <p e V, 
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Cs.HftQ) x V-y V: 

(1.14) ((C1{u,y),<p)) = B(u,y,<p) for all <peV, 

C2:Vx V-+Hl(Q): 

(1.15) ((C2(y,w),<p))0 = B(y,w,<p) for all <pe# 0 (O), 

C: V-* V: 

(1.16) CW = C1(C2(j,>'),j;). 

The following lemma expresses some properties of the operators introduced 
above. 

Lemma 1.1. (i) The operator M is linear and compact; (ii) the operator Lis linear, 
self adjoint and compact; (iii) the operator C is compact. 

Proof. We shall verify only the compactness of M. All the other properties were 
proved in the papers [2], [3]. 

As the norm in the space P'is equivalent to the original norm []*|J2 in the space 
H2(Q), the imbeddings 

VQL2(G)G^* 

hold, where V* with the norm j • |# is the dual space to Vand the symbol Q denotes 
a compact imbedding. Due to the Riesz theorem we obtain the relation 

(1.17) ||Mi?|| = |v|* for all v e L2(Q). 

Let vn -* v (weakly) in l3(Q). The compactness of the imbedding l3(Q) Q V* implies 
vn ~> v (strongly) in V* and Mvn -> Mv (strongly) in V. Consequently, the compactness 
of the operator M: l}(Q) -> Vfollows. 

The system (1.10), (1.11) can be rewritten in the form of an equation in the space V: 

(1.18) y - Ly + C(y) = Mv . 

A couple [y,f] is a reduced weak solution of Problem I if and only if y is a solution 
of (1.18) and f = -C2(y9y). 

The following theorem yields the existence of a solution of the equation (1.18). 

Theorem 1.1. Let y < 1 be such that 

(1.19) ((Ly, y)) ^ y\\y\\2 V y e V . 

Then for arbitrary v e l3(Q) there exists a solution yeV of the equation (1.18). 
Moreover, the estimate 

(1-20) \y\ S (1 - y)~x CoMo 

holds, where c0 is the constant from the inequality 

(1.21) Mo--CoH| y(peV-
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Proof. The existence of a solution y e Vis verified in the papers [3], [5]. The 
estimate (1.20) results from the relations 

((Cy, y)) = ((C±(C2(y, y)9 y), y)) = B(C2(y, y), y9 y) = 

= B(y, y, C2(y9 y)) = \\C2(y9 y)\\2 ^ 0 Vy e V 

and the equation 

(1.22) ||Mv|| Sc0\v\0 VveV , 

which is a consequence of the relation (1.17). 

R e m a r k 1.1. The possibilities of satisfying the condition (1.19) are discussed 
in the paper [3]. We can assume that the functions <p09 <p1 in (1.3) are sufficiently 
small, or that the form B(F, y9 y) is nonpositive for all y e V. The latter case cor
responds to some state of tension in the plate, determined by an Airy stress function F. 

2. OPTIMAL CONTROL PROBLEM WITH THE STATE EQUATION 
IN THE FORM OF A CONSTRAINT 

Let Uad c l}(Q) be an arbitrary convex closed and bounded set of admissible 
controls v: 

(2.1) \v\oSK VveU a d . 

We introduce the cost functional J: V x Uad -» R of the form 

(2.2) J(y,v) = f(y) + j(v), yeV, veUad, 

where #: V-> M, j : L2(0) -> IR are some functionals. 

We shall investigate the following 

Optimal Control Problem P x : to find a couple (y09 u) e V x Uad such that 

(2.3) J(y0, u) = min J(y9 v) , 

where 

(2.4) X - {(j;, v) | (y9 v) e V x Uad, j ! - L^ + C(y) - Mv = 0} . 

Hence the canonical equation (1.18), equivalent to the original Problem (1.1) —(1.3), 
appears here as a constraint. 

We formulate the existence theorem for Problem Px . 

Theorem 2.1. If (1.19) holds and the functionals f, j are weakly lower semi-
continuous on V and l3(Q)9 respectively, then there exists a solution (y0, u) e C/f 
of Optimal Control Problem Px . 
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Proof. Let {(>>„, u„)} <= jf be a minimizing sequence for the functional J, i.e. 

(2.5) lim J(yn, «„) = inf J(y,v). 
n-+ao (y,v)e^T 

The set Uad is weakly compact and weakly closed in L2((2), being bounded, closed 
and convex. Hence there exists a subsequence {um} such that 

(2.6) um -» u (weakly) in L2(£) , u e Uad . 

The corresponding sequence {ym} is bounded in V, due to the estimate (1.20), and 
there exists a subsequence {yk} such that 

(2.7) yk - y0 (weakly) in V, y0 e V. 

We have 
(2.8) y* - Ljfc + C(^) = Muk . 

The operators L, M5 C are compact by virtue of Lemma 1.1. Passing to the limit 
in (2.8), we arrive at 

(2.9) yo - Ly0 + C(y0) = Mu , 

so that (y0, u) e Jf. 
As the functional / , j are weakly lower semicontinuous, we obtain 

•/(yo, ") = /(yo) + j(u) = Um inf f(yk) + lim inf j(uk) = 
fc-*ao fc->oo 

= lim inf j(yk, uk) = inf J(j, v) . 
fc-*oo (y,y)e3T 

Consequently, the couple (y0, u) is a solution of Optimal Control Problem Px. 

3. NECESSARY CONDITIONS OF OPTIMALITY 

Let us first recall the following theorem from the book [4] (Chapt. 1.1.3). 

Theorem 3.1. (The extremal principle in smoothly convex problems.) Let X, Y be 
Banach spaces, U an arbitrary set, F:X x U -> F, ft: X x U -> R, i = 0, 1, ..., n 
and 

(3.1) % = {(x, u) | (x, u) eX x U, F(x, u) = 0, f(x, u) = 0, i = 1, ..., n} . 

Let (x*, u*)e^ be a couple satisfying the following conditions: 
(i) there exfsfs a neighbourhood W a X of x*, such fhat 

(3.2) f0(x*, u*) = min f0(x, u) ; 
( jc,u)e(IYx[7)n^ 

(ii) the mappings x i-> F(x, u) and the functionals Xr->f(x, u), r = 0 , 1 , . . . , n, 
are continuously Frechet differentiable at the point x* for each ueU; 
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(iii) the mappings u i—>F(x, u) and the functionals u i-»/,(x, u), i = 0, 1, ..., n, 

fulfil for each xeW the following conditions: 

for arbitrary ul9 u2 e U and a e <0, 1> there exists u eU such that 

(3.3) F(x, u) = aF(x, ui) + (1 — a) F(x, u2) , 

(3.4) / ,(x, u) g a/,(x, ut) + (1 - a)/,(x, u2), i = 0, 1 , . . . , n ; 

(iv) the set {y | 3; G Y, j = F^(x#, >'#) x, x e X} is of finite codimension in Y 

Then there exist Lagrange multipliers 10 ^ 0, ..., Xn „ 0, y* e Y not vanishing 
simultaneously and such that 

n 

(3.5) &'x(x+, ii#, A0 , . . . , A„, j * ) = £ AJlJx*, u*) + y*F;(x*, «*) = 0 , 
i = 0 

(3.6) ^ ( x * , u*, A 0 , . . . , A,,, >*) = min JSf(x#, u, A0, ..., Xn, y * ) , 
mil 

(3.7) Aift(x*, u*) = 0 , 1 = 1 , . . . , n , 

where i f is the Lagrange function of the form 

(3.8) &(x9u, A0 , . . . , 4 , 3;*) = £ 2 , / (x , 11) + <y*, F(x, II)> 
i = 0 

and < j* o F'x(x*9 w*), x> = <y*, F;(x*, 11*) x> for all xeX. 
If, moreover, the set 

(3.9) {y | y e Y, y = F;(x*, n#) x + F(x*, u), (x, w) e K x U} 

contains a neighbourhood of zero in Y and there exists a point (x0, u0) e X x U 
such that 

(3.10) -?i(x*, "*) x0 + F(x# , w0) = 0 , 

(3.11) <fL(x*, «*), *0> + /«(**, "o) < 0 

/Or a// i > 0 such that / , (x # , u*) = 0, fhen A0 + 0 and we can set A0 = 1. 

Using Theorem 3.1, we obtain 

Theorem 3.2. (Necessary conditions of optimality.) Let the estimate (1.19) hold 
and let the couple (y0, u)eVx Uad be a solution of Optimal Control Problem Fi 

with a convex functional j and continuously Frechet differentiable functionals f,j. 
Then there exist a number X0 ^ 0 and an element z e Vnot vanishing simultaneously 
and such that 

(3.12) [I-L+ C'(y0)] z= -X0R f'(y0) , 

(3.13) M(u) - z,v-u)o = 0 Vt> e Uad , 

(3.14) y0 ~ Ly0 + C(y0) = Mu , 
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where 
C'(yo) z = 2C1(C2(j>0, z), y0) + C±(C2(y09 y0), z) 

and K: V* -> Vis fhe Kiesz representative operator. 

If, moreover, 

(3.15) |«|o ^ «1/2(1 - 7)3/2 Co^llC.U | |C 2 | | ) - ^ , 

where a e (0, 1) is arbitrary, then X0 4= 0 and we can set X0 = 1. 

Proof. We shall verify the assumptions of Theorem 3.L 

We have X = Y = V - a Hilbert space, U = Uad, (x*, u*) = (j>0, u)9 ^(y, v) ss 
= y - L y + c(y) - Mv, (y, v) e V x Uad, % = {(y, v) \(y9v)eVx Uad, 
^(y,v) = 0},fo = f(y)+j(v). 

The mapping y -> £F(y, v) is continuously Frechet differentiable at each point 
y* E Vand we have 

(3A6) &'y(y^v)y = y„Ly + C(y*)y9 yeV, 

where 

(3.17) C'(y*) y = 2C1(C2(j*, y), y*) + Ci(C2(y*, y*), y) . 

The differentiability results directly from the definition of the Frechet derivative 
and of the expression C(y) = Ci(C2(y, y), y), y e V (see (1.16)). The continuity 
of the mapping n -> C'(w) e S£(V, V) is a consequence of the estimates (for details 
cf. [2]) 

(3.18) flC^jOM IC,! IMIo IN V«6HS(0), yeV, 

(3.19) \C2{y,n)\\0^\\C2\\\\y\\\\4 Vy, , e K . 

The property (3.3) holds for arbitrary elements wl5 u2
 e ^ad a n d a e (0, 1) if w e 

take w = aut + (1 — a) u2
 e âd* since the set Uad is convex and the operator M 

in the mapping SF is linear. 
The operator #"^(y*, v) e S£{V9 V) can be expressed in the form 

(3.20) f'y(y%>% v)=I + A, 

where 

(3.21) A= - L + C ' ( y * ) 

is a linear compact operator, because Lis linear compact due to Lemma 1.1 and the 
compactness of C'(y*) results from the compactness of the operator C (see [7], 
Th. 4.7). Moreover, A is selfadjoint due to Lemma 1.1 and to the form of the operator 
C'(y*) (for details we refer to [2], Lemma 5.1). According to the theory of equations 
with linear compact operators ([6], Chapt. VI, § 2) we have the identity R(I + A) = 
= N(I + A)1, where R(I + A) is the range of the operator I + A and N(I + A)1 
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is the orthogonal complement of the set N(I + A) = {y | y e V, (I + A) y = 0}. 
The space N(I + A) is finite-dimensional and hence the space R(I + A) has a finite 
codimension which is equal to the dimension of the space N(I + A). Hence the as
sumption (iv) of Theorem 3.1 is satisfied, too. 

Hence there exist Lagrange multipliers X0 ̂  0 and z* e V* such that 

(3.22) X0 f(y0) + z* o [I - L + C'(y0)] = 0 , 

(3.23) ^o[/(yo) + M l + <z*> F(yo> «)> = 

= min Uo[/(yo) + ;(»)] + <z*> ̂  *)>} . 
VsUad 

Let R: V* -> Vbe the Riesz operator and Rz* = z. Then we have 

(3.24) <z*, t?> = ((Rz*,>/)) = ((z, i,)) Vi,eV. 

Rewriting (3.22), we obtain the relations 

0 = Oo / ' (^o) . n> + <**> [I - L + C'(v0)] >?> = 

= ((10R f'(y0), n)) + ((z, [/ - L + C'(yoj] -.)) = 

= ( M f'(yo) + U-L+ C'(y0)] z, ,)) Vi, e V, 

which imply (3A2) immediately. 
Using the convexity of the set Uad, we obtain from (3.23) the inequality 

(^olXyo) + M I U 0 + <**> ̂ (yo> f)>Uo> v - u)0 ^ 0 Vv e Uad 

and, further, 
0 S (X0f(u\ v-u)0- <z*, M(v - u)} = 

= 0*o/(w)> t; - u)0 - ((z, M(v - u))) = ( l 0 / (u ) - z, v - w)0 Vw e Uad , 

which yields the inequality (3A3). The state equation (3A4) completes the necessary 
conditions of optimally. 

If (3.15) holds, then due to (1.20) and Theorem 1.1, we arrive at the estimate 

(3-25) M'^l-TMCii-'IC-l-1. 
For arbitrary ye Vwe may write 

(3.26) ((F'y(y0, u) y, y)) = ((y - Ly + C'(y0) y, y)) = 

= ||y||2 - ((Ly, y)) + 2((Ct(C2(y0, y), y0), y)) + 

+ ((^(C&o, y0), y), y)) =\W - ((Ly, y)) + 

+ 2\\C2(y0, y)\\l + ((Ct(C2(y0, y0), y), y)) ̂  

* (1 - y - | C . | ||C2|| |W|2) \\y\\2 >= (1 - «)(1 - y) \\y\\2 = m\\yf, 

m = (1 - a) (1 - v) > 0 . 
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4. AN OPTIMAL CONTROL PROBLEM WITH A COST 
FUNCTIONAL INVOLVING ALL SOLUTIONS OF THE STATE EQUATION 

We again consider nonempty bounded closed and convex set Uad cz l}(Q) of 
admissible controls v9 which fulfil the condition 

(4.1) |p|o_.K Vu€Uad. 

Let !F: V x Uad -> Vbe the state operator of the form 

(4.2) &(y, v) = y - Ly + C(y) - Mv , 

where the operator L: V-* V satisfies the estimate (1.19). We introduce the cost 
functional of the form 

(4.3) J(v) = sup [ / ( » + ;(»)] , v € Uad , 
yeV 

&(y*v)~0 

where /": F-* R, j : l}(Q) -> R are given functionals. The functional J: Uad ~> R is 
defined correctly, as follows from Theorem 1.1 on the existence of solution. 

Next, let us define 

Optimal Control Problem P2: to find u e Uad such that 

(4.4) J(u) = min J(v) . 
veUnd 

To solve this problem, we shall use the method of penalizations. If v e Uad, then 
due to Theorem 1.1 every solution y e V of the equation !F(y9 v) -= 0 fulfils the 
estimate 

(4.5) \\y\\=r, r = (l-y)-1C0K. 

The functional J can be expressed in the form 

(4.6) J(v)= sup {S(y)+j(v)}> veUad9 
ysVr 

^{y,v)-0 

where Vr = {y \ y e V9 \\y\Sr}. 

J can be also written in the form 

(4.7) J(v) = sup {S(y) + j(v) - p(y9 v)} , v e Uad , 
yeVr 

where p:Vrx Uad -> R u { + oo) is defined as follows: 

(4 8̂  B(vv)-/°' i f ^ ' t , ) = ° 
( 4 , 8 j P{y,V) \ + o o , if &(y,v)±0. 

For arbitrary e > 0 let us consider the functional J£: Uad ~> R of the form 

(4.9) Je(v) = sup \f(y) + j(v) - - \\SF(y, v)(\, v e Uad . 
yeVr L e j 
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First we shall solve some penalized Problem Pe with the functional Je instead 
of J. We verify the existence of a solution ue of Problem P£. Further, we show the 
existence of a sequence {u£n} weakly convergent to a solution u e Uad of some modified 
Optimal Control Problem P2. 

Lemma 4.1. Let f: V-+ IR be a weakly continuous functional. Then for each 
v 6 Uad there exists an element ye

v e Vr such that 

(4.10) JE(v) = f(fv) + j(v) - - \2F(yl, v)\ . 
e 

Proof. The functional Je>v: V, -> R denned by 

(4.11) J£» = f(y) + j(v) - - \\^(y, v)\\ , y e Vr 
e 

is upper bounded for every e > 0, v€Uad. Let {^,£}^°=1 c Vr be a maximizing 
sequence for JBtV on the set Vr, i.e. 

(4.12) lim JEtV(f/) = sup JBtV(y) . 
n-*oo yeVr 

The sequence {yU'e} is bounded in the Hilbert space V, so that we can extract a sub
sequence {ym

8} such that 

(413) ym'£-*y: (weakly) in V: / , e Vr. 

We have used the fact that the set Vr is closed and convex and hence weakly closed 
in V. By virtue of the properties of the operators L, C we have 

(4.14) &(y^,v)-&(y\,v) (weakly) in V, 

(4.15) \<F(y\, v)\ 52 lim inf \9{f*> v)\ . 

The relations (4.13), (4.15) and the weak continuity of / imply 

J.M = Ayl) + M - - My» v)l = 
S 

2: l imsupf /C^) + j(v) - - \^(yr, v){\ = lim Je_v(y^) = sup l,v(y). 

m-»oo L S m~*oo yeVr 

Consequently, we may write 

(4.16) Je(v) = sup J£» = JBtV(yl) , 
yeVr 

which is equivalent to (4.10). 
Next we introduce 
Extremal Problem Pe: to find ue e Uad such that 

(4.17) Je(ue) = min Je(v) . 
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Lemma 4.2. Let f:V-+U.be weakly continuous and letj: l!(Q) -+ U be a weakly 
lower semicontinuous functional. Then there exists a solution uee Uad of Extremal 
Problem P£. 

Proof. Let {us
n} c Uad be a minimizing sequence for Je, i.e. 

(4.18) lim Je(un) = inf Je(v). 
n~>oo veUmd 

Since the set Uad is bounded and weakly closed, there exists a subsequence {um} c Uad 

such that 

(4.19) um-*ue (weakly) in L2(Q) , ueeUad. 

The operator v -> <F(y, v), v e Uad, is compact due to Lemma 1.1 and hence 

(4.20) lim^(y,um) = 3?(y,ue) VyeF . 
m-»oo 

Using Lemma 4.1 and the properties of the functionals #,j we arrive at the relations 

7.(u.) = sup \f(y) + j(ut) - - \2F(y, «.)||1 = 
yeVr L e J 

= /W.)+X«e)--H^.«e)ll = 
e 

= lim inf [ / ( / J + j(um) - - \3?(yl, ut){\ = 
m->oo 8 J 

= lim inf sup \jf(y) + j(um) - ± \\&(y, um)\\\ = 
m-*oo y e F r |_ £ 

= lim inf Je(um) = inf Je(t>). Q.E.D. 
m->oo vel/ad 

Let us now formulate a modified optimal control problem. 

Optimal Control Problem ¥2: to find a control u e Uad with a nonempty set 
Mu a V such that 

(4.21) #*(z, u) = 0 , 

(4.22) S(?)+](*)£ sup [/(y)+X»)] 

for all zeMu and all t> G Uad. *0.»>-° 
The main result of this chapter is represented by the following existence theorem. 

Theorem 4.1. Let (1.19) ho/d, Ze? the functional /: V~> IR fee /ower bounded and 
weakly continuous and let the functional j : I3(Q) -> R be lower bounded and 
weakly lower semicontinuous. Then there exists a solution u e Uad of Optimal 
Control Problem J?2. If lim s„ = 0, en > 0, then every sequence {u£n} c Uad of 

n->co 
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solutions of Problem P£n contains a subsequence {uEm} such that 

(4.23) uem - u (weakly) in L2(Q) , 

where u e Uad is a solution of Problem P'2-

Proof. Let {en} be a sequence of positive numbers such that 

(4.24) lim en = 0 . 
n-+c30 

We denote un = u£n, n = 1,2,..., where uEn e Uad is a solution of Extremal Problem 
P£n. There exists a subsequence {um} c Uad such that 

(4.25) w m - « (weakly) in L2(Q) , u e Uad . 

Let yUm e Vr be any solution of the equation 

(4.26) :F(yUmy um) = 0 , m - 1 , 2 , . . . . 

The existence of yUm results from Theorem 1.1. As the set Vr is convex, closed and 
bounded and the operators L, C, M appearing in the expression (4.2) are compact, 
there exists a subsequence {yUk} such that 

(4.27) yUk -> ytt (strongly) in V, 

where 

(4.28) ^(jv,, I I ) = 0 . 

Since the functional $ and j are weakly continuous and weakly lower semi-
continuous, respectively, considering (4.25), (4.26), (4.27) and the character of the 
elements uk = u£k, fe= 1,2,... , we are led to the inequalities 

(4.29) S(y.) + J(u) ^ lim inf. [f(yUk) + ;(«*)] ^ 
fc-+oo 

=g lim inf sup [/(y) + j(Mjk) - - \*{y, uk)(\ ^ 
k-oo y6KrL £fc J 

g lim inf sup [/(>>) + j(») - I | ^ ( y , o)||I = 
k-oo yeKr |_ elfc J 

= lim inf [ / ( /„ ) + j(v) - 1 fljr(£ «0fl~| = 

^ lim inf [/(>*) + ;(»)] for all « e Uad , 
fc-+oo 

where >>* = y¥* and the element yv
k is defined via Lemma 4.1. 

There exists a subsequence {yv} <=: Vr such that 

(4-30) fv - ft, (weakly) in V, yseVr. 
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Let yv e Vr satisfy the equation !F(yv9 v) = 0. As the funtionals f, j are lower 
bounded, there exists a constant ceU, such that 

e ^ f(yv) + j(v) = f(yl) + j(v) - - \P(f„ v)\\, s = 1,2,.... 

Consequently, 

(4.31) W y » l ^e s c (v ) , c(v)eR, 

where we have used (4.30) and the weak continuity of f. Since the operators L, C 
are compact, we have 

&(y\, v) ~- &(yv9 v) (weakly) in V 

and (4.31) implies 

(4.32) 3?(yv9 v) = 0 

due to the inequality 
\&(y„v)\ ^liminf||#-(v^,v)|] = 0 . 

s-*co 

Weak continuity of the functional # and the relations (4.29), (4.30), (4.31) imply the 
relations 

(4.33) / C O + X") ^ Hm inf [/(/„) + j(vj] = 
S~*CO 

= /0\,) + I W ^ SUP [Ay) + Ml • 
yeK r 

S?(y,v) = 0 

Since yM is a solution of the state equation 3F(y9 u) = 0 and v is an arbitrary element 
from Uad we see that yu e Mu and u is a solution of Optimal Control Problem P2, 
which completes the proof. 

Remark 4.1. The nonempty set Mu contains all stable solutions yu of the equation 
#"(>', u) = 0, i.e. the solutions satisfying the condition: 

un -* u (weakly) in L2(Q) implies the existence of yUn e V, n = 1, 2, ... , 
^"(yMn>"„) = 0, yMn -> yM in V. 

Remark 4.2. Instead of the penalized functional Je we can consider in (4.9) the 
functional 

(4.35) Jftu) = sup \f(y) + j(v) - - g(P(v, y))~\, 
yeVr L e J 

where g: V-* R is weakly lower semicontinuous, continuous on Fand satisfies the 
conditions 

(4.36) 0(0) = 0 , g(y) > 0 for all yeV, y * 0 . 
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Conditions for weak lower continuity of a functional g are described in the book 
[8], (Chapt. Ill, § 8). One of such conditions is, for instance, the differentiability 
of g and the monotonicity of its Gateaux derivative. Then we can put 

(4.37) g(y)= \\y\\2 , yeV. 

Remark 4.3. Due to the compact imbeddings of the Sobolev space H2(Q), the fol
lowing functional are weakly continuous: 

(4.38) Sly) = \y - *o|o > z0eL2(Q), 

(4.39) Si(y)= !Iy-Zil3Hi, z.eH^Q), 

(4.40) Si(y) = sup \y(x) - z 2(x)|, z 2 e C ( S ) , >>eV. 
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Souh rn 

O PROBLÉMU OPTIMÁLNÍHO ŘEŠENÍ PRO KÁRMÁNOVY ROVNICE 
III. PŘÍPAD LIBOVOLNĚ VELKÉHO PŘÍČNÉHO ZATÍŽENÍ 

IGOR BOCK, IVAN HLAVÁČEK, JÁN LOVÍŠEK 

Je studována úloha řízení systému nelineárních Kármánových rovnic pro tenkou desku 
prostřednictvím pravé strany rovnice rovnováhy. Na okraji desky se uvažují kombinované 
podmínky. Na rozdíl od částí I a II této práce připouští se zde libovolně velké příčné zatížení, takže 
není zaručena jednoznačnost řešení. Pro dva typy účelového funkcionálu se dokazuje existence 
řešení optimalizační úlohy, v prvém případě jsou odvozeny též nutné podmínky optimality. 
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P e з ю м e 

OПTИMAЛЬHOE УПPABЛEHИE CИCTEMOЙ УPABHEHИЙ KAPMAHA 
III. CЛУЧAЙ ПPOИЗBOЛЬHO БOЛЫПOЙ ПPABOЙ ЧACTИ 

УPABHEHИЯ PABHOBECИЯ 

ІGOR Bocк, ІVAN HLAVÁČEК, JÁN LOVÍŠEК 

Paccмaтpивaeтcя yпpaвлeниe cиcтeмoй нeлинeйныx ypaвнeний Kapмaнa для тoнкoй yпpyгoй 
плиты пocpeдcтвoм пpaвoй чacти ypaвнeния paвнoвecия. Ha гpaницe пpeдпoлaгaютcя cмe-
шaнныe кpaeвыe ycлoвия. B oтличиe oт чacтeй I и II этoй paбoты дoпycкaeтcя здecь пpoизвoль-
нo бoлыпaя пoпepeчнaя нaгpyзкa, тaк чтo нe cлeдyeт oднoзнaчнocть peшeния зaдaчи cocтoяния. 
Для двyx типoв цeлeвoй фyнкции дoкaзывaeтcя cyщecтвoвaниe oптимaльнoгo peшeния 
и в пepвoм cлyчae вывeдeны тoжe нeoбxoдимыe ycлoвия oптимaльнocти. 
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